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Spatially Localized Synchronous Oscillations in Synaptically Coupled Neuronal
Networks: Conductance-based Models and Discrete Maps∗

Stefanos E. Folias† and G. Bard Ermentrout†

Abstract. We study the qualitative behavior of localized synchronous oscillations organized by synaptic inhi-
bition in two types of spatially extended neuronal network models driven by a time-independent,
localized excitatory input. Each network is formulated as a one-dimensional network of conductance-
based models constituting a high-dimensional dynamical system of nonlocal differential equations.
Although such equations readily generate highly complex dynamic behavior, in the case of strong
inhibitory coupling the response of the network to a localized Gaussian input is a solution in which
a single, continuous band of cells fire nearly synchronous action potentials, in an approximately
periodic fashion in time. Tracking the cycle-to-cycle evolution of the width of the band of synchro-
nous action potentials reveals the characteristic behavior of low-dimensional, discrete dynamical
systems. Based upon a continuum formulation of the conductance-based model, we heuristically de-
velop and analyze one- and two-dimensional implicit discrete maps for both a purely inhibitory and
an excitatory-inhibitory network of neurons. Although the discrete maps do not predict the band
widths precisely, they generally reflect the qualitative behavior of the conductance-based model. The
most salient features of the bifurcations of fixed points to period 2 orbits and resonances indicate
that in some cases these high-dimensional continuous dynamical systems exhibit behavior which can
be captured in related low-dimensional discrete maps. Finally, we describe a global bifurcation in
the discrete map for the excitatory-inhibitory network in which a strong (1:2) resonance bifurcation
occurs on a period 2 orbit, giving rise to a pair of double homoclinic tangles that generate nontrivial
dynamics.
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1. Introduction. Synchronous fast oscillations in the brain are believed to be important
for sensory processing, attention, binding assemblies of neurons, and motor tasks. In vitro
experimental models in conjunction with mathematical modeling have demonstrated that
synaptic inhibition is a primary mechanism capable of synchronizing neurons within the beta
and gamma frequency bands spanning 20–100 Hz [27, 25, 28]. Populations of neurons in the
cortex, for example, can engage in stimulus-evoked, synchronous gamma oscillations in which
synchronous oscillations arise in the cortical network in response to a nonoscillatory stimulus
input from the lateral geniculate nucleus of the thalamus [13]. Synchronous gamma oscilla-
tions have been used in a network of neurons in which the localized oscillation encodes the
orientation of a stimulus in a model of working memory [6]. In firing-rate neural networks
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models of Wilson–Cowan type it has been shown that a persistent, localized stimulus can give
rise to both stationary and oscillatory pulses of persistent activity that is localized about the
input [10, 29]. Synaptic inhibition was additionally found to generate nontrivial spatiotem-
poral patterns of coherent oscillations [11]. However, this class of firing-rate models is best
suited for asynchronous activity and is currently unable to address the temporally correlated
inputs that arise during synchronous oscillations.

Along these lines, we examine a simple case of stimulus-evoked synchronous oscillations
arising from a localized current input in a network of neurons that synchronizes via synaptic
inhibition. The localized input causes a local population of neurons to fire action potentials
repetitively. Strong synaptic inhibition effectively synchronizes these cells, by first inhibiting
the cells temporarily from firing and subsequently allowing them to fire during a short window
of opportunity before the next wave of inhibition. The decay of the inhibitory synaptic
currents is usually exponential in fashion, and the time constant of decay sets the period
of the oscillation [28]. By synchronizing itself, the inhibitory population can synchronize
the excitatory population through the same oscillatory synaptic inhibition. The excitatory
population can, in turn, drive the inhibitory population to maintain an oscillation (PING
mechanism). Alternatively, the population of inhibitory interneurons can be driven by a strong
input to generate a synchronous oscillation (ING mechanism). (PING/ING are acronyms
for pyramidal–interneuronal network gamma [28, 5]. The inclusion of “P” implies that the
excitatory synaptic currents are necessary for the gamma oscillation.)

In section 2, we examine synchronized oscillations in Hodgkin–Huxley-type conductance-
based models. We consider both a synaptically coupled inhibitory network and an excitatory-
inhibitory network, in which the synchronous oscillations are localized about a time-indepen-
dent, Gaussian-like input that excites a local region of cells along a one-dimensional spatial
domain. In numerical simulations of either network, strong, distance-dependent inhibitory
coupling resulted in a single, continuous band (interval) of neurons firing nearly synchro-
nous action potentials at gamma frequencies. The cycle-by-cycle evolution of the width of
this band of action potentials readily approached steady solutions either as a fixed width or
an alternation between two widths, suggesting that the dynamics may be captured by low-
dimensional discrete maps. Indeed, in a variety of different neuronal models, the reduction
to low-dimensional discrete dynamical systems has proved an effective technique for gaining
insight into the behavior of complex models [9, 21, 22, 7, 20].

In section 3 for the inhibitory population only and in section 4 for the excitatory-inhibitory
population, we heuristically derive and analyze one- and two-dimensional discrete maps, whose
iterates define the cycle-by-cycle variation in the width of the band of spiking cells by taking
into account the decay and spatial extent of the synaptic inhibition (and excitation) generated
during each cycle. Using linear stability analysis and numerical simulations, we make qualita-
tive comparisons between the conductance-based models and the discrete maps, demonstrating
that some of the qualitative features of the oscillations arising in the high/infinite-dimensional
conductance-based models may be captured in terms of the solutions of low-dimensional dis-
crete maps. Finally, in section 4.4 in a two-dimensional discrete map for the excitatory-
inhibitory population, we demonstrate a global bifurcation in which a strong (1:2) resonance
bifurcation occurs on a period 2 orbit, giving rise to a pair of double homoclinic tangles that
generate nontrivial dynamics.
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2. Localized synchronous oscillations in conductance-based models. We briefly describe
a family of spatially extended, conductance-based models and a class of simple and regular
spiking behavior exhibited in numerical simulations in which strong inhibitory synaptic cou-
pling governs the oscillatory response of the network to a constant input localized in space.
By spatially extended, we mean that we extend the nonlinear ordinary differential equations
that govern the evolution of a conductance-based model for a single neuron by introducing
synaptic coupling between pairs of cells with a strength of interaction that is dependent upon
the spatial location of the cells. To model large populations of neurons, as a simplification,
one typically collapses the entire spatial structure of each neuron to a single isopotential
compartment, effectively representing the membrane potential in the cell body or axon. The
combination of the reliable transmission of the action potential from near the cell body to
the synapses and the segregation of two cells at a chemical synapse motivates this approxi-
mation. Consequently, these models can be seen to describe the membrane fluctuations and
action potentials generated in patches of the membrane of the neuronal cell bodies. These
spatially extended neuronal models are high-dimensional dynamical systems which are con-
tinuous in time and discrete in space. The cells in the network, ordered according to their
spatial location, are naturally amenable to numerical simulation.

We begin in section 2.1 by describing the conductance-based models for a network of neu-
rons which is formed from two populations, one of excitatory neurons and the other inhibitory
neurons, with each population synaptically coupled to itself as well as the other population.
We subsequently describe numerical results of this model in two distinct cases: (i) an inhibitory
network, in which the coupling between the excitatory and inhibitory populations is turned
off and the excitatory population is neglected altogether, and (ii) an excitatory-inhibitory net-
work, with the full range of synaptic coupling between the populations. In both cases, the
network is being driven by a time-independent, spatially localized, excitatory current input.
We demonstrate that, in the case of strong inhibition, the two systems exhibit spatially local-
ized, periodic oscillations in the form of finite, continuous bands of cells firing synchronously
and periodically. Interestingly, we show that the cycle-by-cycle spatial extent (width) of the
bands of spiking neurons often approaches steady behavior characteristic of a fixed point in a
discrete map, or an alternation of widths characteristic of a flip bifurcation to a period 2 orbit.
This motivates the approach taken in sections 3 and 4 to describe these spatially organized
periodic oscillations in terms of one- and two-dimensional discrete dynamical systems. These
discrete maps, however, are developed most naturally from a spatial continuum description of
the conductance-based model that is commensurate with the discrete spatial model.

Numerical simulations of the conductance-based model involving high-dimensional spatial
discretizations indicate that strong inhibition is necessary to ensure that the behavior is reg-
ular, i.e., nearly synchronous and periodic. Over a range of moderately strong inhibition, a
band of synchronous activity exhibits small fluctuations in its spatial extent, although, over-
all, it can be roughly characteristic of fixed points and period 2 orbits. Decreasing inhibition
degrades the synchrony sufficiently that the activity gradually breaks up, leading to signifi-
cantly more complex spatiotemporal behavior. In the excitatory-inhibitory model, a balance
of excitation and inhibition is necessary to maintain this regular behavior. In this article,
we restrict our focus to the most regular and nearly synchronous oscillations produced by
sufficiently strong inhibition in the conductance-based models.
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2.1. One-dimensional network model for an excitatory-inhibitory population. As a basic
unit, a conductance-based model is an n-dimensional system of ordinary differential equations
that describes the evolution of the membrane potential of neurons in terms of only the dy-
namics of various ionic currents across the cellular membrane. This basic unit is then taken
to represent the dynamics for a single neuron, and each of the two populations is composed
of neurons at discrete points xk, uniformly distributed along one spatial dimension and de-
noted by the spatial index k. Each population forms distance-dependent synaptic coupling to
neurons within its population as well as to neurons in the other population, thereby forming
a mutually coupled network. We assume that the system has a stable steady state in the
absence of inputs or coupling and represents an excitable medium rather than an oscillatory
medium.

Consider the spatially extended conductance-based model for a synaptically coupled excit-
atory-inhibitory population:

C
dve
dt

(xk, t) = −I ione (ve,me, ne, he)− Isyne (xk, t) + I inpute (xk),(2.1)

C
dvi
dt

(xk, t) = −I ioni (vi,mi, ni, hi) − Isyni (xk, t) + I inputi (xk),

τqe
(
ve(xk, t)

)dqe
dt

(xk, t) = q∞e
(
ve(xk, t)

)− qe(xk, t), qe ∈ {me, he, ne},

τqi
(
vi(xk, t)

)dqi
dt

(xk, t) = q∞i
(
vi(xk, t)

)− qi(xk, t), qi ∈ {mi, hi, ni}.

Let u∈{e,i} be a subscript identifying either the excitatory or inhibitory population. vu repre-
sents the membrane potential of population u, and mu, hu, nu the associated gating variables
for the ionic conductances, which, for simplicity, is the family of four-dimensional models that
include only the basic Na+ and K+ ionic currents responsible for action potential generation
[16, 15]. We use identical kinetics for the ionic conductances in both populations, though
some differences exist between these classes of neurons in the brain. The sum I ionu of the ionic
currents intrinsic to each neuron is

I ionu (vu,mu, nu, hu) = gL
(
vu − VL

)
+ gKn

4
u

(
vu − VK

)
+ gNam

3
uhu
(
vu − VNa

)
.

The gating variables m and h are the activation and inactivation variables for the Na+ conduc-
tance, and n is the activation variable for the K+ conductance. (The parameters and auxiliary
functions used in our numerical simulations are listed in Appendix A.)

The time-dependent synaptic current Isyne (xk, t), which is the total synaptic current re-
ceived by the neuron at xk in the excitatory population,

Isyne (xk, t) = gc
ee

∑
j

wee(xk − xj)se(xj, t)
[
ve(xk, t)− V syn

e

]
Δx

+ gc
ei

∑
j

wei(xk − xj) si(xj, t)
[
ve(xk, t)− V syn

i

]
Δx,

is composed of a positive (excitatory) synaptic current with subscripts ee, representing the
synaptic current from the excitatory population to itself, and a negative (inhibitory) synaptic
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current with subscripts ei, representing the synaptic current from the inhibitory population to
the excitatory population. The form of the spatial coupling is given by the weight functions
wuv(x). The convention of the dual subscript order uv is for u to be the population receiv-
ing synaptic current and for v to represent the population generating the synaptic current.
Whether the synaptic current is excitatory or inhibitory is determined by the sign of the dif-
ference (vu(x, t) − V syn

v ) between the membrane potential vu(x, t) of the postsynaptic cell u
and the reversal potential V syn

v for the synaptic current generated by the presynaptic cell v.
The synaptic current to the inhibitory neuron at xk is analogously given by

Isyni (xk, t) = gc
ie

∑
j

wie(xk − xj) se(xj, t)
[
vi(xk, t)− V syn

e

]
Δx

+ gc
ii

∑
j

wii(xk − xj) si(xj, t)
[
vi(xk, t)− V syn

i

]
Δx.

The dynamics of the excitatory synaptic gating variable se to both the excitatory and inhibi-
tory populations are taken to be identical (similarly for si). The synaptic variable sv, for the
presynaptic population v ∈ {e, i}, evolves dynamically according to

dsv
dt

(xk, t) = αvκ
(
vv(xk, t)

)(
1− sv(xk, t)

)
− βvsv(xk, t), v ∈ {e, i},

resulting in no synaptic current from population v if the membrane potential vv(xk, t) is not
elevated to spiking levels.

The inputs I inputu (x) and normalized synaptic weights wuv(x) are taken to be positive,
even-symmetric, C1 functions that monotonically decay to zero as x→ ±∞. The parameters
gc
uv and σc

uv represent the conductance strength and characteristic spatial extent of the weight
functions wc

uv, and I
c
i and σc

u represent the amplitude and spatial extent of the input current
I input
u to population u ∈ {e, i}. The superscript c differentiates parameters in the conductance-
based model from related ones in the discrete maps in sections 3 and 4. Integrals of wuv are
normalized to 1 over R to relate this model to a continuum model on an infinite domain (see
section 3.1). For simulations, we discretize time using an improved Euler scheme, and the
number of spatial grid points was varied between 401 to 2001 with time step ranging from
Δt ∈ [10−4, 10−2]. We take the synaptic weight and input functions to be Gaussians,

(2.2) wuv(x) =
1√
πσc

uv

e
−
(

x
σc
uv

)2

, I inputu (x) = Ic
u e

−
(

x
σc
u

)2

,

and consider excitatory input currents only (Ic
e, I

c
i > 0).

In the absence of synaptic coupling, the discrete equations decouple and evolve indepen-
dently according to their respective input and ionic conductances. The region of asynchro-
nously spiking neurons firing in response to the input is localized in space due to the decay
of the input I inputu (x) with distance from its center. We restrict the types of solutions we are
studying to those in which the spatial extent of spiking neurons is sufficiently far from the
edges of the domain. Although every neuron sees the synaptic currents due to the positivity
of the weight functions, they are generated only by the neurons which undergo action poten-
tials. Consequently, if the input and the response to the input are both localized in space, any
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further extension of the spatial discretization beyond this spatial extent (1) does not affect
the spiking region since no additional synaptic currents are produced and (2) only reveals
the continued approach to the equilibrium values of all variables. This can be violated, for
example, if the current input or synaptic excitation is too strong near the boundary.

While in some cases the domain may simply be extended to capture all the relevant spiking
neurons, the excitatory coupling strength gc

ee and characteristic spatial extent σc
ee determine

whether strong positive feedback is propagated and regenerated through the excitatory-to-
excitatory synaptic coupling, leading to runaway excitation that necessarily approaches the
boundary. The combined nonlocal effects of both positive and negative feedback loops arising
from the synaptic interactions between these two populations make it difficult to determine
the conditions under which such localized activity can be guaranteed. We can intuitively say
that, at one extreme, sufficiently strong inhibition extending over a sufficiently large region
can maintain a bounded region of spiking in both the excitatory and inhibitory populations,
and, at the other extreme, sufficiently weak excitation precludes the propagation of activity
into regions where the input on its own is too weak to sustain spiking activity. (Runaway
activity is further constrained in real neurons by additional processes, such as adaptation
currents or synaptic depression.)

2.2. Synchronous oscillations in the inhibitory network. We now describe a class of sim-
ple spatiotemporal patterns exhibited by the model (2.1) for a network of strongly interacting
inhibitory neurons in the presence of a localized, excitatory current input. The coupling be-
tween excitatory and inhibitory neurons is turned off, and the excitatory population is ignored
altogether. Assuming that (i) the conductance-based model contains only the basic currents
responsible for action potential generation, (ii) subthreshold inputs result in an approach to a
stable equilibrium, and (iii) there are no excitatory synaptic interactions, the input is the only
source of sustained excitation in the network. In the absence of inhibitory synaptic connec-
tions, the steady behavior of the system in response to a Gaussian input is illustrated in the
rastergram in Figure 1(a), in which points graphed in the time-space domain correspond to
the timing of action potentials, or spikes, in neurons located at those spatial points. Although
rastergrams remove the precise temporal structure of the membrane potential, they capture
the spatial extent and precise timing of all cells firing action potentials. With the synaptic
coupling turned off, the rastergram illustrates a pattern in which a neuron at x periodically
fires action potentials as a function of the constant current input I input(x). The frequency of
oscillation is highest in the center and diminishes with distance until a threshold current for
firing periodic action potentials is reached. Beyond this point, the neural medium is quiescent
as the decay of the Gaussian input is unable to excite the medium. This essentially reflects
what is commonly called the FI-curve of the single-cell model, depicting firing frequency (F)
of periodic action potentials as a function of the constant current input (I). The FI-curve for
a single-cell version of (2.1) is shown in Figure 6(a) for the parameters in Appendix A.

The inclusion of strong synaptic inhibition, by sufficiently increasing the conductance
strength gc

ii, can organize the cells to fire in a nearly synchronous and periodic fashion, as

shown in Figure 1(b). The input I inputi provides the strongest drive to the neurons at the
center of the input. Once a critical mass of cells fire, a wave of inhibition ensues, having the
immediate effect of preventing the firing of other cells nearing threshold that would otherwise
fire. On a longer time scale, the decay of the inhibition determines which cells fire during
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Figure 1. Spiking patterns in the inhibitory network in the presence of a localized Gaussian input. (a)
With the inhibitory synaptic coupling turned off (gc

ii = 0), an input current amplitude Ic
i that is above threshold

generates a localized region of spiking cells in which firing frequency decreases with distance from the center of
the input. The borders of the region are determined by the minimum current needed to continually fire action
potentials. (b) The same network and parameters as in (a) with strong inhibitory coupling gc

ii = 5.0 produce
a stationary band of neurons periodically firing nearly synchronous action potentials. Common parameters are
Ic
i = 0.4, σc

i = 0.5, σc
ii = 1.

the subsequent cycle. Strong inhibition effectively creates a narrow window in which the cells
fire nearly synchronously. This is a localized example of ING [28] occurring in the network.
Relaxing the inhibition diminishes the short-term effect and allows cells in the periphery to fire
midcycle, disrupting synchrony and leading to more complex patterns of activity. We identify
the beginning of each cycle of the oscillation with the initiation of the nearly synchronous
band of action potentials. Subsequently, the interval of spiking cells (−bcn, bcn), centered about
the input, generates a wave of inhibition that prevents other cells from firing until the end of
the nth cycle.

Generally, the inhibitory population tends to approach either a fixed width of cells firing
on each cycle, as shown in Figure 1(b), or an alternation of a pair of distinct widths, as
shown in Figure 2(a) (for inhibition sufficiently strong to prevent small fluctuations in the
width). This motivates the approach taken in section 3, that the evolution of the width of the
spiking region in (2.1) can be described by the attracting sets of a low-dimensional discrete
map, in particular, as a fixed point or a period 2 orbit (a periodic orbit of a discrete map
containing two points). We note, however, that the conductance-based model for the inhibitory
network also exhibits other alternating spatial patterns characterized by disjoint intervals of
synchronously spiking neurons separated by gaps of neurons which fire on the subsequent
cycles. One such pattern, illustrated in Figure 2(b), bifurcates in a sharp transition from the
solution in Figure 2(a) as the spatial extent σc

i of the input is increased. The formulation of
the discrete maps in sections 3 and 4 assumes that each oscillation cycle is characterized by
the firing of a single, continuous band of synchronously spiking neurons. The discrete maps
would need to be modified for spatiotemporal patterns with gaps but would still be valid in
such cases.
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(b) σi = 1.234.

Figure 2. Other spatial patterns generated in the inhibitory model. (a) An example of a common type of
spatial pattern characterized by the alternating widths of an interval of spiking cells firing nearly synchronous
action potentials. Such solutions are characteristic of a period 2 orbit for a discrete map that describes the
cycle-to-cycle variation in the width of the band of spiking cells. (b) Other spatial patterns arise which exhibit
intervals of synchronously firing cells separated by gaps of neurons that fire on alternate cycles. One such
example occurs when the spatial extent of the input σi is increased. Other parameters are gc

ii = 5.0, Ic
i = 1.0,

σc
ii = 1.0.

2.3. Synchronous oscillations in the excitatory-inhibitory model. With strong inhibition
and sufficiently weak excitation, numerical simulations of (2.1) for the excitatory-inhibitory
population similarly exhibit a single continuous band of synchronously spiking neurons. These
are localized examples of either ING or PING mechanisms [28, 5]. Analogous to the inhibitory
network, the widths of the spiking band in both populations were commonly found to approach
either a constant width or an alternation between two widths. Figure 3 shows two such
examples of this behavior that we wish to capture qualitatively in a two-dimensional discrete
map. In some cases, the bifurcation to the alternating widths appears supercritical, whereas
in others it appears subcritical with a sharp transition to an alternation between significantly
different widths. The excitatory synaptic currents arise from AMPA receptors (a subset of
receptors for the transmitter glutamate) and have a time constant of decay β −1

e ≈ 1–2 ms.
However, these currents decay well before the end of the gamma oscillation period. In section 4,
we additionally consider a longer time constant to extend the effect of excitation to the end
of the gamma cycle, motivated by results of the associated discrete map. NMDA receptor-
mediated excitatory synaptic currents (another glutamate circuit) are a common example in
the brain with a substantially longer time constant.

3. Heuristic map for the inhibitory network. In this section, we motivate and analyze a
one-dimensional discrete map that serves as a qualitative description for the spatial extent of
the localized band of synchronous oscillations described in section 2.2. With inhibition serv-
ing as the organizing force for synchronized oscillations, the idea is to collapse the spatially
coherent oscillations onto the iterates of a discrete map that describes the evolution of the
width of the localized band of synchronously firing neurons which is assumed to evolve sym-
metrically about the input. The map qualitatively reflects the behavior of the full spatially
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Figure 3. Synchronous oscillations in the excitatory-inhibitory conductance-based model. In each row, the
first two figures are rastergrams illustrating the synchronous band of action potentials in each population; the
third plot depicts the evolution of the halfwidth ac

n of the band of spikes in the excitatory population (blues)
and the halfwidth bcn in the inhibitory population (gray), respectively; and the last figure is the corresponding
orbit in the (ac

n, b
c
n) plane with every second iterate colored identically to highlight that the conductance-based

model exhibits the suborbit behavior of a discrete map. (a) A periodic spatial pattern in the form of a single
band of synchronously spiking neurons, whose width alternates cycle-by-cycle, resembling a stable period 2
orbit in a discrete map. (b) Approach of the transient near the flip bifurcation point. Common parameters:
Ic
e = Ic

i = σc
e = 1, σc

i = 0.5, gc
ee = 1, gei = 2.12, gc

ii = 2, σc
ee = σc

ei = σc
ie = σc

ii = 1, βe = 0.5, and parameters
in Appendix A.

extended system, exhibiting stable fixed points and period 2 orbits. A fixed point represents
a fixed interval of neurons that fire on every cycle, with the remainder of the population
quiescent. A period 2 orbit represents a periodic alternation of a larger interval followed by a
shorter interval of synchronously firing neurons. We derive existence and stability conditions
for fixed points of the one-dimensional map and demonstrate that, under our assumptions, a
fixed point loses stability only in a flip bifurcation. Subsequently, in section 3.2 we attempt
a more systematic approach to determining how the parameter values of the map relate to
the conductance-based model. In section 3.3, we include and analyze an additional term that
incorporates the effect of early-cycle inhibition on the width of the pulse. Finally, in sec-
tion 3.4 we analyze the case where the left and right boundaries of the band of oscillations are
allowed to evolve independently, and find that the symmetric-boundary and dual-boundary
formulations result in equivalent stability conditions for fixed points.

3.1. One-dimensional discrete map for an inhibitory cell population. As in section 2.2,
we assume that the inhibitory population is stimulated by a localized, even-symmetric, Gauss-
ian-like input I(x) and that the activity of the network is mediated by distance-dependent
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inhibitory synaptic coupling. In particular, we assume that this combination results in a band
(interval) of cells, localized about the input, that fires nearly synchronously as inhibition
wanes at the end of each gamma cycle. Ignoring adaptation and other nontrivial currents,
this assumption is reasonable given that the refractory period of neurons is much shorter than
the period of the gamma oscillation, which is set by the time course of the decay of synaptic
inhibition.

Assumptions and heuristics. We now cast the network in a continuum formulation that
is commensurate with system (2.1) in which x is a continuous variable and the sums become
spatial integrals over the spiking region. A continuum model for an inhibitory population as
described in section 2.2 is given by

C
∂vi
∂t

(x, t) = −I ion(vi,mi, ni, hi)− Isyn(x, t) + I input(x),(3.1)

τqi(vi)
dqi
dt

(x, t) = q∞i
(
vi(x, t)

)− qi(x, t), q ∈ {mi, hi, ni},

where the inhibitory synaptic current evolves according to

Isyn(x, t) = gc
ii

∫
R

wii(x− y) si(y, t)
[
vi(x, t)− V syn

i

]
dy,

dsi
dt

(x, t) = αiκ
(
vi(x, t)

)
(1− si(x, t))− βisi(x, t).

We take system (3.1) to be defined on the infinite domain with boundary conditions requiring
all variables to approach equilibrium values as x → ±∞. We assume that the mix of the
localized (excitatory) input current and the resultant inhibitory current generates a single
continuous band of nearly synchronous action potentials.

Since the symmetric input decays with distance from its center, we assume for simplicity
that the band of activity evolves symmetrically about the input (however, see section 3.4).
The halfwidth bn defines the symmetric distance from the center of the input to the boundaries
of the band (−bn, bn) of neurons firing at the start of the nth gamma cycle, with all other
cells quiescent. For each cycle n, a nonempty interval (−bn, bn) of cells fires synchronously,
generating inhibitory currents seen by all cells over the duration of the cycle. We compose
the inhibitory synaptic current density g̃syn(x, y, t), from the cell at y to the cell at x, as
the product of a synaptic current amplitude ḡii, a uniform synaptic conductance time course
Ssyn(t), and a distance-dependent weight function wii, which is positive and normalized to 1
over R; i.e.,

g̃syn(x, y, t) = ḡii wii(x− y)S(y, t),

where S(y, t) = Ssyn(t) for any y ∈ (−bn, bn), with S(y, t) = 0 otherwise, to produce synaptic
currents only from cells firing action potentials. Though gc

ii in section 2.1 represents a synap-
tic conductance, as a simplification we effectively subsume the conductance amplitude and
reversal potential to interpret ḡii as a synaptic current amplitude.

To relate how the currents initiated on the nth cycle determine the halfwidth bn+1 of cells
firing on the next cycle, we make the following set of simplifying assumptions. As motivating
these assumptions becomes somewhat involved, we state the assumptions and refer the reader
to section 3.2 where they are examined in more detail.
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(1) We assume that the gamma oscillation is exactly periodic; i.e., since bn > 0 for all n,
the cycle length Tn, which is the time between any two consecutive spikes, measured using the
centers of the intervals (−bn, bn) and (−bn+1, bn+1), is the same from cycle to cycle so that
Tn = T for all n > 0.

(2) Any synaptic current present during a cycle is the result only of neurons firing at the
beginning of that cycle and is reset to zero at the end of the cycle.

(3) A cell fires a spike at the end of the cycle if the instantaneous total current entering
the cell has exceeded a hard threshold θi.

(4) We neglect any edge effects that result from boundary layers in the evolution of the
gating variables of the spiking currents associated with thresholding.

Assuming the existence of a single, bounded, continuous band of spiking cells, we define
the total time-dependent synaptic current G̃ii,n(x, t) to the cell at x from only cells that fired
on cycle n (with t = 0 corresponding to the beginning of cycle n). Since the synaptic currents
are generated only by the cells in the interval (−bn, bn),

G̃ii,n(x, t) =

∫
R

ḡii wii(x− y)S(y, t) dy = ḡii Ssyn(t)

∫ bn

−bn

wii(x− y) dy.

Corresponding to the end of cycle n, we set t = T and define the synaptic current amplitude
at the threshold event:

gii = ḡii Ssyn(T ).

The total synaptic current to the cell at x from the band (−bn, bn) of neurons is, thus,

(3.2) Jii (x, bn) = gii

∫ bn

−bn

wii(x− y) dy.

The convention is for the first variable x to be associated with postsynaptic cells and the
second variable bn to be associated with presynaptic cells, so that Jii(x, bn) represents the total
(instantaneous) synaptic current from the interval of spiking cells (−bn, bn) at the beginning
of the cycle to the cell at location x at the end of the nth cycle. Thus, the total current I tot

n

to the cell at x at the end of the nth cycle is given by

I tot
n (x) = I(x)− Jii (x, bn).

Note that we take gii > 0 and subtract the current Jii to represent synaptic inhibition. As
before, the input I(x) and synaptic weight wii(x) are taken to be even-symmetric, Gaussian-
like, C1 functions that monotonically decay to 0 as x→ ±∞. We define Ii and σi to represent
the input current amplitude and its spatial extent and consider only excitatory inputs Ii > 0.
For simulations, we use I(x) = Ii e

−(x/σi)2 and

(3.3) wii(x) =
1√
πσii

e
−
(

x2

σ2
ii

)
=⇒ Jii(x, y) =

gii
2

[
erf

(
x+ y

σii

)
− erf

(
x− y

σii

)]
.
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Implicit map for an inhibitory population. The cell at x fires an action potential if the
total current I tot

n (x) to that cell exceeds the current threshold θi before the end of the cycle.
For a single, superthreshold interval (−bn+1, bn+1) of neurons to fire a spike at the beginning
of the (n+1)th cycle, it follows that, by the end of the nth cycle, the total current to any cell
x ∈ (−bn+1, bn+1) must be above the threshold current θi and be subthreshold for x otherwise.
The symmetric boundaries x = ±bn+1 correspond to the threshold current for firing, i.e.,

θi = I(bn+1)− Jii (bn+1, bn).

Therefore, defining the nonlinear function

F (bn, bn+1) = I(bn+1) − Jii (bn+1, bn) − θi,

the inhibitory map is given by the one-dimensional implicit discrete map

(3.4) F (bn, bn+1) = 0,

which determines, implicitly, the halfwidth bn+1 of the band of spiking cells on the (n + 1)th
cycle as a result of the input and the synaptic currents generated by the band of neurons with
halfwidth bn on the nth cycle. Since the boundaries are assumed to evolve symmetrically, we
consider only bn, bn+1 > 0.

A few immediate issues arise in the implicit formulation of the map: (1) given an initial
value, it is not guaranteed that a solution exists; (2) the dynamical system may not be well-
defined, as the map may not guarantee a unique solution at every iteration; and (3) each
iteration of the map requires solving the nonlinear equation numerically. There are, indeed,
cases in which a first iterate does not exist and also cases where a subsequent iterate fails
to exist after a finite number of iterates. Typically, when a solution does exists for (3.4), it
is single-valued and well-defined, provided that σi is not too large. In some cases, it might
be appropriate to assign a zero-width solution bn+1 = 0. For example, if F (bn, bn+1) < 0 for
bn+1 > 0, which yields no solution, the interpretation could be that the input is insufficient to
excite any region of cells. If bn+1 = 0, the network is free of inhibition, and the input I and
threshold θi alone determine bn+2. Cyclic behavior typically ensues, effectively skipping cycles,
and such behavior was occasionally seen in the conductance-based model. The zero solution
is merely a way of continuing the solution in the map which concerns only the evolution of
a single continuous band; alternately, one could expect a transition to more complex spatial
patterns in the conductance-based model in which the continuous band breaks into excited
regions separated by gaps.

Linear stability. We consider the evolution of an arbitrary small perturbation ϕn of a fixed
point b̄ of the implicit nonlinear map F (bn, bn+1) = 0. Setting

bn = b̄+ ϕn

and expanding F in a Taylor series,

F (b̄+ ϕn, b̄+ ϕn+1) = F (b̄, b̄) + D1F
(
b̄, b̄
)
ϕn + D2F

(
b̄, b̄
)
ϕn+1 + · · · ,
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the perturbations, to first order in ϕn, ϕn+1, satisfy

D1F (b̄, b̄)ϕn + D2F (b̄, b̄)ϕn+1 = 0.

Assuming D2F (b̄, b̄) �= 0, we obtain the linearized map about the fixed point b̄,

ϕn+1 = Λ
(
b̄
)
ϕn,

where

(3.5) Λ
(
b̄
)

= −D1F (b̄, b̄)

D2F (b̄, b̄)
=

D2Jii(b̄, b̄)

I ′i(b̄)−D1Jii(b̄, b̄)
.

The usual condition for asymptotic stability of the fixed point b̄ is

(3.6)
∣∣Λ(b̄)∣∣ < 1.

To proceed further, we calculate the following derivatives:

D1Jii(x, y) = gii · ∂
∂x

∫ y

−y
wii(x− ξ) dξ = −gii

(
wii(x− y)− wii(x+ y)

)
,

D2Jii(x, y) = gii · ∂
∂y

∫ y

−y
wii(x− ξ) dξ = +gii

(
wii(x− y) + wii(x+ y)

)
.

Using the even symmetry of wii, we find

D1F (x, y) = −D2Jii(y, x) = −gii
(
wii(x− y) + wii(x+ y)

)
,(3.7)

D2F (x, y) = −D1Jii(y, x) + I ′(y) = gii

(
wii(x− y)− wii(x+ y)

)
+ I ′(y),

which yields

Λ
(
b̄
)

=
gii
(
wii

(
0
)
+ wii

(
2b̄
))

gii
(
wii

(
0
)− wii

(
2b̄
))

+ I ′
(
b̄
) .

For any fixed point b̄ such that Λ(b̄) > 0, condition (3.6) implies

1 <
1

Λ
=

gii
(
wii

(
0
)− wii

(
2b̄
))

+ I ′
(
b̄
)

gii
(
wii

(
0
)
+ wii

(
2b̄
)) .

By inspection, this condition is never satisfied under our assumptions that wii(x) > 0,
w′
ii(x) < 0, and I ′(x) < 0, for x > 0, and any such fixed points are, therefore, unstable.
Stable fixed points are possible only if Λ(b̄) < 0, in which case condition (3.6) becomes

−1 >
1

Λ
=

gii
(
wii

(
0
)− wii

(
2b̄
))

+ I ′
(
b̄
)

gii
(
wii

(
0
)
+ wii

(
2b̄
)) .

The expression in the denominator is positive, and the stability condition reduces to

(3.8) I ′(b̄) < −2 gii wii(0).

Since I ′(b̄) < 0 for any fixed point b̄, this condition indicates that the gradient of the input at
the boundary point must be sufficiently steep for a fixed point to be stable.
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b̄

gii

θi = 0.3

θi = 0.6

θi = 0.9

θi = 0.01

(a) Fixed Ii = 1.0.

θi = 0.3

θi
= 0.6

θi
= 0.9b̄

Ii

θi = 0.01

(b) Fixed gii = 0.5.

Figure 4. Bifurcation diagrams: dependence of the fixed point b̄ (a) on gii and (b) on Ii, for various fixed
values of θi. Black (gray) curves correspond to stable (unstable) fixed points. Intersection points with the green
curve correspond to flip bifurcation points of the fixed point. Other parameters are σi = 1, σii = 1. Varying σi

or σii produces qualitatively similar diagrams, though the bifurcation curves for each θi intersect the curve of
flip bifurcations in different locations.

Fixed point loses stability through a flip bifurcation only. We expect a flip bifurcation
of a fixed point to occur when the fixed point b̄ = b̄∗ satisfies

Λ
(
b̄∗
)
= −1 =⇒ D1F

(
b̄∗, b̄∗

)
= D2F

(
b̄∗, b̄∗

)
,

which reduces to

(3.9) I ′
(
b̄∗
)

= −2 gii wii(0).

Therefore, from (3.8) any stable fixed point b̄ of the inhibitory map (3.4) can lose stability
only through a flip bifurcation under the above assumptions on wii and I.

Bifurcation diagrams. The eigenvalue Λ(b̄) may be calculated for the Gaussian input and
synaptic weight functions (3.3) using (3.7). In this case, the fixed point b̄ is stable if

√
π
Ii σii
gii σ2i

b̄ e
− b̄2

σ2
i > 1

with a flip bifurcation occurring at equality. The equation F (b̄, b̄) = 0 is solved numerically to
determine the dependence of the fixed point b̄ on other parameters. Without loss of generality,
we set the space scale by taking σii = 1. In Figure 4, bifurcation diagrams show how, for
fixed θi, the fixed point varies with respect to either gii or Ii in the case of Gaussian weight
and input functions (3.3). If a fixed point b̄ is stable for sufficiently small values of each of
the parameters gii, Ii, σi, the fixed point loses stability in a flip bifurcation by increasing
any variable while keeping all other variables fixed. This can be seen in stability condition
(3.8)–(3.9). By inspection, for sufficiently small gii, the fixed point is stable. Increasing gii,
keeping all other parameters fixed, results in a decrease in b̄. If I ′(b̄) is bounded, then for
sufficiently large gii inequality (3.8) fails to be satisfied, resulting in the loss of stability of
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(a) Graph: F (x, y) = 0.

1√
2

y−x

1√
2

y + x

(b) Graph: composition map.

Figure 5. (a) The graph of the map F (x, y) = 0 at points along the curve of flip bifurcations (green
curve) shown in Figure 4(a) for various fixed values of θi ∈ (0.05, 0.9). (b) The corresponding graphs for the
composition map generated by F (x, y) = 0, which have been rotated through the angle −π

4
so that the line y = x

corresponds to the horizontal axis. This sequence of graphs reveals the structure of a generalized flip bifurcation
with its codimension 2 point (large filled circle).

the fixed point in a flip bifurcation. Although it appears that increasing Ii in inequality (3.8)
should move the stable fixed point away from the flip bifurcation point, increasing Ii results
in an increase in the halfwidth b̄, keeping all other parameters constant. Since I ′(b̄) −→ 0 as
b̄ −→ ∞, then, for sufficiently large Ii and b̄, I

′(b̄) becomes sufficiently small that condition
(3.8) fails. Thus, increasing Ii, keeping all other parameters fixed, destabilizes a fixed point
though a flip bifurcation. This is similar for increasing σi since, if I

′(b̄) is bounded, increasing
σi sufficiently will cause inequality (3.8) to fail. However, decreasing σi sufficiently has a
similar effect since, by assumption, I ′(b̄) −→ 0 as b̄ −→ ∞. Thus a fixed point can lose
stability in a flip bifurcation if σi is increased or decreased sufficiently.

Numerical simulations of the inhibitory map. Numerical simulations indicate that both
supercritical and subcritical flip bifurcations occur. The direction of bifurcation was studied
numerically by examining the evolution of the map from initial conditions that were small
perturbations of the fixed point. The bifurcation was determined numerically to be supercrit-
ical if the iterates approached a period 2 orbit whose periodic points were very close to the
equilibrium for parameter values just beyond the predicted bifurcation point. In some regions,
the period 2 orbit persisted until the smaller of the periodic points approached 0, where the
map breaks down. Further bifurcation to period 4 orbits was not seen. In other regions, the
period 2 orbit appeared to vanish in a fold bifurcation with an ambient unstable period 2 orbit
that could be detected prior to the bifurcation. Subcritical bifurcations typically exhibited
a catastrophic loss of stability beyond the bifurcation point, with small perturbations of the
fixed point leading to exponentially diverging iterates alternating between two positive values
about the fixed point, with one rapidly approaching 0. These numerics are consistent with the
signature of the generalized flip bifurcation present in the graphs of the composition map in
Figure 5(b), which are sampled along the curve of flip bifurcations in Figure 4(a). Once iter-
ates of the map approach 0, the map breaks down at an iterate for which no positive solution
exists. In order to continue the solution at such an iterate, it is possible to redefine the map
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in a piecewise manner so that, if no solution to F (bn, bn+1) = 0 exists, we interpret this as
the zero solution (no neurons fire) and take bn+1 = 0. Subsequently, the solution essentially
becomes a period 2 orbit, alternating between 0 and a positive value.

3.2. Comparison with the associated conductance-based model. We begin our compar-
ison by identifying the relationships between the parameters of the inhibitory map (3.4) and
their counterparts in the corresponding conductance-based model (2.1). Some are straightfor-
ward, but others are more complicated and highlight some of the issues regarding assumptions
(1)–(4) in section 3.1. Although it is not conducive to predicting the precise width, the in-
hibitory map nonetheless is capable of predicting moderately close values for the width of the
band, and, moreover, does share many qualitative features with the conductance-based model.
We also demonstrate that inhibition on two time scales ultimately determines the width of the
pulse, suggesting a modification to the inhibitory map that is briefly explored in section 3.3.

It is natural to take the amplitude of the input Ii, its characteristic width σi, and the
characteristic width σii of the inhibitory synaptic connections to be identical to those in the
conductance-based model, namely, Ici , σ

c
i , and σcii, respectively. However, the threshold θi

and the inhibitory conductance parameter gii in the inhibitory map form more complicated
relationships with parameters in the conductance-based model. The threshold θi can be taken
to reflect the oscillation frequency of the synchronous action potentials in the following sense.
Equations (3.4) for the inhibitory map determine at which points in the space the total sum
of excitatory and inhibitory currents is above the threshold for firing by the end of each cycle.
Although the threshold in the conductance-based model is dynamic, as a first approximation
we can interpret θi as equal to the constant current Ic

i necessary, based upon the FI-curve,
for the model neuron to fire repetitive action potentials at the frequency of the synchronous
oscillations. That is, it serves as an approximation for the minimum current necessary to fire
an action potential before the end of the cycle when the wave of inhibition prevents spiking.
Even this approximation creates an inherent difficulty in closing the dependence of θi on the
other parameters of the map. We do not attempt to ascertain such a relationship in this
treatment and simply use the FI-curve to determine θi from the frequency of oscillation in the
conductance-based model.

There are intuitive relationships between θi and the parameters gc
ii, I

c
i , and σc

i in the
conductance-based model (indicated by superscript c). Increasing gc

ii increases the strength
of inhibition, which tends to slow down the oscillation, implying that θi should decrease.
Increasing Ic

i enables the cells to fire more rapidly, implying that θi should increase. The map
essentially captures whether or not a cell fires in the parameters θi and gii. If θi represents
the current necessary to produce firing at the oscillation frequency of the network, then gii
effectively determines the rest. The lack of a strict threshold makes it difficult to express the
threshold condition perfectly. As a lowest order approximation, we assumed in section 3.1
that, at the end of each cycle, any cell whose input current was above threshold θi necessarily
fired an action potential.

In (3.2) of the derivation of the inhibitory map, we assumed

gii = ḡii Ssyn(T ),

where S is the synaptic time course, T the period of the oscillation, and ḡii a constant to



SPATIALLY LOCALIZED SYNCHRONOUS OSCILLATIONS 1035

be determined. For comparison, in the conductance-based model the instantaneous current
input, at the end of the cycle (t = T ), from another cell is

−gc
ii sii(T )

[
v(T )− V syn

i

]
,

where v(T ) is the membrane potential of the postsynaptic cell sampled at the end of the cycle,
V syn
i is the reversal potential for GABAA receptors which mediate the inhibitory synaptic

current, and sii(T ) ∈ [0, 1] is the synaptic gating variable sampled at the end of the cycle.
This suggests the following relationships:

ḡii = −gc
ii

(
v(T )− V syn

i

)
, sii(T ) = Ssyn(T ).

The synaptic gating variable sii evolves according to a differential equation, and consequently
the synaptic time course is actually dependent on the dynamics. However, given that the
period of the oscillation is long, we can approximate the synapses simply by exponential
decay so that at the end of the cycle

Ssyn(T ) = e
−
(

T
τGABAA

)
.

Since βi = 0.1 ms for the inhibitory synaptic kinetics of the conductance-based model (param-
eters in Appendix A), we take τGABAA

= 10 ms. During transients in the conductance-based
model, the value of T changes cycle-by-cycle; if the solution is a fixed point, then T is constant
cycle-by-cycle. Although this suggests that the map is best suited for fixed point solutions
because T is assumed to be constant, it nonetheless serves as a lowest order approximation
for transients and period 2 orbits since the variations in cycle length are generally small.

To determine gc
ii, we consider vi(x, t) around the threshold event at the end of the cycle.

For x < bn, threshold is crossed and a spike generated. At x = bn, the voltage trace vi(bn, t)
achieves a subthreshold maximum and then decreases to more negative values. This turning
point between firing and not firing serves as an estimate for the critical voltage v(T ) associated
with the threshold event. In the conductance-based model, with the parameters given in
Appendix A, the corresponding membrane potential vi(bn, T ) often lies in the range [−60,−50].
As the dependence is difficult to ascertain, for simplicity we can use a single approximation for
all parameter values, e.g., vi(bn, T ) = −56 mV. Regardless of how v(T ) is chosen, we obtain
the relation

gii = ḡii Ssyn(T ) = gc
ii e

−
(

T
τGABAA

)[
v(T )− V syn

i

]
.

Although the map does not determine the precise value of the width of the spiking region in
the case of a fixed point, the predicted value can be reasonably close. For example, choosing
gc
ii = 5, Ic

i = 1, σc
i = 0.5, σc

ii = 1 in the conductance-based model results in a solution
alternating between widths of 0.147 and 0.1485 with an approximate frequency of 29.3 Hz and
period T = 34.1 ms. Taking v(bn, T ) = −56 mV, the parameters for the map are given as
Ii = 1, σi = 0.5, σii = 1, gii = 3.139, θi = 0.24, in which case the corresponding fixed point in
the map is b̄ = 0.186.

The prediction from the map, in a sense, is an upper bound, assuming that all cells fire
exactly synchronously and do not feel the effects of the ensuing wave of inhibition. However,



1036 STEFANOS E. FOLIAS AND G. BARD ERMENTROUT

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

  f
re

qu
en

cy
 (

H
z)

 

I i

(a) FI-curve for the conductance-based model. (b) Early-cycle inhibitory synaptic current.

Figure 6. (a) FI-curve for the single-neuron version of the conductance-based model (2.1) with parameters
given in Appendix A, which relates the steady-state firing frequency of periodic action potentials in an individual
neuron (spatial point) as a function of the amplitude of the constant input current Ic

i . This curve can be used
as an approximation of the threshold current θi for firing in the inhibitory map (3.4). (b) Inhibitory synaptic
current −I syn(x, t) as a function of space and time. Space is in units of the synaptic space constant σii. The
bright white region indicates the large deviation from the GABAA reversal potential during the action potential.

as mentioned previously, the cells do not fire in perfect synchrony due to the spatial variation
of input and synaptic currents. Consequently, the region of spiking cells is expected to be
smaller than that predicted by the map since the inhibition generated by cells firing early will
inhibit latent cells in the periphery which are nearing threshold. Figure 6(b), which plots the
inhibitory synaptic current Isyn as a function of time and space, illustrates the effect of the cells
firing earliest, which subsequently inhibit those near the boundaries of the region of spiking
cells. The white region represents large deviation from the GABAA reversal potential V syn

i

for those cells firing an action potential, and inhibition is clearly present in the neighboring
region. It is generally the case that the map predicts a larger region than is exhibited in the
conductance-based model. Delaying the effects of the onset of inhibition by lengthening its
time constant does produce a wider pulse. Alternatively, to reduce the latency between the
firing of the first and last cells, one can use inputs of the form I(x) = Ic

i e
−(x/σc

i )
2n
, n ≥ 2,

which are more steplike, to produce tighter synchrony.
We now turn to qualitative comparisons between the conductance-based model and the

inhibitory map. Both models exhibit fixed point and period 2 orbit solutions for the width
of the spiking band on each cycle. However, supercritical flip bifurcations appeared more
commonly in the conductance-based model than in the map. This difference could be due to
the assumption of a constant period of oscillation from cycle to cycle in the map, whereas
in the conductance-based model there are two slightly different cycle lengths in the period 2
orbit. Although an exhaustive search was not performed, bifurcation to period 4 orbits was
exhibited in neither the conductance-based model nor the map. Although small variation in
the widths is seen in the conductance-based model, an orbit was determined to be a period N
orbit if the widths were substantially different and periodic after a transient.
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Further qualitative analysis is assessed in the vicinity of the flip bifurcation. In particular,
we considered period 2 orbits with small differences in the alternating widths of the spiking
region. Consistent with the bifurcation analysis of the inhibitory map, increasing Ic

i or σc
i in

the conductance-based model moved the system away from the flip bifurcation, reflected in a
larger difference in the alternating widths of the period 2 orbit. However, increasing gc

ii is more
subtle. In the conductance-based model, increasing gc

ii was seen in some parameter regions
to move the system closer to the bifurcation point, reflected by a smaller difference in the
alternating widths of the period 2 orbit. In other regions of parameter space, it did not bring
the system closer to the bifurcation point, in some cases leading to break-up of the continuous
band. In Figure 4(a), if θi remains constant, then the inhibitory map suggests that increasing
gc
ii in the conductance-based model should move the system undergoing a flip bifurcation
farther beyond the flip bifurcation point, thereby enlarging the difference between the two
widths. However, increasing the strength of inhibition gc

ii results in a decrease in oscillation
frequency, indicating that θi must also decrease. Examining Figure 4(a), beyond the flip
bifurcation curve where the fixed point is unstable, in some regions one can simultaneously
increase gii and decrease θi to bring the map closer to the bifurcation point, whereas in
other regions these changes do not have that effect. The former is particularly enhanced
when considering the addition of a form of early-cycle inhibition to the inhibitory map (see
Figure 7).

gii

b̄

θi = 0.01

θi = 0.6

θi = 0.3

(a) Without early-cycle inhibition.

b̄

gii

θi = 0.01
θi = 0.3
θi = 0.6

(b) With early-cycle inhibition.

Figure 7. Comparison of the stable and unstable fixed points and flip bifurcation points in the standard
inhibitory map without (3.4) and with the early-cycle inhibition (3.10). Parameter values for (a) g∗ii = 0.0 and
for (b) g∗ii = 0.7gii, γ = 0.4. Common to both cases: Ii = 0.7, σi = 0.5.

3.3. Inhibitory map with early-cycle inhibition. Although in our model it has been as-
sumed that the continuous interval of spiking cells must fire exactly synchronously, i.e., with
zero lag from the first cells firing to the last, this perfect synchrony is not generic in the
conductance-based model due to varying levels of the input current and synaptic inhibition at
different points in space. We are effectively collapsing to a single instant the duration of time
from the first neurons spiking to the last in each cycle (see Figure 6(b)). This early phase
of the cycle, which is related to the onset time of the new wave of inhibition, occurs at the
beginning of the (n+1)th cycle and is assumed to be short relative to the period of the cycle.
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We collapse the early phase into a single instant and incorporate it implicitly as follows.
If (−bn+1, bn+1) is the interval of cells which ultimately fires on the (n+ 1)th cycle, then,

for some fixed γ ∈ (0, 1), we assume that a subinterval (−γbn+1, γbn+1) will fire earlier and en-
hance the inhibition, thereby narrowing the width of the ultimate interval (−bn+1, bn+1) from
what would have occurred otherwise. We model this inhibition by including the additional
inhibitory term to the map

−J∗
ii(bn+1, bn+1),

where Jii and J
∗
ii differ only in their synaptic strength constants, gii and g

∗
ii, respectively. This

inhibitory term could represent the time-averaged inhibitory current over the firing period.
The map determining the iterates bn is now given by

(3.10) F ∗(bn, bn+1) = 0,

where
F ∗(bn, bn+1) = I(bn+1)− Jii (bn+1, bn)− J∗

ii (bn+1, γbn+1)− θi.

Linear stability follows similarly as before, with the eigenvalue Λ(b̄) becoming

Λ
(
b̄
)

= −D1F (b̄, b̄)

D2F (b̄, b̄)
=

D2Jii(b̄, b̄)[
Ii(b̄)−D1Jii(b̄, b̄)

]− [D1J∗
ii(b̄, b̄) +D2J∗

ii(b̄, b̄)
] .

Comparing with (3.5), we see that the denominator has the additional term

D1J
∗
ii(b̄, b̄) +D2J

∗
ii(b̄, b̄) = 2g∗iiwii

(
(1 + γ)b̄

)
> 0 for all b̄ > 0.

Following arguments analogous to those used before, the condition for stability reduces to

(3.11) I ′(b̄) < −2 gii wii(0) + 2g∗ii wii

(
(1 + γ) b̄

)
.

Comparing this new condition (3.11) with the previous stability condition (3.8), we see that,
since I ′(b̄) < 0, the additional inhibitory term widens the region of stability of a fixed point,
increasingly with respect to γ. This effect can be seen in Figure 7.

3.4. Dual-boundary inhibitory map. We briefly consider an inhibitory map in which the
two boundaries of the band of synchronous oscillations are allowed to evolve independently
rather than evolving with even symmetry as was assumed previously. Let x = −bn represent
the location of the left boundary of the spiking region, and let x = cn represent the location
of the right boundary on the nth cycle, where bn, cn > 0 are the distances to each boundary
from the center of the stationary input. In this case the dual-boundary inhibitory map takes
the form

0 = FL(bn, cn, bn+1) ≡ Ii(bn+1) − J2
ii(−bn+1, bn, cn) − θi,(3.12)

0 = FR(bn, cn, cn+1) ≡ Ii(cn+1) − J2
ii(+cn+1, bn, cn) − θi,

where

J2
ii(ξ, bn, cn) =

∫ cn

−bn

w(ξ − y) dy.
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The even symmetry of Ii and wii implies that a fixed point must also be symmetric about the
input; i.e., (bn, cn) = (b̄, b̄) for all n, where b̄ solves FL,R(b̄, b̄, b̄) = 0.

Let φn, ψn be small perturbations of the fixed point (b̄, b̄), and set

bn = b̄ + ϕn, cn = b̄ + ψn.

Expanding the nonlinearities FL, FR in a Taylor series about the fixed point (b̄, b̄), the pertur-
bations to first order satisfy

D1F
∗
L ϕn +D2F

∗
L ψn +D3F

∗
L ϕn+1 = 0,

D1F
∗
R ϕn +D2F

∗
R ψn +D3F

∗
R ψn+1 = 0,

whereDjF
∗
L = DjFL(b̄, b̄, b̄) andDjF

∗
R = DjFR(b̄, b̄, b̄) for j = 1, 2, 3. AssumingD3F

∗
R ,D3F

∗
L �=

0 leads to the two-dimensional linearized map

(
ϕn+1

ψn+1

)
= M2

(
ϕn

ψn

)
, M2 =

⎡
⎣− D1F ∗

L
D3F ∗

L
− D2F ∗

L
D3F ∗

L

− D1F ∗
R

D3F ∗
R

− D2F ∗
R

D3F ∗
R

⎤
⎦ ,

where

D1F
∗
L = −D2J

2
ii(−b̄, b̄, b̄), D1F

∗
R = −D2J

2
ii(b̄, b̄, b̄),

D2F
∗
L = −D3J

2
ii(−b̄, b̄, b̄), D2F

∗
R = −D3J

2
ii(b̄, b̄, b̄),

D3F
∗
L = −D1J

2
ii(−b̄, b̄, b̄) + I ′i(−b̄), D3F

∗
R = −D1J

2
ii(b̄, b̄, b̄) + I ′i(b̄)

and

D1J
2
ii(x, ξ, η) = gii · ∂

∂x

∫ η

−ξ
w(x− y) dy = −gii

[
w(x− η)− w(x+ ξ)

]
,

D2J
2
ii(x, ξ, η) = gii · ∂

∂ξ

∫ η

−ξ
w(x− y) dy = −giiw(x+ ξ),

D3J
2
ii(x, ξ, η) = gii · ∂

∂η

∫ η

−ξ
w(x− y) dy = +gii w(x− η).

Due to the symmetries of Ii and wii, the matrix M2 has the form

M2 =

[
Δ Γ

Γ Δ

]
,

where

Δ =
gii w(0)

gii
[
w(0) − w(2b̄)

]
+ I ′(b̄)

, Γ =
−giiw(2b̄)

gii
[
w(0) − w(2b̄)

]
+ I ′(b̄)

.

Consequently, the eigenvalues of M2 are given by λ± = Δ± Γ, which results in

λ± =
gii
[
w(0) ± w(2b̄)

]
gii
[
w(0) − w(2b̄)

]
+ I ′(b̄)

.
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Stability of the fixed point (b̄, b̄) requires that |λ±| < 1. We follow the same approach to this
inequality as in section 3.1. First, the condition |λ+| < 1 is identical to the stability condition
(3.8) for the symmetric-boundary inhibitory map (3.4), which reduces to

I ′(b̄) < −2 gii wii(0).

The other stability condition |λ−| < 1 is new. From the assumptions on wii we have

0 < wii(0)− wii(2b̄) < wii(0) + wii(2b̄) for all b̄ > 0,

which implies that |λ−| < |λ+| for all b̄ > 0. Hence, the stability condition |λ−| < 1 for the
fixed point (b̄, b̄) is superseded by the condition |λ+| < 1 in the case of the dual-boundary
inhibitory map under the assumptions on wii and Ii. Consequently, the condition for sta-
bility of a fixed point in the dual-boundary inhibitory map (3.12) is determined by stability
with respect to symmetric perturbations and is equivalent to stability condition (3.8) in the
symmetric-boundary inhibitory map (3.4).

4. Heuristic map for an excitatory-inhibitory (E-I) network. In this section, we explore
the natural extension of the one-dimensional inhibitory map in section 3 to an excitatory-
inhibitory pair of mutually coupled populations. In section 4.1, we develop and analyze the
linear stability of an implicit two-dimensional discrete map for the excitatory-inhibitory net-
work exhibiting the localized synchronous oscillations exemplified in the numerical results of
section 2.3. In section 4.2, we describe various types of solutions and bifurcations explored in
numerical solutions of the E-I map. In section 4.3, we make qualitative comparisons between
the solutions of the E-I map and those of the corresponding conductance-based model, includ-
ing a nontrivial result demonstrating dynamics on an invariant circle and weak resonances
in the conductance-based model as predicted by the discrete map. Finally, in section 4.4,
using numerical simulations and linear stability analysis of the E-I map, we demonstrate a
particularly interesting bifurcation exhibited by the E-I map, in which the two periodic points
of a period 2 orbit individually undergo 1:2 strong resonance bifurcations, ultimately giving
rise to a pair of double homoclinic tangles that generates rich dynamic behavior.

4.1. Two-dimensional discrete map for an excitatory-inhibitory population. The E-I
map is developed in the same heuristic fashion as the inhibitory map, using the continuum
formulation (3.1) of the spatially extended network with the addition of a second population
ve(x, t) that forms excitatory synaptic interactions with both populations. We use the sub-
scripts e and i to identify variables associated with the excitatory and inhibitory populations,
respectively. The network is stimulated by a constant excitatory input Îu(x) > 0 to each pop-
ulation u ∈ {e, i} that is even-symmetric and localized in space. Both inputs share a common
center x = 0, though the amplitude Iu and characteristic spatial extent σu of the inputs may
differ for each population u.

In the absence of an input, the network is assumed to be excitable rather than oscillatory,
and, as a first approximation, we assume that the input drives each population such that a
continuous, localized band of action potentials about the input fires exactly periodically with
the same period T for both populations. The two populations are assumed to be synchronized,
though a small phase difference (� T ) between the firing of two populations during each cycle
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is permissible; this typically occurs in numerical simulations of system (2.1) as spiking in the
excitatory population is slightly advanced relative to the inhibitory population. Each cycle
begins at the threshold crossing of the band of action potentials, and the map is derived by
collapsing each cycle to an iterate of the map.

Synaptic interactions between the two populations are mediated through distance-depen-
dent synaptic coupling wuv(x − y), and each population is coupled to itself as well as to
the other population. The synaptic currents are defined in a fashion analogous to that in
section 3.1; i.e., the total synaptic current from an interval (−y, y) of spiking cells within
population v to the neuron at location x in population u is defined as

(4.1) Juv(x, y) = guv

∫ y

−y
wuv(x− ξ) dξ.

The synaptic strengths gue for the excitatory synaptic currents are determined similarly, with
the time constant and reversal potential chosen appropriately. We take guv ≥ 0 in all cases and
allow the sign of the term ±Juv to determine whether the synaptic current is excitatory (+)
or inhibitory (−). Again, the ordering convention for subscripts uv and arguments (x, y)
of Juv(x, y) is that the first denotes the postsynaptic neuron and the second denotes the
presynaptic neuron. Thus, Jei(x, bn) is the total synaptic current from a continuous band of
inhibitory neurons with halfwidth bn on the nth cycle to an excitatory neuron at the location
x which is sampled at the end of the cycle. It is implicitly assumed that the strengths of
excitation and inhibition are such that a one-to-one correspondence between the oscillations
is maintained.

E-I map. We assume that the boundaries of the band of synchronous action potentials
evolve symmetrically about the common center of the inputs, with an, bn > 0 representing the
halfwidths of these intervals during the nth cycle in the excitatory and inhibitory populations,
respectively. At the end of cycle n, the total current to the neuron at x in population u is
given by the sum of the input and synaptic currents,

Îu(x) + Jue(x, an)− Jui(x, bn).

Define the threshold currents θe, θi as the minimum currents necessary for any neuron in the
respective populations to fire by the end of each cycle (assuming a fixed period T and, e.g.,
using the FI-curve). For u ∈ {e, i}, we define the function

Fu(an, bn, x) = Îu(x) + Jue(x, an)− Jui(x, bn)− θu,

which is positive (negative) at points x in population u where the total current is above (below)
the threshold current at the end of the cycle. The condition for a single interval (−cu, cu) of
neurons in population u to fire nearly synchronous action potentials on the (n+ 1)th cycle is
then given by

Fu(an, bn, x) > 0, x ∈ [0, cu), and Fu(an, bn, x) < 0, x ∈ (cu,∞),

with the boundary cu > 0 of the band determined by the equation Fu(an, bn, cu) = 0.
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The E-I map governing the evolution of the halfwidth pair (an+1, bn+1) is consequently
given by the implicit two-dimensional discrete map

(4.2) Fe(an, bn, an+1) = 0, Fi(an, bn, bn+1) = 0,

with the nonlinearities expressed as

Fe(an, bn, an+1) = Îe(an+1) + Jee(an+1, an)− Jei(an+1, bn)− θe,

Fi(an, bn, bn+1) = Îi(bn+1) + Jie(bn+1, an) − Jii(bn+1, bn) − θi.

The equations for an+1 and bn+1 are decoupled and may be solved independently.
As in the inhibitory map, the same issues arise given the implicit nature of the map.

Multivalued solutions are a concern due to the mix of space scales in the excitatory and
inhibitory terms in both equations. If the relative strength and extent of the excitatory
synaptic coupling in one population is significantly larger than that of the inhibitory synaptic
coupling, then, under the assumptions on wuv and Iu, it is possible to create a cubic-shaped
segment of the graph of either function Fe or Fi which has the potential of creating three
zeros depending on the values of θu. If Fu crosses 0 at three points x1 < x2 < x3, it means
that regions [0, x1) and (x2, x3) are superthreshold and firing action potentials, whereas the
interval (x1, x2) is subthreshold. It is also possible to get three zeros in the inhibitory map
with σi sufficiently large, but the excitatory synaptic currents in the E-I map contribute to
this effect dynamically depending on the activity in the excitatory population. Such behavior
is, in fact, seen in conductance-based models when the extent of excitation exceeds that of
inhibition and the excitatory connections are sufficiently strong to generate action potentials.
However, such solutions violate the basic assumption of the construction of the map which
requires at most a single band of cells to fire action potentials.

Linear stability of a fixed point. Let (ā, b̄) be a fixed point of the E-I map, and let (ϕn, ψn)
be a small perturbation so that

an = ā+ ϕn, bn = b̄+ ψn.

Expanding Fe, Fi in Taylor series about (ā, b̄), the perturbations to first order satisfy

D1F
∗
e ϕn + D2F

∗
e ψn + D3F

∗
e ϕn+1 = 0,

D1F
∗
i ϕn + D2F

∗
i ψn + D3F

∗
i ψn+1 = 0,

with

DkF
∗
e = DkFe(ā, ā, b̄), DkF

∗
i = DkFi(ā, b̄, b̄), k = 1, 2, 3.

The linearized map for the evolution of the perturbations is thus given by

(
ϕn+1

ψn+1

)
= M

(
ϕn

ψn

)
, M =

⎡
⎣− D1F ∗

e
D3F ∗

e
− D2F ∗

e
D3F ∗

e

− D1F ∗
i

D3F ∗
i

− D2F ∗
i

D3F ∗
i

⎤
⎦ ,
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provided that D3F
∗
e,i �= 0, with the elements of M given by

D1F
∗
e = D2Jee(ā, ā), D1F

∗
i = D2Jie(b̄, ā),

D2F
∗
e = −D2Jei(ā, b̄), D3F

∗
e = D1Jee(ā, ā) − D1Jei(ā, b̄) + I ′e(ā),

D2F
∗
i = −D2Jii(b̄, b̄), D3F

∗
i = D1Jie(b̄, ā) − D1Jii(b̄, b̄) + I ′i(b̄).

For general weight functions wuv, where u, v ∈ {e, i}, we easily calculate

D1Juv(x, y) = −guv
(
wuv(x− y)− wuv(x+ y)

)
,

D2Juv(x, y) = +guv
(
wuv(x− y) + wuv(x+ y)

)
.

Since the map is planar, we can express the two eigenvalues more practically as

λ± =
1

2

(
trM ±

√
(trM)2 − 4detM

)
.

4.2. Numerical solutions of the E-I map. All numerical simulations performed on the
E-I map were in the case of Gaussian synaptic weights and inputs

wuv(x) =
1√
πσuv

exp

(
− x2

σ2uv

)
, Îu(x) = Iu exp

(
−x

2

σ2u

)
,

Juv(x, y) =
guv
2

[
erf

(
x+ y

σuv

)
− erf

(
x− y

σuv

)]
, u, v ∈ {e, i}.

Only excitatory inputs Ie, Ii > 0 were considered, and θe, θi were taken to be in the range
(0, 1) given the FI-curve (Figure 6(a)) for the conductance-based model. The vast number
of parameters makes it difficult to describe comprehensively when solutions exist; however,
when solutions did exist, it was found that the E-I map commonly produced single-valued
solutions across large parameter regions (though some exceptions were found). This was
determined by inspecting graphs of the functions Fe(an, bn, x), Fi(an, bn, x) for zero-crossings
on each iterate.

As expected, fixed points and period 2 orbits, generated through flip bifurcations, were
common as attracting sets of the E-I map. However, we investigated what other types of
bifurcations were present in the two-dimensional map. Linear stability analysis predicted that
Neimark–Sacker bifurcations would occur in various regions of parameter space; however,
numerical solutions around many of these bifurcation points suggested the bifurcations were
subcritical, leading to oscillations that grew exponentially until the map broke down as one
of the variables approached 0. In two cases that were deemed supercritical by exhibiting
a very small-amplitude invariant circle beyond the predicted bifurcation point, varying the
bifurcation parameter further caused the invariant circle to grow rapidly with one of the half-
widths an or bn approaching 0. However, one particularly interesting region, with solutions
bounded away from 0, unfolded various Neimark–Sacker bifurcations with both weak and
strong resonance bifurcations, as illustrated in Figure 8 below. This revealed a dynamically
rich parameter region in which to look for stable oscillatory solutions in the conductance-
based model (see section 4.3). Various stable periodic orbits of higher order were also found
in this region of the E-I map that bifurcated into what appeared to be strange attractors.
In section 4.4, we describe perhaps the most interesting bifurcation observed in the E-I map,
occurring in a different parameter region in which σee < σei and σie > σii.
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Figure 8. Neimark–Sacker bifurcation of fixed points in the E-I map, giving rise to various resonances of
order q. Values for the bifurcation parameter are listed in the captions of each figure. Each figure depicts two
orbits in the (an, bn) phase plane, and each orbit is colored partially with a lighter color to indicate transients
and partially with a darker color to indicate the set to which the orbit is attracted. One trajectory, colored with
an orange transient and dark red ω-limit set, starts from an initial condition near the equilibrium in the center.
The other trajectory, colored with light blue transient and dark purple ω-limit set, starts from the periphery.
When the dark purple and dark red ω-limit sets coincide, only the dark purple is shown. The exception is
panel (k), in which the orange and light blue orbits approach the purple invariant circle while an additional
gray transient approaches the stable equilibrium (black dot) at the center. The white ring indicates the presence
of an unstable invariant circle. The emergence of a stable-unstable pair of invariant circles is characteristic of a
generalized Neimark–Sacker bifurcation. Panels (a)–(d) illustrate a 1:3 resonance occurring for the parameter
set gee = 0.27, gei = 1, gie = 1.5, gii = 1.5, θe = θi = 0.23. Panels (e)–(h) illustrate a 1:4 resonance bifurcation
occurring for the set gei = 1.07, gie = 3, gii = 1.2, θe = θi = 0.28, σi = 0.5. Panels (i)–(l) illustrate a 1:7
resonance occurring for the set gei = 1.1, gie = 1.485, gii = 1.25, θe = θi = 0.265, σi = 0.5. Parameters
common to all figures are given by σee = σie = σei = σii = 1 and Ie = 1, Ii = 1, σe = 1.

Note on resonances. Resonances occur as a special case of the Neimark–Sacker bifurca-
tion in which the linearized map about a simple fixed point has a pair of eigenvalues that are
qth roots of unity [26]. Occurring for q ≥ 5, a weak resonance is an interdigitated pair of
period q orbits (one of q saddles, one of q nodes), which together can form a closed invariant
curve from heteroclinic connections between adjacent saddle and node periodic points; the
stable and unstable manifolds of the saddles separate the q suborbits as each approaches its
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respective stable node. In two-parameter unfoldings of the bifurcation, each root of unity gives
rise to a weak resonance and its associated Arnold tongue, a cusp-like region which emerges
outward from the unit circle, the interior of which is the existence region for the resonance.
The boundary of the tongue corresponds to a saddle-node bifurcation through which the peri-
odic orbits emerge and vanish. For parameters near the boundary but exterior to the Arnold
tongue, it is possible for iterates of the map to spend time in the vicinity of the emerging
saddle-node before approaching another solution. Strong resonances occur when q = 1, 2, 3, 4,
in which a more complicated codimension 2 bifurcation structure may arise from additional
degeneracies associated with these eigenvalues.

4.3. Comparison with the conductance-based model. A variety of qualitative compar-
isons may be made between the localized synchronous oscillations in the E-I map and in the
associated conductance-based model. We summarize a few here. In the conductance-based
model, we considered excitatory synapses with a decay time constant consistent with the
AMPA receptor type (βe = 0.5–1.0). Sufficiently strong inhibition to both populations was
used to ensure that the spatiotemporal solutions were clean and regular for comparison with
the map. When the conductance-based model supported a localized band of oscillations, with
the ambient medium quiescent, the width of the band typically approached either fixed width
solutions or an alternation between two widths with a exponential decay to the steady solution
that was qualitatively similar to the E-I map. Therefore fixed points and period 2 orbits were
common localized solutions in both models.

The E-I map, additionally, can reflect the effect of runaway excitation; this occurs in
the conductance-based model, for example, when increasing the coupling strength gc

ee of the
e-to-e connections induces an instability of the localized region of synchronized oscillations,
resulting in an a ever-widening region of persistent spiking activity. Correspondingly, in the
E-I map, it was possible to show in some cases that, by increasing gee, a stable fixed point
underwent a fold bifurcation corresponding to a λ = 1 eigenvalue. Also, when a period 2 orbit
was present in numerical simulations of the E-I map, increasing gee in many cases led to an
apparent instability of the periodic orbit in which the solution continued to alternate with
two suborbits with the value of an monotonically increasing.

The time constant of decay β−1
e associated with the excitatory AMPA synapses is short

relative to the period of the gamma cycle, so that, by the end of the gamma cycle, it has
decayed considerably more than inhibition. Therefore, either the excitatory synaptic strengths
in the E-I map should be taken to be small (since we assumed that they are defined by the
synaptic currents at the end of the cycle in the derivation of the map) or, instead, they are
interpreted more abstractly in an effective sense. We note that such excitatory currents in the
conductance-based model also can contribute to spiking during the early phase of the gamma
cycle in a way similar to the early-cycle inhibition discussed in Figure 6. Our investigation
was limited only to synchronous spiking patterns that strongly conformed to the assumptions
of the map, and, for β−1

e in the range of AMPA-mediated synaptic currents, the boundaries
of the spiking region did not display any well-defined oscillatory behavior.

Subsequently, β−1
e was increased in the conductance-based model to be on the order of

the decay time constant of inhibition in order to reduce the disparity between the inhibitory
and excitatory synaptic currents at the end of the cycle. Accordingly, the synaptic strength
gc
ee was kept sufficiently small to prevent reexcitation prior to the end of the gamma cycle. In
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a parameter region related to that described in section 4.4 for the E-I map, we set βe = 0.19
in the conductance-based model and found that that a steady fixed width solution underwent
two flip bifurcations, first to a period 2 orbit and, subsequently, to a well-defined and regular
period 4 orbit. However, varying parameters further led to instability of the steady solution
such that the boundaries of the excited region expanded in an exponential fashion, leaving
a highly complex spiking pattern in the interior. Increased spatial resolution is necessary to
resolve orbits with increasingly complex structure, which is compounded by the fact that the
conductance-based model must evolve over a considerable interval of time to generate the
equivalent of each iteration of the map.

Neimark–Sacker and 1:5 resonance in the conductance-based model. The decay time
constant of the excitatory synapses was increased further to 8 ms (βe = 0.123) (note that
GABAA inhibition has a decay time constant of 10 ms), and examination of the parameter
region suggested by the results in Figure 8 revealed a region exhibiting rich dynamics. Fig-
ure 9 illustrates a set of simulations of the conductance-based model which are suggestive
of a Neimark–Sacker bifurcation giving rise to an invariant circle with 1:5 resonances. Near
this point in the conductance-based model lies a region of complicated dynamics, parallel to
the related region in the E-I map. However, higher resolution simulations are necessary to
adequately resolve the dynamics in this region.

4.4. A strong (1:2) resonance bifurcation of a period 2 orbit. In this section, we describe
an interesting example of nontrivial dynamics exhibited by the E-I map (4.2) in the vicinity
of what numerical simulations and linear stability analysis indicate is codimension 2 strong
resonance bifurcation. Although typically described as a bifurcation of a fixed point, in this
case the 1:2 resonance bifurcation occurs on a period 2 orbit wherein each periodic point
independently undergoes a 1:2 resonance bifurcation. In the numerical simulations of the E-I
map, we describe the codimension 2 bifurcation in terms of the pair of parameters (σii, θi),
though many pairs of parameters unfold this bifurcation. For some ranges of these parameters,
the attracting sets of the 1:2 resonance are surrounded by a large strange attractor formed
of Hénon-like curves, which we call the seahorse attractor. Once the attracting sets of the
1:2 resonance vanish, the unstable region approaches the seahorse attractor.

A 1:2 resonance bifurcation occurs when the discrete map linearized about a fixed point
contains the eigenvalue pair λ1,2 = −1 and is included among the strong resonance bifurca-
tions (q = 2) which have a more complicated codimension 2 bifurcation structure involving
homoclinic and/or heteroclinic connections. Strong resonances occur in Poincaré maps asso-
ciated with systems exhibiting two independent frequencies and commonly have been found
in periodically driven nonlinear oscillators, e.g., the Van der Pol equation or Duffing’s equa-
tion [14]. Although the inputs in our system are not periodic in time, the time-independent
input drives the inhibitory population which organizes the synchronous oscillation in both
populations through strong synaptic inhibition.

The classical approach to studying many of the codimension 2 bifurcations of two-
dimensional discrete maps considers the time-T map that samples periodically, with period
T , an approximating vector field known as an equivariant versal unfolding [1, 4, 17]. Nor-
mal forms, including explicit formulas for the critical coefficients of the resonant terms, have
been derived for most of the codimension 2 bifurcations, including the strong resonances; see
[19, 18, 17]. These normal forms capture all local bifurcations but, in some cases, are incom-
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Figure 9. Neimark–Sacker bifurcation and 1:5 resonance in the conductance-based model in a parameter
region related to those in Figure 8 in the E-I map. Every fifth iterate is colored identically to illustrate that the
synchronous oscillations in the conductance-based model behave like the five suborbits in a discrete map during
a 1:5 weak resonance. Left column: solution plots of the halfwidth ac

n (color) in the excitatory population
and bcn (gray) in the inhibitory population. Right column: corresponding orbits in the (ac

n, b
c
n) phase plane.

(a) Beyond the (assumed) Neimark–Sacker bifurcation point, a transient initially spends time near the ghost of
a small period 5 orbit and, subsequently, approaches an invariant circle. (b) A transient approaches and spends
time near the ghost of a large 1:5 resonance, and, subsequently, approaches the smaller 1:5 resonance inside.
(c) The system now approaches the large 1:5 resonance where the slowdown occurred in (b). Other parameters
are Ic

e = 1, Ic
i = 1, σc

e = 1, σc
i = 0.5, gc

ei = 2, gc
ie = 1.5, gc

ii = 3, σc
ee = σc

ei = σc
ie = σc

ii = 1, βe = 0.123, with
other parameters listed in Appendix A. The oscillation frequency is approximately 28–30 Hz.
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plete due to the fact that higher order terms govern global phenomena, such as homoclinic and
heteroclinic intersections, which can occur. In some cases, for example, the generalized Hénon
map can be used to understand the dynamics near homoclinic and heteroclinic tangencies oc-
curring in various two-parameter discrete maps [12]. Though it is perhaps more appropriate
to study the normal form map, the bifurcation diagram of the approximating vector field,
shown in Figure 10, provides an accessible geometric view into the set of bifurcations present
in a 1:2 resonance bifuraction, thereby facilitating the description of the numerical simulations
of the E-I map.

Initial numerical evidence suggesting a 1:2 resonance. Two consecutive flip bifurcations
of a fixed point leading to a period 4 orbit were explored in numerical simulations of the E-I
map in order to pursue further bifurcations thereof. Since there are many parameters, the
parameters were fixed at the values given in Figure 13(a), and the same two consecutive flip
bifurcations of a fixed point to a period 4 orbit were reproduced by increasing only the spatial
extent σie of the e-to-i connections through the interval σie ∈ [1, 2.91]. Increasing σie to
2.915 subsequently led to a Neimark–Sacker bifurcation of the period 4 orbit, producing four
invariant circles, as shown in Figure 13(a). Fixing σie = 2.915 and decreasing θi from 0.25 to
0.191 led through a sequence of higher order resonances intermixed with short intervals with
an apparent strange attractor having four batwing shapes, each resembling the undulating
shape of the unstable manifolds of the period 2 orbit (saddles) near a homoclinic tangency
(see Figure 13(b)). This sequence shares some characteristics with the sequence described in
the delayed logistic map [2] and the Bogdanov map [3]. Notice that the batwing attractor is
very close to bn = 0, causing solutions in the map to break down when θi is decreased much
further.

To move the attracting sets away from bn = 0, the strength of i-to-i inhibition was set
to gii = 1.5, and its spatial extent was increased to σii = 1.6. This brought the system to
a parameter region, whereupon decreasing θi towards θi ≈ 0.17392 led to the merging of the
four invariant circles into two large invariant circles, one of which is shown in Figure 13(c).
Figure 13(d) illustrates an analogous merging for fixed σii = 1.575, in which case decreasing
θi led to a complex trajectory resembling unstable manifolds in the schematic of the double
homoclinic tangle in Figure 12. This suggests that the system is near the codimension 2 point
in the (σii, θi) plane of a 1:2 resonance bifurcation occurring on a period 2 orbit, which we
now substantiate using linear stability analysis.

Linear stability analysis of period 2 orbits in the E-I map. We derive conditions for the
existence and linear stability of a period 2 orbit to verify the eigenvalue structure (λ1,2 = −1)
of the 1:2 resonance in the vicinity of the parameter region described in Figure 13. Let (ā1, b̄1)
and (ā2, b̄2) define the period 2 orbit, i.e.,

(a2n, b2n) = (ā1, b̄1), (a2n+1, b2n+1) = (ā2, b̄2) for all n ∈ Z
+.

Since each periodic point of the period 2 orbit is a fixed point of the E-I map composed with
itself, the period 2 orbit satisfies the following equations simultaneously:

Fe

(
ā1, b̄1, ā2

)
= 0, Fe

(
ā2, b̄2, ā1

)
= 0,

Fi

(
ā1, b̄1, b̄2

)
= 0, Fi

(
ā2, b̄2, b̄1

)
= 0.(4.3)
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Figure 10. A useful geometric picture of the bifurcations in the 1:2 resonance bifurcation in a discrete map
is provided by the bifurcation diagram of an approximating vector field x′ = αx+(1+β)y+x3, y′ = −βx+αy+δx3

(δ = −1), which unfolds a Bogdanov–Takens bifurcation in a system with Z2 symmetry [4, 24, 17]. Black curves
indicate attracting sets, chosen to reflect the numerical results of the E-I map. Summary of the bifurcations in a
counterclockwise loop around the codimension 2 point at the origin, beginning with region I, which corresponds
to the starting point of our description of the simulations of the E-I map: In region I a stable equilibrium
is surrounded by an unstable limit cycle. Passing from region I to II across curve PF, the stable fixed point
undergoes a supercritical pitchfork bifurcation (reflecting the Z2 symmetry), yielding two stable fixed points
separated by a saddle point. Both stable equilibria undergo supercritical Hopf bifurcations as one traverses from
region II to III across curve H, giving rise to a pair of stable limit cycles, with the large unstable limit cycle
still present. As one moves towards curve HC, the limit cycles grow in size, ultimately resulting in a pair of
stable homoclinic connections of the saddle. Traversing the curve HC of homoclinic points, the pair of limit
cycles join together to form one large limit cycle. Approaching curve LC in region IV, this large stable limit
cycle continues to grow towards the surrounding unstable limit cycle until it coalesces into a single cycle which
is stable only from within, as indicated by the half black, half gray curve in diagram LC. The cycle vanishes in
a saddle-node bifurcation of limit cycles, leaving a saddle and two unstable equilibria. Crossing curve PF from
region V into region VI, the unstable equilibria collide with the saddle in a subcritical pitchfork bifurcation,
yielding a single unstable equilibrium. Finally, traversing curve H from region VI to I, the unstable equilibrium
undergoes a subcritical Hopf bifurcation.

Interpretation for the discrete map: The pitchfork and Hopf bifurcations correspond to flip and Neimark–
Sacker bifurcations, respectively, in the map. The homoclinic connections that form in the map need not
coincide everywhere and are governed generically by higher order terms. Instead, the stable and unstable
manifolds initially form tangencies at infinitely many isolated points which accumulate in both directions at
the saddle point—these correspond to the forward and backward iterates of the map. The manifolds proceed to
pass through each other, forming infinitely many transverse intersections until a final tangency is reached. For
such transverse intersections to occur, the manifolds must fold, shrink, and stretch wildly, producing a structure
known as a homoclinic tangle, which is partially sketched in Figure 11. Such structures have been shown to
contain Smale horseshoe maps that give rise to intricate dynamics and chaos. In the 1:2 resonance bifurcation,
a double homoclinic tangle arises, due to the Z2 symmetry in the system, and is partially drawn in Figure 12.
In contrast to differential equations, the homoclinic connections that form in discrete maps, generically, are
structurally stable, and consequently the curve HC of homoclinic connections for the approximating system
becomes a tongue, or wedge, of homoclinic intersections that issues from the codimension 2 point in the discrete
map. The boundaries of the wedge correspond to the initial and final tangencies. Curve LC similarly implies
a wedge since, generically, the coalescing stable and unstable invariant curves in region IV also ultimately
intersect transversally as they pass through one another. These intersections can lead to weak resonances, and
homoclinic and heteroclinic tangles may form between the periodic points [4].
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Figure 11. Homoclinic bifurcation for a discrete map [26]. Generically, the stable manifolds (darker color)
and the unstable manifolds (lighter color) form infinitely many transverse intersections (homoclinic points) that
accumulate at the saddle point, resulting in a homoclinic tangle that is structurally stable and persists over a
range of parameter values. The initial and final points of tangency define the boundaries of the parameter region
which can take the shape of a horn or wedge issuing from a codimension 2 bifurcation point. Such structures
were first described by Poincaré in 1890.

Figure 12. Double homoclinic tangle (caricature) arising in a 1:2 resonance bifurcation. The stable mani-
folds (darker color) and the unstable manifolds (lighter color) are only partially drawn and continue to fold and
wrap around both the interior and exterior of the structure. The attracting set in the E-I map bears a strong
resemblance to the geometry of the unstable manifold.

Consider the evolution of small perturbations (ϕn, ψn)
T of the period 2 orbit. Define

(a2n, b2n) = (ā1 + ϕ2n, b̄1 + ψ2n),

(a2n+1, b2n+1) = (ā2 + ϕ2n+1, b̄2 + ψ2n+1) for all n ∈ Z
+.

The perturbations about the period 2 orbit satisfy the following for all n ∈ Z
+:

Fe

(
ā1 + ϕ2n, b̄1 + ψ2n, ā2 + ϕ2n+1

)
= 0,

Fi

(
ā1 + ϕ2n, b̄1 + ψ2n, b̄2 + ψ2n+1

)
= 0,

Fe

(
ā2 + ϕ2n+1, b̄2 + ψ2n+1, ā1 + ϕ2n+2

)
= 0,

Fi

(
ā2 + ϕ2n+1, b̄2 + ψ2n+1, b̄1 + ψ2n+2

)
= 0.

Expanding the nonlinearities in a Taylor series, through first order in (ϕn, ψn), and applying
the conditions (4.3) for the period 2 orbit results in

D1F
∗1
e ϕ2n + D2F

∗1
e ψ2n + D3F

∗1
e ϕ2n+1 = 0,

D1F
∗1
i ϕ2n + D2F

∗1
i ψ2n + D3F

∗1
i ψ2n+1 = 0,

D1F
∗2
e ϕ2n+1 + D2F

∗2
e ψ2n+1 + D3F

∗2
e ϕ2n+2 = 0,

D1F
∗2
i ϕ2n+1 + D2F

∗2
i ψ2n+1 + D3F

∗2
i ψ2n+2 = 0.

where, for k = 1, 2, 3,

DkF
∗1
e,i = DkFe,i(ā1, b̄1, ā2), DkF

∗2
e,i = DkFe,i(ā2, b̄2, ā1).
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(a) Four invariant closed curves. (b) Batwing attractor.

(c) Stable closed curve. (d) Double homoclinic tangle.

Figure 13. Attracting sets in numerical simulations of the E-I map suggestive of a 1:2 resonance bifurcation
occurring on a period 2 orbit. Each panel depicts a single orbit in the (an, bn) phase plane after removal of the
transient originating near the unstable period 4 orbit that lies inside the attracting sets depicted. (a) A stable
attracting solution composed of four invariant closed curves beyond a supercritical Neimark–Sacker bifurcation
occurring on a period 4 orbit. Parameters: gii = 1.8, σii = 1.5, θi = 0.25. (b) Decreasing θi from its value
in (a), keeping other parameters fixed, results in an intricate attracting set composed of four batwing-shaped
curves, with every fourth iterate visiting one of them. Up close, the batwing attractor reveals that each curve
is composed of many tightly packed curves typical of strange attractors. Parameters: gii = 1.8, σii = 1.5,
θi = 0.191. (c) One of two (other hidden) large invariant closed curves each resulting from the coalescence of
two smaller closed invariant curves for gii = 1.5, σii = 1.6, θi = 0.17392. (d) Decreasing σii from that in (c)
reveals a highly complex single orbit reflecting the geometry of the unstable manifolds of one of two (other
hidden) double homoclinic tangles for gii = 1.5, σii = 1.575, θi = 0.18115. Common (fixed) parameters for all
figures: gee = 1.0, gei = 1.8, gie = 3, σee = 0.8, σei = 2.1, σie = 2.915, Ie = 1.1, Ii = 1.0, σe = 0.9, σi = 1.2,
θe = 0.25.
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The linearized map for the evolution of the perturbations (ϕn, ψn) is then given by

(4.4)

(
ϕ2n+1

ψ2n+1

)
= M1

(
ϕ2n

ψ2n

)
, M1 =

⎡
⎢⎣− D1F ∗1

e
D3F ∗1

e
− D2F ∗1

e
D3F ∗1

e

− D1F ∗1
i

D3F ∗1
i

− D2F ∗1
i

D3F ∗1
i

⎤
⎥⎦

and

(4.5)

(
ϕ2n+2

ψ2n+2

)
= M2

(
ϕ2n+1

ψ2n+1

)
, M2 =

⎡
⎢⎣− D1F ∗2

e
D3F ∗2

e
− D2F ∗2

e
D3F ∗2

e

− D1F ∗2
i

D3F ∗2
i

− D2F ∗2
i

D3F ∗2
i

⎤
⎥⎦ ,

where the elements of M1 and M2 are expressed in terms of the currents Juv in Appendix B.
Composing the maps in (4.4) and (4.5), the linearized map for the perturbations associated

with the even periodic points of the period 2 orbit is(
ϕ2n+2

ψ2n+2

)
= M◦

(
ϕ2n

ψ2n

)
, M◦ = M2M1.

Odd iterates satisfy the same map with M◦ interchanged with M ′◦ = M1M2, and the eigen-
values of M1M2 are the same as those of M2M1.

With respect to the composition map, each of the periodic points is a fixed point, the
linear stability of which is determined by the eigenvalues of the linearization of the composition
matrixM◦. In particular, we expect a pair of eigenvalues λ1,2 = −1 in the vicinity of the region
of parameter space investigated in Figures 13(d) and 13(c), corresponding to a 1:2 resonance
bifurcation occurring on each of the periodic points. The conditions for a double eigenvalue
λ1,2 = −1 of M◦ can be expressed as

(4.6) tr(M◦) = −2, det(M◦) = 1.

Since we do not have analytical expressions for the period 2 orbit, we determine it by solving
(4.3) numerically and, subsequently, calculate its eigenvalues. Therefore, finding a codimen-
sion 2 point where M◦ has a double eigenvalue λ1,2 = −1 requires solving the system of six
nonlinear equations (4.3) and (4.6) for six unknowns. Four unknowns constitute the peri-
odic orbit, and any two others serve as bifurcation parameters, with all other parameters set
a priori. Using the parameter values listed in the captions of Figures 13(c) and 13(d) as the
starting point for the numerical solution of (4.3)–(4.6), the codimension 2 point was calculated
as (σii, θi) ≈ (1.60477, 0.17215) in the (σii, θi) plane with other parameters fixed at gee = 1.0,
gei = 1.8, gie = 3, gii = 1.5, σee = 0.8, σei = 2.1, σie = 2.915, Ie = 1.1, Ii = 1.0, σe = 0.9,
σi = 1.2, θe = 0.25. This codimension 2 point can be continued as an organizing center for
nontrivial dynamics in this region of parameter space.

Numerical results near the codimension 2 point. In the vicinity of the codimension 2
point in the (σii, θi) plane, the behavior of the E-I map strongly reflects the results from
bifurcation theory on the 1:2 resonance. Taking the codimension 2 point (σii, θi) ≈ (1.60477,
0.17215) as the origin of a local coordinate system in the (σii, θi) plane, we consider region
S = [1.575, 1.60477] × [0.172, 0.5] in quadrant 2.
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Figure 14. (a) Snapshot from a movie of the E-I map composed of 2850 different phase portraits for θi
decreasing from 0.5 to 0.18 and gii = 1.5, σii = 1.5775, with other parameters listed in Figure 13. Orbits (up
to 100,000 iterates) from two initial conditions are shown, with transients (orange/light blue) and long-term
behavior (red/purple, with purple shown only if the two overlap). The bifurcation sequence contains (1) the
initial flip bifurcation from the fixed point to the period 2 orbit, which subsequently undergoes the 1:2 resonance
(as follows); (2) the supercritical flip bifurcation to the period 4 orbit; (3) the supercritical Neimark–Sacker
bifurcation of the period 4 orbit, producing four invariant circles with subsequent weak resonance bifurcations;
(4) the homoclinic bifurcation which generates the pair of double homoclinic tangles; and (5) the analogue of
the saddle-node bifurcation of limit cycles. Beyond this, the region becomes unstable, and orbits approach the
seahorse attractor. (b) Animation of the iterates of an orbit in the presence of the homoclinic tangles (only one
shown), demonstrating how the set with σii = 1.575 in Figure 16 is generated. Dark blue dots represent more
advanced iterates. Click on the images above to see the accompanying movie files ( 78009 01.avi [48.3MB] and
78009 02.avi [6.9MB]).

Figure 14(a) is an animated sequence of phase portraits for the case σii = 1.5775 capturing
the characteristic bifurcations (which are listed in the caption) in this region as θi is decreased
from θi = 0.5, where a stable fixed point exists, down below the point θ ≈ 0.1805, at which
point the region has become unstable and trajectories flow out to the ambient region where the
seahorse attractor lies. For sufficiently close initial conditions, orbits approaching the stable
attracting sets of the 1:2 resonance were always single-valued and well-defined. However, for
σii < 1.575 the seahorse attractor progressively encroaches on the region.

Near the codimension 2 point, i.e., for σii ∈ [1.59, 1.6], the orbits resemble those of the
approximating system, generally producing four invariant circles, a pair of double homoclinic
loops (one shown in Figure 15(d)), and a pair of large invariant circles (one shown in Figure
13(c)). Decreasing σii to move the system away from the codimension 2 point, the following
were observed: (1) Weak resonances occur more commonly between the Neimark–Sacker and
homoclinic bifurcations. Weak resonances bifurcate on the invariant circle, but they also may
bifurcate adjacent to, and ultimately collide with, the invariant circle. In the latter case,
prior to collision, the two cycles (one of spirals, the other of saddles) do not yet form a closed
invariant curve, with the stable manifolds of the saddles separating orbits that approach either
the invariant circles or the cycles of spirals. Higher order periodic orbits form and, at times,
give way to complex sets which appear to be strange attractors. (2) Near the initial homoclinic
tangency the attracting sets are heavily influenced by the undulations of the unstable manifold

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/78009_01.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/78009_02.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/78009_01.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/78009_02.avi
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(a) σii = 1.575. (b) σii = 1.5775. (c) σii = 1.58. (d) σii = 1.59.

Figure 15. A single orbit in the (an, bn) phase plane of the E-I map for parameters in the interior of the
wedge of existence of the homoclinic tangle which lies obliquely in the (σii, θi) plane. As σii is decreased from
the codimension 2 point, θi must be tuned (increased) accordingly. Computed from the linearization about the
period 2 orbit, the codimension 2 point occurs at σii ≈ 1.60477, θi ≈ 0.17215. Though not visible in plot (d)
for σii = 1.59, the wild oscillations are nonetheless present on a very small scale in the vicinity of the saddle.
Other parameters listed in Figure 13.

of the saddles (period 2 orbit); Figure 13(b) shows a more extreme version of this in the batwing
attractor. Moving away from the codimension 2 point, orbits become increasingly intricate
and folded near the homoclinic tangency and in the presence of the homoclinic tangle, as
shown in Figure 15. Figure 16 depicts an intricate single orbit in the (an, bn) phase plane
seen at different levels of magnification for θi = 1.575. (3) The analogue of the saddle-node
bifurcation of limit cycles gives rise to weak resonances and increasingly intricate dynamics
as well. A full circle of the bifurcation diagram can be performed by continuing along a curve
about the codimension 2 point in the (σii, θi) phase plane. Although there are no stable
attracting sets associated with the 1:2 resonance until the Hopf bifurcation occurs, plotting
trajectories for different initial conditions reveals behavior qualitatively similar to regions V
and VI in Figure 10; i.e., it is possible to detect a saddle and two unstable spirals that undergo
a symmetric flip bifurcation as well as the subcritical Neimark–Sacker bifurcation that defines
the transition between regions VI and I.

Beyond the local structure of the 1:2 resonance. In the vicinity of the codimension 2
point, a large strange attractor appears which is separated from the attracting sets of the 1:2
resonance by the two unstable large invariant closed curves (see Figure 10). The seahorse
attractor, formed from a multitude of Hénon-like curves, emerges from the vicinity of a large
periodic orbit surrounding the two unstable closed curves (1:2 resonance). Approaching the
seahorse attractor, the equation for bn+1 in (4.2) can have either one or three solutions. By
choosing only one solution on each iteration, the orbit in the phase plane typically traces out a
subset of the seahorse attractor with obvious parts of the attractor missing. The attracting set
is quite intricate, and a complicated set of instructions was necessary to bias which of the three
solutions were chosen to ensure that the missing parts of the attractor would be visited more of-
ten. Although multivalued solutions are irrelevant for a single band of synchronous oscillations,
the seahorse attractor is nonetheless compelling in its own right. Figure 17 depicts a sequence
of four stages of the seahorse attractor for the case σii = 1.5775 and for θi < 0.18, where the
movie ends (see Figure 14(a)). The two oval-shaped regions contain the unstable period 2 and
period 4 orbits, and the unstable fixed point lies in the center of the stem connecting them.
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(a) (b)

(c) (d)

Figure 16. A single orbit for gii = 1.5, σii = 1.575, θi = 0.18115, with the homoclinic tangle present.
Panels (b)–(d) reflect different levels of zoom of the orbit in panel (a). (See movie in Figure 14(a) for an
animation of the orbit.) Other parameters are as listed in the caption of Figure 13. (High resolution images
zoom 1000%.)

5. Discussion. This paper has concentrated on a particular case of stimulus-evoked, syn-
chronous oscillations in two different spatially extended conductance-based neuronal network
models that are driven by a time-independent, spatially localized excitatory current input.
Ordered spatially along a one-dimensional continuum, the neurons in the neuronal medium
are coupled via distance-dependent, homogeneous synaptic coupling that monotonically de-
cays with the distance between pairs of cells. In both a purely inhibitory network and in
an excitatory-inhibitory network with fast excitatory synapses, we demonstrated that, in the
presence of a superthreshold current input, sufficiently strong synaptic inhibition is capable
of generating a regular pattern of nearly synchronous action potentials occurring in a single
continuous band of cells in each population, and the cycle-by-cycle evolution of the width
of the band can exhibit behavior qualitatively similar to the dynamics of low-dimensional
discrete maps. Subsequently, we derived heuristic one- and two-dimensional, implicit discrete
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(a) θi = 0.178. (b) θi = 0.175.

(c) θi = 0.171. (d) θi = 0.166.

Figure 17. The seahorse attractor for σii = 1.5775, with other parameters as in Figure 13(d). Each plot
contains the orbits in the (an, bn) plane of 100 closely spaced initial conditions, iterated 1 million times in
parallel. The domain is [0, 1]× [0, 3.5]. (High resolution images zoom 1000%.)

maps that describe the cycle-by-cycle evolution of the width of the band of synchronous action
potentials based upon (i) the current formulation of the conductance-based models and the
exponential decay of synaptic transmission, (ii) the approximately periodic pattern of the os-
cillations, and (iii) the thresholding associated with action potential generation. Solutions of
the discrete maps, when they existed, typically were single-valued on all iterates (though there
were some exceptions). In some cases, various initial conditions failed to generate a solution
or generated only a finite number of iterates, whereas other initial conditions were capable of
being iterated indefinitely. This might be related to the observation in the conductance-based
models that, in some cases, the initial or early stages of the transients did not always conform
to the assumptions in the discrete maps.

We analyzed the bifurcation structure of the implicit discrete maps using linear stability
analysis and compared it qualitatively with the simulations of the conductance-based mod-
els. Given the relatively fewer parameters in the inhibitory map, the comparison was more
comprehensive, and we found that the bifurcation structures of the map and the conductance-
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based model share strong similarities. Although the boundaries of the band of oscillations
were assumed to evolve symmetrically about the input, we explored a two-dimensional map
in which the boundaries are allowed to evolve independently. Linear stability analysis in this
case indicates that stability of the fixed point is governed by the stability of symmetric per-
turbations, and the stability conditions are equivalent to the symmetric boundary case. Fast
excitatory synaptic decay in the E-I conductance-based model similarly tended to result in
dynamics approaching stable fixed points or period 2 orbits, which are typical solutions of
the E-I map. Extending the decay time constant of synaptic excitation to be on the order of
that of inhibition produced a wider range of the dynamics found in two-dimensional discrete
maps, and a pair of related regions, in both the E-I map and E-I conductance-based model,
exhibited Neimark–Sacker bifurcations with resonances in a transition zone leading to more
complex oscillatory patterns. In fact, it was through explorations of parameter space in the
E-I map that we identified this region in the conductance-based model. It would be interesting
to explore the intricate dynamics common in this region of the conductance-based model to
determine what other types of bifurcations occur and how they compare with the E-I map.
However, high spatial and temporal resolution is necessary to resolve the dynamics accurately
enough.

A number of improvements can be made to the heuristic maps. It would be interesting to
try to determine a self-consistent relationship for the dependence of the thresholds θi and θe
on other parameters of the map, given that the frequency of oscillation in the conductance-
based model is an emergent property of the system. The parameters guv and θu also in
theory could additionally depend on the cycle widths an, bn to correct for the difference in
cycle length. Inhibition was seen to have both an immediate effect and a long-term effect,
which we incorporated implicitly as “early-cycle” inhibition in section 3.3. Synaptic excitation
also has an early-cycle effect, as it rapidly stimulates and recruits more cells to fire in both
populations, thereby widening the bands of spikes before the wave of inhibition precludes
further firing. It would be interesting to explore other ways to formulate the map to capture
the effects of early-cycle and late-cycle synaptic transmission in a manner that is consistent
with the bifurcations exhibited by the conductance-based model; synaptic delays could even
be introduced. One could further incorporate additional ionic currents or processes that affect
the system on a longer time scale, for example, by introducing additional terms in the map
that are analogous to the synaptic terms with an associated dynamic variable. Alternatively,
the thresholds θi and θe could be taken to evolve dynamically on a longer time scale to reflect
changes in the excitability of the populations. Finally, it would be interesting to extend the
formulation of the map to describe more complex spatial patterns. For example, one could
describe a solution which alternates between a single band and a pair of bands separated
by a quiescent gap. Alternate iterates could track the different number of threshold points
that define the alternating pattern. While it cannot be assumed that the entire course of a
transient would follow such a prescription, it would be valid locally and would therefore be
useful for determining the stability of such solutions.

As mentioned previously, in recordings of various cortical brain regions in vivo and via
in vitro slice preparations, it is well known that excitatory neurons exhibit sparse irregular
firing during gamma oscillations (i.e., cycle-skipping) in the range 4–12 spikes per second [28],
which is in contrast to the periodic firing at gamma frequencies occurring herein. Although
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it is possible to treat each point in the map or conductance-based model as an effective
representation of a local population of neurons which as a whole is, in fact, seen to fire
on each cycle in real brain tissue, the natural next step is to examine the case of sparse
firing in the conductance-based models and its comparison with the discrete maps. In this
first step in forming a concrete connection between the discrete maps and the conductance-
based model, we have restricted simulations of the conductance-based model to the case of
strong inhibition with regular firing so that the spatiotemporal patterns were clean and clearly
relatable to the discrete map. The spatiotemporal patterns become more irregular in a gradual
way as inhibition is weakened. Sparse firing generated by heterogeneity and/or noise in the
neurons could also lead to irregularities in the patterns, requiring a thorough investigation and
careful comparison with the solutions of the discrete maps. In this case, the synaptic strength
parameters guv in the discrete map, for example, would be reinterpreted to reflect the current
generated by the fraction of neurons firing on each cycle, whereas in our treatment they were
related to the conductance-based model parameter gc

uv, assuming that a continuous band of
neurons fires on each cycle of the gamma oscillation. Similarly, the threshold currents θu would
also need to be reinterpreted, since a neuron within the band of synchronous oscillations is
assumed to fire on only a fraction of the gamma cycles.

Finally, we mention a possible relationship to the spatiotemporal dynamics described in
[23], in which a spatially extended firing-rate neuronal network model was analyzed and com-
pared with synchronous spiking in a conductance-based model. Their network is contrasted
with ours in that it is defined on a one-dimensional ring network (periodic boundary condi-
tions) with a spatially homogeneous current input and a Mexican hat synaptic weight function,
and it also incorporates delays in the synaptic interactions. The oscillatory bump solutions in
the firing-rate model relate to the fixed width/fixed point solutions in our treatment. How-
ever, in their spiking model, they find a localized oscillatory bump whose boundaries wander
from cycle to cycle; though this could reflect an instability due to a bifurcation of the the fixed
width solution, it could also be due to the noise that is present in the input. Other solutions
deemed aperiodic patterns in the firing-rate model reveal oscillations in activity that alternate
between two spatial bumps whose boundaries evolve in an aperiodic or quasi-periodic fashion.
These patterns might be related to the weak resonances and periodic-like chaotic solutions
described in the simulations of the E-I map.

Appendix A: Parameters for conductance-based models [8].

V syn
e = 0 mV, αm(v) = 0.32(54 + v)/(1 − exp(−(v + 54)/4)),

V syn

i = −75 mV, βm(v) = 0.28(v + 27)/(exp((v + 27)/5) − 1),

VNa = +50 mV, αh(v) = 0.128 exp(−(50 + v)/18),

VK = −100 mV, βh(v) = 4/(1 + exp(−(v + 27)/5)),

VL = −67 mV, αn(v) = 0.032(v + 52)/(1 − exp(−(v + 52)/5)),

gNa = 100 mS/cm2, βn(v) = 0.5 exp(−(57 + v)/40),

gK = 80 mS/cm2, κ(v) = 1/(1 + exp(−(v + 50))),

gL = 0.2 mS/cm2, q∞(v) = αq(v)/(αq(v) + βq(v)), p ∈ {m,n, h},
C = 1 μF/cm2, τq(v) = 1/(αq(v) + βq(v)), q ∈ {m,n, h},
αi = 12 ms−1, βi = 0.1 ms−1, αe = 1.1 ms−1, βe = 0.5 or 0.123 ms−1.
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Appendix B: Linearization about the period 2 orbit in the E-I map. Expressions for
the linearization about the two periodic points (ā1, b̄1) and (ā2, b̄2):

D1F
∗1
e = D1Fe(ā1, b̄1, ā2) = +D2Jee(ā2, ā1),

D2F
∗1
e = D2Fe(ā1, b̄1, ā2) = −D2Jei(ā2, b̄1),

D3F
∗1
e = D3Fe(ā1, b̄1, ā2) = +D1Jee(ā2, ā1)−D1Jei(ā2, b̄1) + Ie(ā2),

D1F
∗1
i = D1Fi(ā1, b̄1, b̄2) = +D2Jie(b̄2, ā1),

D2F
∗1
i = D2Fi(ā1, b̄1, b̄2) = −D2Jii(b̄2, b̄1),

D3F
∗1
i = D3Fi(ā1, b̄1, b̄2) = +D1Jie(b̄2, ā1)−D1Jii(b̄2, b̄1) + Ii(b̄2),

D1F
∗2
e = D1Fe(ā2, b̄2, ā1) = +D2Jee(ā1, ā2),

D2F
∗2
e = D2Fe(ā2, b̄2, ā1) = −D2Jei(ā1, b̄2),

D3F
∗2
e = D3Fe(ā2, b̄2, ā1) = +D1Jee(ā1, ā2)−D1Jei(ā1, b̄2) + Ie(ā1),

D1F
∗2
i = D1Fi(ā2, b̄2, b̄1) = +D2Jie(b̄1, ā2),

D2F
∗2
i = D2Fi(ā2, b̄2, b̄1) = −D2Jii(b̄1, b̄2),

D3F
∗2
i = D3Fi(ā2, b̄2, b̄1) = +D1Jie(b̄1, ā2)−D1Jii(b̄1, b̄2) + Ii(b̄1).
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