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Breathers in Two-Dimensional Neural Media
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In this Letter we show how nontrivial forms of spatially localized oscillations or breathers can occur in
two-dimensional excitable neural media with short-range excitation and long-range inhibition. The basic
dynamical mechanism involves a Hopf bifurcation of a stationary pulse solution in the presence of a
spatially localized input. Such an input could arise from external stimuli or reflect changes in the
excitability of local populations of neurons as a precursor for epileptiform activity. The resulting
dynamical instability breaks the underlying radial symmetry of the stationary pulse, leading to the
formation of a nonradially symmetric breather. The number of breathing lobes is consistent with the order
of the dominant unstable Fourier mode associated with perturbations of the stationary pulse boundary
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Analysis of the dynamical mechanisms underlying spa-
tially structured activity states in neural tissue is crucially
important for understanding a wide range of neurobiolog-
ical phenomena, both naturally occurring and pathological.
For example, neurological disorders such as epilepsy are
characterized by spatially localized oscillations and waves
propagating across the surface of the brain [1], while
traveling waves can be induced in vitro by electrically
stimulating disinhibited cortical slices [2,3]. Spatially co-
herent activity states are also prevalent during the normal
functioning of the brain, encoding local properties of visual
stimuli [4], representing head direction [5], and maintain-
ing persistent activity states in short-term working memory
[6]. One of the major challenges in neurobiology is under-
standing the relationship between spatially structured ac-
tivity states and the underlying neural circuitry that
supports them. This has led to considerable recent interest
in studying reduced neural field models [7–10], in which
the large-scale dynamics of populations of neurons is
described in terms of a nonlinear integrodifferential equa-
tion whose associated integral kernel represents the spatial
distribution of neuronal synaptic connections. Such models
can be derived from more detailed biophysical models
using ensemble averaging [7], and have been used to
make a number of experimentally verified predictions
regarding wave propagation in disinhibited cortical slices
[2,3,9].

In this Letter we show how nontrivial forms of spatially
localized oscillations or breathers can occur in neural field
models in the presence of spatially localized stationary
inputs. Such inputs could arise from external stimuli or
reflect changes in the excitability of local populations of
neurons as a precursor for epileptiform activity. Previously,
we have shown that breathers can arise in a purely excita-
tory network (with a positive integral kernel) through a
Hopf bifurcation of a stationary pulse centered about the
input [11,12]. An analogous mechanism occurs in non-
linear partial differential equation (PDE) models of diffu-
sively coupled excitable media, which is consistent with
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the observation that an excitatory neural network can be
reduced to an equivalent PDE model for certain choices of
the interaction kernel [13]. Here we investigate the occur-
rence of breathers in a two-dimensional network with
excitatory and inhibitory interactions, both of which are
present in the intact cortex. We show that nonlocal inhibi-
tion leads to a new form of symmetry breaking dynamical
instability, whereby a two-dimensional radially symmetric
stationary pulse bifurcates to a nonradially symmetric
breather with an integral number of lobes. We also estab-
lish using linear stability analysis that the number of
breathing lobes corresponds to the dominant unstable
Fourier mode associated with perturbations of the station-
ary pulse boundary.

We proceed by considering neural field equations of the
form [9]
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where

�wf�u���r; t� �
Z
R2
w�jr� r0j�f�u�r0; t��dr0

where r � �r; �� and r0 � �r0; �0�. The neural field u�r; t�
represents the local activity of a population of neurons at
position r, while %�r; t� represents a local negative feed-
back mechanism, such as spike-rate adaptation, with �, �
determining the relative rate and strength of feedback. � is
a synaptic or membrane time constant, I is an external
input, and f denotes an output firing rate function. The
homogeneous weight distribution w�jr� r0j� defines the
strength of the synaptic connections between neurons at r
and r0. Two common forms of the weight function are
excitatory, i.e., a positive, monotonically decreasing func-
tion, or Mexican hat, i.e., short-range excitation (positive)
and long-range inhibition (negative), often represented by
a difference of Gaussian or exponential functions. Let us
consider the existence and stability of a radially symmetric,
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stationary pulse of Eq. (1) for a homogeneous Mexican hat
weight w. We proceed by expanding our previous analysis
of excitatory networks [12]. As a simplification we take
f�u� � H�u� �� where H denotes the Heaviside function
and � a threshold, and for concreteness we consider radi-
ally symmetric Gaussian inputs I�r� � Ie�r

2=�2
. We fix

the units of time by setting � � 1 (typically � � 10 ms).
From symmetry arguments we expect the existence of a
radially symmetric, stationary pulse �u�r; t�; %�r; t�� �
�U�r�; Q�r��, satisfying Q � U, with U�a� � �, � <
U�r�<1 for r 2 �0; a�, U�r�< � for r 2 �a;1�. The
profile of the pulse is

�1� ��U�r� � M�a; r� � I�r�

where

M�a; r� �
Z 2�

0

Z a

0
w�jr� r0j�r0dr0d�: (2)

For a given weight distribution w, we can determine pulse
existence curves by imposing the self-consistency (thresh-
old) condition U�a� � �, which implies that

�1� ��� � M�a; a� � I�a�; (3)

This defines the nonlinear relationship between the input
strength I and the pulse width a. In Fig. 1(b) we plot
existence curves for the Mexican hat weight function

w�r� �
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�2
e
wK�r=�e� �

ai
�2
i

wK�r=�i� (4)

where wK�r� � �2=3���K0�r� � K0�2r�� and K� is the
modified Bessel function of the second kind; see
Fig. 1(a). This choice allows M�a; r� to be expressed as a
finite sum of modified Bessel functions, and the coefficient
2=3� fits wK�r� to the exponential function e�r=�2�� [12].

Linear stability of the stationary pulse is determined
by the evolution of small time-dependent perturba-
tions u�r; t� � U�r� � �’�r; t� and %�r; t� � Q�r� � � �r; t�
which, to first order in �’, � , satisfy the linearized system
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FIG. 1. (a) Plot of the Mexican hat weight function w for ae �
1, �e � 1, ai � 1:4, �i � 1:8. (b) Corresponding pulse exis-
tence curves with black (gray) indicating stability (instability) of
the stationary pulse solution. The labels S and H indicate saddle-
node and Hopf bifurcation points, respectively. Other parameters
are � � 0:15, � � 2:25, � � 0:03, and � � 5:2:
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We investigate saddle-node and Hopf bifurcations thereof,
by relating the eigenvalues to the gradient of the input I .
Taking �’�r; t� � ’�r�e	t and � �r; t� �  �r�e	t and using
the identity H0�U�r� � �� � 
�r� a�=jU0�a�j leads to the
spectral problem in 	

�’�r� �
Z 2�

0
w�jr� a0j�’�a; �0�d�0 (6)

where a0 � �a; �0�, and � relates to 	 by

	� 1�
��
	� �

�
�

jU0�a�j
:

The essential spectrum, associated with the set of functions
’ for which the integral in (6) vanishes, is always negative
and does not incur instability. Stability thus depends upon
the point spectrum, which is associated with functions ’
satisfying

�’�a; �� � a
Z 2�

0
w�2a sin��’�a; ����d�: (7)

By requirement of periodicity, solutions of this equation
are exponential functions ein�, where n 2 Z, with corre-
sponding spatial eigenvalues

�n�a� � 2a
Z �

0
w�2a sin�� cos�2n��d�;

which are real and depend on the pulse width a. The
eigenvalues associated with the linearization (5) are then

		n �
1

2

�
��n	

��������������������������������������������������
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n� 4��1����1��n�

q �
; n
 0;

where

�n � 1� �� �n�1� ��; �n �
�n�a�

�1� ��jU0�a�j
:

Stability of the stationary pulse is determined by the gra-
dient of the current input D�a� � jI0�a�j according to

� > �: D�a�>�n�a� �Mr�a� � DSN�a�; (8)

� < �: D�a�>
�
1� �
1� �

�
�n�a� �Mr�a� � Dn

c�a� (9)

where Mr�a� � �@M�a; r�=@rjr�a. The modified Bessel
weight wK allows Mr�a� and �n�a�, for all n, to be ex-
pressed as finite sums of modified Bessel functions. Points
of equality in (8) are associated with saddle-node bifurca-
tions, while that of (9) correspond to Hopf bifurcations of
the stationary pulse. Note, conditions (8) and (9) are valid
when Mr�a�> 0, which is always true for an excitatory
weight and is valid in large regions of parameter space for a
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Mexican hat. Otherwise the absolute value jU0�a�j must be
treated more carefully. Since the input strength I and pulse
width a are related by (3), we eliminate the explicit de-
pendence of D�a� on I for a Gaussian input by

D�a� �
2a

�2 I�a� �
2a

�2 ���1� �� �M�a; a��: (10)

Suppose that �> �. For sufficiently large pulse width a
the stationary bump is always stable. However, as a de-
creases, a Hopf bifurcation occurs when the condition
D�a�>Dn

c�a� for all n 
 0 fails to hold for some critical
mode n0; see Fig. 2. The spatial extent of the current input
� controls the steepness of D�a� [see (10)], thereby deter-
mining which mode n0 destabilizes in the Hopf bifurcation.
Importantly, the relative values of Dn

c�a� preserve the
ordering of linear dominance of each Fourier mode, indi-
cating which mode should dominate the linear growth. Our
analysis thus establishes that a Mexican hat network can
undergo a Hopf bifurcation corresponding to excitation of
a nonzero Fourier mode (n > 0). As we confirm numeri-
cally below, this leads to the formation of nonradially
symmetric breathers. Such behavior should be contrasted
with a purely excitatory network, for which the Hopf
bifurcation is always associated with excitation of the
n � 0 mode, thus generating radially symmetric breathers
[12]. The latter result follows from Eq. (9) and the fact that
for positive w�r�,

�n�a� � 2a
Z �

0
w�2a sin��j cos�2n��jd�

� 2a
Z �

0
w�2a sin��d� � �0�a�:

The basic structure of the emerging breathers can be
predicted by noting that a small perturbation ’ of the
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FIG. 2 (color online). Plot of the the functions D�a� (dark
curves) and Dn

c�a� (light curves) for different values of n with
� � 5:2; see Fig. 1 for other parameters. The stationary pulse is
stable if D�a�>Dn

c�a� for all n, with a Hopf bifurcation occur-
ring at the first value of a for which this is no longer true. The
largest Dn

c�a� determines the mode that dominates the instability
for pulse width a; e.g., a value of I � 0:53 corresponds to a �
2, in which case the n � 1 mode should dominate the instability.
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stationary pulse U results in a small perturbation � �
�
r���; �� of the threshold boundary a � �a; ��. The cor-
responding threshold condition is

� � u�a� �� � U�a� 
r����� ’�a� ��

� U�a� �U0�a�
r��� � ’�a; �� �O�j�j
2�:

Using that U�a� � �, we find 
r��� �
’�a;��
jU0�a�j �O�j�j

2�.
Since ’ may be decomposed into Fourier modes in the
linear regime, we illustrate in Fig. 3 the perturbative effect
of each mode on the threshold boundary. Furthermore, if
one mode dominates the linear growth of an instability, we
expect the boundary of the breather to develop similar
structure. We note that nonradially symmetric instabilities
have also been found in a study of homogenous networks,
where concentric ring solutions can destabilize into mul-
tiple bump solutions, the number of which corresponds to
the Fourier mode dominating the instability [14].

Numerical simulations were performed using a fourth-
order Runge-Kutta scheme, with a fast-Fourier transform
to handle the integral on a rectangular grid and quadrature
on an irregular polar grid. The polar grid consists of con-
centric rings, with each ring increasing the grid point count
by one more than the neighboring inner ring. The ring
spacing is chosen so that each area element contributes
equal weight to the integral. Selecting I so that the system
is positioned beyond the bifurcation point with mode n
dominating the instability, the system is evolved from a
small random perturbation of the corresponding exact
(unstable) stationary pulse solution. Our simulations reveal
many types of spatially localized, periodic solutions
that are generated by the Mexican hat network. In all cases
the periodic solution exhibits a lobed structure, the number
of which corresponds to the dominant Fourier mode.
Breathers take the general form of emerging and retracting
lobes, which often rotate about the input in mirror symme-
try, as shown in Fig. 4. On the rectangular grid it is possible
to generate breathers for n � 1, 2, 4, 8, which exhibit
strictly radially expanding or contracting lobes, that do
not rotate about the input, as shown in Fig. 5(a). It is likely
that such breathers are observed because they are com-
mensurate with the grid. Interestingly, when the initial
transient is sufficiently irregular, or if a sufficiently large
initial perturbation with n-fold symmetry is applied, spa-
tially localized rotating solutions (or rotors) emerge; see
n = 0 n = 1 n = 2 n = 3

FIG. 3 (color online). Small perturbations in terms of Fourier
modes (light curves) associated with general perturbations of the
threshold boundary of a stationary pulse (dark curves).
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FIG. 5 (color online). (a) Strictly expanding or contracting
fourfold breather on a rectangular grid. (b) Threefold rotor.

FIG. 4 (color online). Breathers for the Mexican hat weight
function. Light colors denote suprathreshold values, with the
number of lobes corresponding to the dominating unstable
Fourier mode.
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Fig. 5(b). We also find that even far from the bifurcation
point, the frequency of oscillation of a breather is approxi-
mately equal to the critical Hopf frequency, which is given
by !H �

�������������������
"��� "�

p
. For the parameter values used in our

numerics (� � 2:25, � � 0:03) we have ! 
 0:26��1 �
26 Hz assuming that � � 10 ms.

One of the predictions of our analysis is that breathers
may be observed in tangential slices (an effective two-
dimensional medium) when a persistent localized input is
applied. In the case of disinhibited cortical slices, a radially
symmetric input should produce roughly radially symmet-
ric breathers of activity, whereas, if inhibitory connections
are maintained, nonradially symmetric breathers should be
observed. There are a number of experimental challenges
to overcome, however, including the destruction of neurons
due to persistent current input and the control of the
structure of the input. The use of electric fields by Richard-
son et al. [2] may be one feasible approach. Experimental
verification of breathers may reveal that some form of slow,
negative feedback is playing a strong role in the dynamics
of neural populations, lending support for the use of rate-
based neural network models. Since breathers continue to
exist in the presence of inhibition, our work also identifies
20810
a mechanism for the generation of stimulus-induced co-
herent oscillations, which have been suggested to play an
important role in the processing of sensory stimuli [15].
From a more general dynamical systems perspective, we
have shown how complex spatially localized oscillations
can arise in two-dimensional excitable media with non-
local Mexican hat interactions. This then raises the inter-
esting question as to whether or not analogous dynamical
instabilities can occur in diffusively coupled excitable
media. Indeed, it has recently been shown that a Mexican
hat network with a dynamically evolving firing threshold
exhibits a range of dynamical phenomena also found in
three-component reaction-diffusion systems [16].
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