Checkpoint 1.1.1.
Find all solutions to this system of equations.
\begin{equation*}
\begin{array}{rrrcr}
x & +y & +8z & = & 42. \\
x & +2y & +10z & = & 53. \\
7x & +2y & +47z & = & 244.
\end{array}
\end{equation*}
Solution.
\begin{align*}
\begin{bmatrix}
1 & 1 & 8 & 42 \\
1 & 2 & 10 & 53 \\
7 & 2 & 47 & 244 \\
\end{bmatrix}
& \sim &
\begin{array}{l}
\\
R_2 \leftarrow -1R_1+R_2 \\
R_3 \leftarrow -7R_1+R_3 \\
\end{array}\\
\begin{bmatrix}
1 & 1 & 8 & 42 \\
0 & 1 & 2 & 11 \\
0 & -5 & -9 & -50 \\
\end{bmatrix}
& \sim &
\begin{array}{l}
\\
\\
R_3 \leftarrow 5R_2+R_3 \\
\end{array}\\
\begin{bmatrix}
1 & 1 & 8 & 42 \\
0 & 1 & 2 & 11 \\
0 & 0 & 1 & 5 \\
\end{bmatrix}
& \sim &
\begin{array}{l}
R_1 \leftarrow -1R_2+R_1 \\
\\
\\
\end{array}\\
\begin{bmatrix}
1 & 0 & 6 & 31 \\
0 & 1 & 2 & 11 \\
0 & 0 & 1 & 5 \\
\end{bmatrix}
& \sim &
\begin{array}{l}
R_1 \leftarrow -6R_3+R_1 \\
R_2 \leftarrow -2R_3+R_2 \\
\\
\end{array}\\
\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 5 \\
\end{bmatrix}
\end{align*}
Thus the solutions are \(\begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}\)
