Computer Organization and Architecture

Introduction

Architecture & Organization 1

Architecture is those attributes visible to the programmer
- Instruction set, number of bits used for data representation, I/O mechanisms, addressing techniques.
- E.g. Is there a multiply instruction?

Organization is how features are implemented, typically hidden from the programmer
- Control signals, interfaces, memory technology.
- E.g. Is there a hardware multiply unit or is it done by repeated addition?
Architecture & Organization 2

- All Intel x86 family share the same basic architecture
- The IBM System/370 family share the same basic architecture
- This gives code compatibility
 - At least backwards
 - But... increases complexity of each new generation. May be more efficient to start over with a new technology, e.g. RISC vs. CISC
- Organization differs between different versions

Levels of Machines

Computers are complex; easier to understand if broken up into hierarchical components.

<table>
<thead>
<tr>
<th>High Level</th>
<th>User Level: Application Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Level Languages</td>
</tr>
<tr>
<td></td>
<td>Assembly Language / Machine Code</td>
</tr>
<tr>
<td></td>
<td>Microprogrammed / Hardwired Control</td>
</tr>
<tr>
<td>Functional Units (Memory, ALU, etc.)</td>
<td>Logic Gates</td>
</tr>
<tr>
<td>Low Level</td>
<td>Transistors and Wires</td>
</tr>
</tbody>
</table>
Structure & Function

At each level the designer should consider

- **Structure**: the way in which components relate to each other
- **Function**: the operation of individual components as part of the structure

Let’s look at the computer hardware top-down starting with function.

- Later we’ll look at software

Function

All computer functions are:

- Data processing
- Data storage
- Data movement
- Control
Functional view

Functional view of a computer

Operations (1)

Data movement
- e.g. keyboard to screen
Operations (2)

Storage
- e.g. Internet download to disk

Operation (3)

Processing from/to storage
- e.g. updating bank statement
Operation (4)

- Processing from storage to I/O
 - e.g. printing a bank statement

Structure

- Major Components of a Computer
 - Central Processing Unit (CPU) – Controls the operation of the computer and performs data processing
 - Main Memory – Stores data
 - Input Output (I/O) – Moves data between the computer and the external environment
 - System Interconnect – Some mechanism that provides for communications between the system components, typically a **bus** (set of wires)
Structure - Top Level

- Computer
- Input/Output Systems
- Interconnection
- Central Processing Unit
- Main Memory
- Systems Interconnection
- Input/Output
- Communication lines
- Peripherals

Generic System Bus

- CPU (ALU, Registers, and Control)
- Memory
- Input and Output (I/O)

System Bus = Data, Address, and Control Bus (set of wires, e.g. 32 wires each)
Typically multiple I/O buses, power bus, etc.
Structure - CPU

Major components of the CPU
- Control Unit (CU) – Controls the operation of the CPU
- Arithmetic and Logic Unit (ALU) – Performs data processing functions, e.g. arithmetic operations
- Registers – Fast storage internal to the CPU, but contents can be copied to/from main memory
- CPU Interconnect – Some mechanism that provides for communication among the control unit, ALU, and registers

Structure - The CPU
Structure – Inside the CPU

The implementation of registers and the ALU we will leave primarily to EE 241.

We will say a bit about the architecture of the control unit, there are many possible approaches.

A common approach is the microprogrammed control unit, where the control unit is in essence itself a miniature computer, where a CPU instruction is implemented via one or more “micro instructions”

Sequencing Logic – Controlling the order of events
Microprogram Control Unit – Internal controls
Microprogram Registers, Memory

Structure – A Microprogrammed Control Unit
Computer Evolution and Performance

Better, Faster, Cheaper?

History: ENIAC background

- Electronic Numerical Integrator And Computer
- Eckert and Mauchly
- University of Pennsylvania
- Trajectory tables for weapons, BRL
- Started 1943
- Finished 1946
 - Too late for war effort
- Used until 1955
ENIAC - details

- Decimal (not binary)
- 20 accumulators of 10 digits (ring of 10 tubes)
- Programmed manually by switches
- 18,000 vacuum tubes
- 30 tons
- 15,000 square feet
- 140 kW power consumption (about $10/hr today)
- 5,000 additions per second

Vacuum Tubes

Grid regulates flow from the cathode
von Neumann/Turing

- ENIAC: Very tedious to manually wire programs
- von Neumann architecture:
 - Stored Program concept
 - Main memory storing programs and data
 - ALU operating on binary data
 - Control unit interpreting instructions from memory and executing
 - Input and output equipment operated by control unit
 - Princeton Institute for Advanced Studies (IAS)
 - Completed 1952
Structure of von Neumann machine

IAS - details

- 1000 x 40 bit words
 - Binary number
 - 2 x 20 bit instructions

- Set of registers (storage in CPU)
 - Memory Buffer Register
 - Memory Address Register
 - Instruction Register
 - Instruction Buffer Register
 - Program Counter
 - Accumulator
 - Multiplier Quotient

- Instruction Word
 - Left
 - Opcode
 - Address
 - Right
 - Opcode
 - Address

- Sign bit
 - Number Word
Structure of IAS - detail

- **Central Processing Unit**
 - **Arithmetic and Logic Unit**
 - **Accumulator**
 - **MQ**
 - **Arithmetic & Logic Circuits**
 - **MBR**
 - **IBR**
 - **PC**
 - **MAR**
 - **Control Circuits**

- **Program Control Unit**

- **Input Output Equipment**

- **Main Memory**

IAS Instruction Cycle

- The IAS repetitively performs the instruction cycle:
 - Fetch
 - Opcode of the next instruction is loaded into the IR
 - Address portion is loaded into the MAR
 - Instruction either taken from the IBR or obtained from memory by loading the PC into the MAR, memory to the MBR, then the MBR to the IBR and the IR
 - To simplify electronics, only one data path from MBR to IR
 - Execute
 - Circuitry interprets the opcode and executes the instruction
 - Moving data, performing an operation in the ALU, etc.

- IAS had 21 instructions
 - Data transfer, Unconditional branch, conditional branch, arithmetic, address modification
Commercial Computers

- 1947 - Eckert-Mauchly Computer Corporation
- UNIVAC I (Universal Automatic Computer)
- US Bureau of Census 1950 calculations
- Became part of Sperry-Rand Corporation
- Late 1950s - UNIVAC II
 - Faster
 - More memory
 - Upward compatible with older machines

IBM

- Punched-card processing equipment
- 1953 - the 701
 - IBM’s first stored program computer
 - Scientific calculations
- 1955 - the 702
 - Business applications
- Lead to 700/7000 series
Transistors

- Replaced vacuum tubes
- Smaller
- Cheaper
- Less heat dissipation
- Solid State device
- Made from Silicon (Sand)
- Invented 1947 at Bell Labs
- Shockley, Brittain, Bardeen

Transistor Based Computers

- Second generation of machines
- NCR & RCA produced small transistor machines
- IBM 7000
- DEC - 1957
 - Produced PDP-1
IBM 7094

- Last member of the 7000 series
 - 50 times faster than the 701
 - 1.4 uS vs. 30 uS cycle
 - 32K memory vs. 2K
 - Main memory: Core memory vs. Tubes
 - CPU memory: transistors vs. Tubes
 - 185 vs. 24 opcodes
 - Instruction fetch overlap, reduced another trip to memory (exception are branches)
 - Data channels, independent I/O module for devices

3rd Generation: Integrated Circuits

- Self-contained transistor is a discrete component
 - Big, manufactured separately, expensive, hot when you have thousands of them

- Integrated Circuits
 - Transistors “etched” into a substrate, bundled together instead of discrete components
 - Allowed thousands of transistors to be packaged together efficiently
Microelectronics

- Literally - “small electronics”
- A computer is made up of gates, memory cells and interconnections
- These can be manufactured on a semiconductor, e.g. silicon wafer
 - Thin wafer divided into chips
 - Each chip consists of many gates/memory cells
 - Chip packaged together with pins, assembled on a printed circuit board

Generations of Computer

- Vacuum tube - 1946-1957
- Transistor - 1958-1964
- Small scale integration - 1965 on
 - Up to 100 devices on a chip
- Medium scale integration - to 1971
 - 100-3,000 devices on a chip
- Large scale integration - 1971-1977
 - 3,000 - 100,000 devices on a chip
- Very large scale integration - 1978 to date
 - 100,000 - 100,000,000 devices on a chip
 - Pentium IV has about 40 million transistors
- Ultra large scale integration
 - Over 100,000,000 devices on a chip (vague term)
Moore’s Law

- Increased density of components on chip
- Gordon Moore: co-founder of Intel
- Number of transistors on a chip will double every year
- Since 1970’s development has slowed a little
 - Number of transistors doubles every 18 months
- Cost of a chip has remained almost unchanged
- Higher packing density means shorter electrical paths, giving higher performance
- Smaller size gives increased flexibility
- Reduced power and cooling requirements
- Fewer interconnections increases reliability
- Intel 8/13/02: Announced 0.09 micron process
 - Human hair ~70 microns

Growth in CPU Transistor Count
IBM 360 series

- 1964
- Replaced (& not compatible with) 7000 series
 - Reason: Needed to break out of constraints of the 7000 architecture
- First planned “family” of computers
 - Similar or identical instruction sets
 - Similar or identical O/S
 - Increasing speed
 - Increasing number of I/O ports (i.e. more terminals)
 - Increased memory size
 - Increased cost (not always the case today!)
- Multiplexed switch structure

DEC PDP-8

- 1964
- First minicomputer (after miniskirt!)
- Did not need air conditioned room
- Small enough to sit on a lab bench
- $16,000
 - $100k+ for IBM 360
- Embedded applications & OEM
- BUS STRUCTURE
DEC - PDP-8 Bus Structure

- Console Controller
- CPU
- Main Memory
- I/O Module
- I/O Module

OMNIBUS

96 separate signal paths to carry control, address, data signals
Highly flexible, allowed modules to be plugged in for different configurations

Other Innovations - Semiconductor Memory

- 1970
- Fairchild
- Size of a single core
 - i.e. 1 bit of magnetic core storage
 - Held 256 bits
- Non-destructive read
- Much faster than core
- Capacity approximately doubles each year
Intel

1971 - 4004
- First microprocessor
- All CPU components on a single chip
- 4 bit

Followed in 1972 by 8008
- 8 bit
- Both designed for specific applications

1974 - 8080
- Intel's first general purpose microprocessor

Evolution: 8086, 8088, 80286, 80386, 80486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium IV, Itanium

Speeding it up

- Smaller manufacturing process (0.09 micron)
- Pipelining
- On board cache
- On board L1 & L2 cache
- Branch prediction
- Data flow analysis
- Speculative execution
- Parallel execution
Performance Mismatch

- Processor speed increased
- Memory capacity increased
- Memory speed lags behind processor speed
- Common memory chip technology
 - $\text{DRAM} = \text{Dynamic Random Access Memory}$

DRAM and Processor Characteristics
Trends in DRAM use

- Increase number of bits retrieved at one time
- Make DRAM “wider” rather than “deeper”
- Change DRAM interface
- Cache
- Reduce frequency of memory access
- More complex cache and cache on chip
- Increase interconnection bandwidth
- High speed buses
- Hierarchy of buses

Similar problems with I/O devices, e.g. graphics, network

Need balance in computer design