Select a name to match each property. Be careful to distinguish between scalar and vector. For example, u→+v→=v→+u→ is vector additive commutativity. (u→+v→)+w→=u→+(v→+w→). u→+0→=0→+u→=u→. u→+(−u→)=(−u→)+u→=0→. c(u→+v→)=cu→+cv→. (c+d)u→=cu→+du→. c(du→)=(cd)u→. .1u→=u→. Commutative Associative Distributive Inverse
Select a name for each property. Be careful to distinguish between scalar and matrix. A+B=B+A. (A+B)+C=A+(B+C). A+0=0+A=A. A+(−A)=(−A)+A=0. r(A+B)=rA+rB. (r+s)A=rA+sA. r(sA)=(rs)A. 1A=A. Commutative Associative Distributive Inverse
Select a name for each property. Be careful to distinguish between scalar, vector, and matrix. A(u→+v→)=Au→+Av→. A(cu→)=c(Au→). Commutative Associative Distributive Inverse
Select a name for each property. No two have the exact same description: be precise! The last item will be explained in a future lesson. A(BC)=(AB)C. A(B+C)=AB+AC. (B+C)A=BA+CA. r(AB)=(rA)B=A(rB). ImA=A=AIm. Commutative Associative Distributive Inverse
definition of vector addition definition of scalar multiplication property of real arithmetic definition of vector addition definition of scalar multiplicationc(u→+v→)=c([u1,u2,…,un]+[v1,v2,…,vn])=c([u1+v1,u2+v2,…,un+vn]) definition of vector addition=[c(u1+v1),c(u2+v2),…,c(un+vn)] definition of scalar multiplication=[cu1+cv1,cu2+cv2,…,cun+cvn] property of real arithmetic=[cu1,cu2,…,cun]+[cv1,cv2,…,cvn] definition of vector addition=c[u1,u2,…,un]+c[v1,v2,…,vn] definition of scalar multiplication=cu→+cv→.