1. Vector Calculus page 133 problem 32

Find any planes tangent to the curve \(z = x^2 - 6x + y^3 \) that are parallel to the plane \(4x - 12y + z = 7 \).

The tangent plane to a curve \(f : \mathbb{R}^2 \to \mathbb{R} \) at a point \((a, b)\) is given by \(z = f(a, b) + f_x(a, b)(x-a) + f_y(a, b)(y-b) \). For this function \(f_x = \frac{\partial f}{\partial x} = 2x - 6 \) and \(f_y = \frac{\partial f}{\partial y} = 3y^2 \). Thus the equation of the tangent plane to a curve at the point \((a, b)\) is \(z = (a^2 - 6a + b^3) + (2a-6)(x-a) + (3b^2)(y-b) \) or \((a^2 - 6a + b^3) = (6-2a)(x-a) - (3b^2)(y-b) + z \).

We want only tangent planes that are parallel to the plane \(4x - 12y + z = 7 \). This implies that the tangent planes must have a normal vector that is a scalar multiple of \([4, -12, 1]\). Thus we arrive at the system of equations

\[
\begin{align*}
6 - 2a &= 4k \\
-3b^2 &= -12k \\
-1 &= -1k
\end{align*}
\]

The last equation forces \(k = 1 \). Thus we obtain the solution \(a = 1 \) and \(b = 2 \). This gives us the single tangent plane \(-4x + 12y - z = 13\).
2. If \(\lim_{x \to a} f(x) = M \) and \(\lim_{x \to a} g(x) = N \) then \(\lim_{x \to a} (f \circ g)(x) = MN \).

Proof:
Since \(\lim_{x \to a} f(x) = M \) there exists \(\delta_f \) such that \(|f(x) - M| < \frac{\epsilon}{3M} \) when \(\|x - a\| < \delta_f \). Also, \(\lim_{x \to a} g(x) = N \) implies there exists \(\delta_g \) such that \(|g(x) - N| < \frac{\epsilon}{3N} \) when \(\|x - a\| < \delta_g \). Let \(\delta_{fg} = \min(\delta_f, \delta_g) \).

Suppose that \(\|x - a\| < \delta_{fg} \). Consider \(|f(x)g(x) - MN| \). Because \(\|x - a\| < \delta_{fg} \leq \delta_f \), \(|f(x) - M| < \frac{\epsilon}{3M} \) or \(f(x) = M + \Delta_f \) with \(|\Delta_f| < \frac{\epsilon}{3M} \). Likewise, \(\|x - a\| < \delta_{fg} \leq \delta_g \), \(|g(x) - N| < \frac{\epsilon}{3N} \) or \(g(x) = N + \Delta_g \) with \(|\Delta_g| < \frac{\epsilon}{3N} \).

Thus,

\[
|f(x)g(x) - MN| = |(M + \Delta_f)(N + \Delta_g) - MN| \\
= |MN + \Delta_f M + \Delta_g N + \Delta_f \Delta_g - MN| \\
\leq |\Delta_f N| + |\Delta_g M| + |\Delta_f \Delta_g| \\
< |N| \frac{\epsilon}{3|N|} + |M| \frac{\epsilon}{3|M|} + \frac{\epsilon}{3} \\
= \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\
= \epsilon.
\]

The last steps are true, because \(\frac{\epsilon^2}{9|M||N|} < \frac{\epsilon}{3} \) if \(\epsilon < 3|N||M| \). This is true if \(\epsilon \) is sufficiently small, and for a limit \(\epsilon \) becomes arbitrarily small.

Thus we have found a \(\delta_{fg} \) such that, \(|(f \circ g)(x) - MN| < \epsilon \) when \(\|x - a\| < \delta_{fg} \).

QED