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Spatially coherent oscillations in neural fields with inhibition and adaptation.
II. Two-dimensional domains
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We study the bifurcation of stationary activity bumps to localized, spatially coherent oscillations in a family
of elementary neural field models involving nonlocal synaptic excitation and inhibition with Heaviside firing
rate nonlinearity and local linear adaption, both with and without a localized input inhomogeneity, on two-
dimensional spatial domain R2, including two cases of interacting pairs of neural fields. [We treat the same
neural fields on the one-dimensional spatial domain (−∞, ∞) separately.] A general framework is constructed
to analyze stationary bump solutions in a neural field model containing N neural fields with M linear gating
variables that modulate different neural fields. A main focus is to demonstrate how underlying symmetries in
this family of equations give rise to a related set of spatially coherent time-periodic solutions that bifurcate via
Hopf bifurcation with respect to different spatial eigenmodes, each with different spatial structures being selected
as a result of the relative balance of synaptic inhibition to excitation. A Hopf bifurcation with O(2) symmetry
for radially symmetric stationary bumps is relevant for bifurcation with respect to higher-order spatial modes
in these neural fields due to the geometric multiplicity of these eigenvalues resulting from the symmetries of
the synaptic connections and input inhomogeneity. Hopf bifurcation of stationary bumps in these neural fields
thereby produce either breather (standing wave) type of solutions with Dn dihedral symmetry or rotor (rotating
wave) type of solutions with Zn rotational symmetry when a stationary bump destabilizes in a supercritical Hopf
bifurcation. Interacting pairs of symmetric neural fields that support bumps lead to different types of in-phase and
antiphase breather and rotor solutions when stationary bumps destabilize in a Hopf bifurcation with respect to
different eigenmodes. Stability of ring solutions is also studied and Hopf bifurcation is found to lead to different
ring breathers and ring rotors with analogous n-fold symmetry. Secondary and subcritical bifurcations also occur
in these neural fields on two-dimensional domains which can produce a diverse set of spatiotemporal patterns,
particularly in the presence of an input inhomogeneity; however, this is beyond the scope of this study and will
be treated in more depth separately.

DOI: 10.1103/kms3-vfgp

I. INTRODUCTION

Neural field equations are nonlocal partial integrodiffer-
ential equations that describe the average activity in large
populations of neurons on spatial domains, or domains in
feature space, and are capable of a diverse range of spa-
tiotemporal behavior on two-dimensional domains, including
stationary and traveling bumps, breathers, traveling waves,
stationary ring solutions, ring waves, target patterns, spiral
waves, and other complex patterns [1–45]. A detailed review
of stationary localized activity bumps and their existence,
stability and applications on two-dimensional domains can be
found in Ref. [35]. Inherent in the improvement of modeling
equations for physical phenomena, such as spatiotemporal
activity patterns in the brain [46–66] is a deeper understanding
of the basic underlying spatiotemporal dynamics supported
by these neural field equations and its relationship to model
parameters and structure.

In addition to local field potential recordings and multielec-
trode arrays, the use of voltage-sensitive dyes and improved
optical imaging techniques has been a primary approach to
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visualizing spatiotemporal activity in populations of neurons
both in in vitro slice preparations of brain tissue under various
pharmacological conditions [46–49,57,62,63] as well as in
vivo experiments in both anesthetized [50,52,53,56,62,66–73]
and awake behaving animals [51,71,72,74–77].

In in vitro cortical slice preparations, different spa-
tiotemporal patterns of activity are observed under different
pharmacological conditions including plane waves and out-
ward propagating ring waves [46,48,49,51,60], collision and
annihilation of plane waves [46], spiral waves [48,49], and
evoked localized stationary activity in Refs. [47,61,63,76]
which may be transient.

Spatiotemporal patterns in in vivo experimental
preparations were also observed, including plane waves
[53,54,59,62,64,68,73], periodic waves [76], circular waves
[68,69,73], ring waves [68,73], spiral waves [68,72], and
evoked localized stationary activity [50,62,64,66,67,70,78],
often from sensory input, e.g., in somatosensory cortices S1
and S2 [67]. Additionally, evidence was found in Ref. [79]
that was shown to be consistent with networks in prefrontal
cortex supporting localized bumps of persistent neuronal
activity during in vivo spatial working memory tasks in awake
behaving animals during which the location of a stimulus is
maintained in working memory as persistent activity.
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In this paper we investigate the response in the activity
of various networks of neuronal populations that support sta-
tionary localized bump and breather type solutions, both in
the presence of a sustained, localized input inhomogeneity as
well as in the input-free case. The localized input inhomo-
geneity could represent a diverse set of phenomena, including
a sensory input to the layer, input from another brain region
to the layer, a locally depolarized or hyperpolarized region
within the layer, an external input due to an electrode or
other external device, etc. We are interested in sustained re-
sponses of activity and whether they will be modulated by an
oscillation.

The objective of this paper is three-fold and it builds upon
and significantly extends our early work [15,20] in different
ways, including a proper characterization of Hopf bifurcation
in neural fields with O(2) symmetry. First, it compares results
for linear stability and Hopf bifurcation of stationary bumps
across a family of elementary neural fields with excitation,
inhibition, and an adaptation or negative feedback gating
variable on the two-dimensional domain R2 and includes a
generalization and framework for N neural fields with M gat-
ing variables. Second, it comprehensively classifies the spatial
structure of the eigenmodes and demonstrates its relation to
the spatiotemporal structure of the time-periodic solutions
emerging in a Hopf bifurcation and model parameters across
all models. Third, it characterizes the conditions and results
for a Hopf bifurcation with O(2) symmetry and its implication
on the types of solutions that emerge in the Hopf bifurcation
and their spatiotemporal symmetries and further verifies the
solutions via numerical simulations across the family of neu-
ral fields.

We note that investigating the behavior of time-periodic
solutions in numerical simulations of these neural fields can
be confounded by secondary bifurcations, subcritical bifurca-
tions, and coexistence of multiple stable attracting solutions
as parameters are varied, particularly in the case of an input
inhomogeneity that sustains activity far from the bifurcation
point and in subcritical bifurcations. For clarity we are pri-
marily focused on the emergent solutions in the vicinity of the
critical point in a supercritical Hopf bifurcation of a stationary
bump. We will leave the discussion of other types of periodic
solutions for another treatment, although we briefly discuss
some examples.

The family of elementary neural fields incorporates dif-
ferent forms of the fundamental types of excitatory and
inhibitory synaptic inputs as well as an adaptation gating vari-
able or negative feedback mechanism, which can model the
process of spike-rate adaptation observed in neurons in cortex
that decrease their firing rates after sustained firing. Adapta-
tion serves as a concrete case to illustrate the incorporation
of linear gating variables in the stability analysis for the gen-
eralization to more varied neural fields. It also compares two
different dynamic mechanisms, nonlocal synaptic interactions
and local negative feedback, that are capable of producing
Hopf bifurcations of bumps. Interacting neural fields may rep-
resent different populations of neurons interacting nearby or
across in a layer, between different layers, between different
brain regions, etc.

FIG. 1. Elementary neural fields on two-dimensional domains
that support bumps, formed from a mixture of excitatory (E) and
inhibitory (I) synaptic interactions with an additional adaptation (A)
variable that modulates neuronal activity. AE and AI are single neural
fields with either purely excitatory or inhibitory synaptic interaction,
whereas AA is an Amari neural field (locally excitatory, laterally
inhibitory) with an adaptation variable (A). E-I and AE-I are models
with interacting excitatory and inhibitory neural fields, whereas in
the AE-I model the excitatory neural field has an adaptation variable.
Interacting pairs of neural fields refers to coupling together two of
the same types of neural fields with choices about symmetry in
parameters.

The paper is organized as follows. In Sec. II we outline
a family of elementary neural fields depicted in Fig. 1 that
are analyzed in the paper. In Sec. III we construct a general
vectorized neural field model to analyze any configuration
of N interacting neural fields with M gating variables and
proceed to establish conditions for existence and stability of
stationary bumps, including constructing eigenfunctions in the
general case.
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In Sec. IV we discuss an O(2) symmetric Hopf bifurcation
in the case of radially symmetric synaptic weight functions
and localized input inhomogeneity. This arises, in this case,
for the eigenmodes associated with λn for n � 1 because the
ordinary conditions for a Hopf bifurcation are not met due to
the inherent symmetries of the synaptic connections and input
inhomogeneity in the neural field equations.

In Sec. V we summarize formulas for two important inte-
grals W (r, a) and �n(r, a) that the conditions for existence,
linear stability and Hopf bifurcation of stationary bumps ex-
plicitly depend on in all models. We consider two classes of
synaptic weight functions with different synaptic parameters
in the form of (i) a Gaussian weight function and (ii) the
modified Bessel weight function we introduced in Ref. [15]
to approximate the exponential weight function e−|r| and si-
multaneously obtain closed-form expressions of W (r, a) and
�n(r, a). These two classes of weight functions are used in
concrete calculations, both for numerical simulations of the
neural fields as well as numerical solutions of the analytical
conditions for existence, stability and Hopf bifurcations of a
stationary bump which are nonlinear.

In Sec. VI we apply the analysis in the vectorized case
to the family of elementary neural field models with related
symbols for direct comparison of the existence and stability
results for stationary bumps in these models and discuss the
spatiotemporal structure of the emergent time-periodic solu-
tions that arise from a Hopf bifurcation with O(2) symmetry
with respect to the different eigenmodes in the form of n-fold
breathers with Dn dihedral symmetry or n-fold rotors with Zn

rotational symmetry. We also obtain conditions that determine
which eigenmodes with different spatial structure destabilize
in a Hopf bifurcation. In particular, in the interacting pairs of
symmetric neural fields, we obtain conditions that determine
whether an in-phase or antiphase periodic oscillation will oc-
cur in the two interacting neural field layers. We show it leads
to families of synchronous breathers and rotors which could
be in-phase or antiphase. Additionally in this section we show
some examples of oscillatory solutions that occur far from the
Hopf bifurcation point.

In Sec. VII we examine existence and stability of two
examples of ring solutions in the E-I neural field, thereby
extending our analysis to the case of ring solutions. Moreover,
we use the linear stability analysis to demonstrate their desta-
bilization in a Hopf bifurcation leads either to time-periodic
n-fold ring breathers with Dn dihedral symmetry or rotors with
Zn rotational symmetry in numerical simulations of the neural
field.

II. ELEMENTARY NEURAL FIELD MODELS

The neural field models studied in this paper are ele-
mentary models that involve different network topologies
containing the two fundamental types of excitatory and
inhibitory synaptic inputs generated either by separate pop-
ulations of neurons or an effective mix in a simplified single
population of neurons. We also incorporate a local linear neg-
ative feedback mechanism in the form of an adaptation gating
variable, as a concrete example which models spike rate adap-
tation. The synaptic connectivity assumed in the analysis is
based on short range connections found in regions of the

cortex but can be generalized to other types of connectivity.
Each neural field is capable of supporting stationary bumps
that undergo Hopf bifurcation to time-oscillatory solutions.
These fundamental building blocks can be used to build more
complex neural field models supporting bumps.

In all models listed below, the synaptic weight functions
w jk (r) are assumed to be distance-dependent, radially sym-
metric functions on [0,∞). We restrict to two classes of
weight functions. We use a positive, monotonically decreas-
ing weight function w jk (r) to represent synaptic interactions
between neural fields that are purely excitatory or purely
inhibitory between populations of neurons that are either ex-
citatory or inhibitory [which is determined by a multiplicative
sign (±1)]. The second class is of a single synaptic weight
function that abstractly represents the net excitatory or in-
hibitory input at different locations; in this scenario, we will
assume a Mexican hat synaptic weight function, which is
locally excitatory (at short distances) and laterally inhibitory
(at greater distances). A Mexican hat weight function can be
constructed by taking an appropriate difference of two pos-
itive weight functions w(r) = we(r) − wi(r) with different
synaptic strengths w̄ j and space constants σ j (see Sec. V).
The firing rate nonlinearities are taken in the Heaviside limit
f (u) = H (u − θ) with threshold θ.

For concrete calculations and numerical simulations, the
synaptic weight functions w jk (r) are assumed to be either of
the form of a Gaussian or a special modified Bessel weight
function that we first introduced in Ref. [15] which permits
calculation of all necessary expressions in closed form and
approximates the exponential weight function w(r) = e−r .
The input inhomogeneity I j (r) is taken to be a Gaussian in
concrete calculations. We list explicit calculations for these
functions in Sec. V which are subsequently used in all in the
neural field models.

The synaptic connectivity is translation invariant. Thus, in
the input-free case I j (r) = 0, the neural field is translation
invariant. When I j = I j (r) is a localized, radially symmetric
Gaussian-like input inhomogeneity, centered at the origin,
translation symmetry is broken.

Of the neural fields models listed, stability with respect
to radial and angular perturbations and Hopf bifurcation of
bumps were analyzed on two-dimensional domains in the
AE/AA neural fields in Refs. [15,20]; however, the Hopf
bifurcation to time-periodic solutions is clarified here.

We define the following symbol w ∗ f [u] for a nonlinear
spatial convolution of a solution u(r, t ) over R2, where

(w jk ∗ f [u])(r, t ) =
∫
R2

w jk (‖r − r′‖) f (u(r′, t ))d2r′,

represents the total synaptic input f rom neuronal population
k at r′ = (r′, θ ′) to neuronal population j at r = (r, θ ).

A. AE, AI, and AA neural field

∂u

∂t
+ u = w ∗ f [u] − βn + I (r),

1

α

∂n

∂t
+ n = u, (1)
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where f (u) = H (u − θ) and θ is a constant threshold. The
AE neural field represents a layer of coupled excitatory (E)
neurons (u = ue) with positive coupling strength (w(x) > 0)
subject to linear adaptation (A) in the form of the local neg-
ative feedback term −βn, where n is a gating-like variable
governed by linear dynamics first introduced by Pinto and
Ermentrout [3,7]. The AI neural field is a layer of coupled in-
hibitory (I) neurons (u = ui) with negative synaptic coupling
strength (w(x) < 0). The AA neural field is an adapting (A)
form of the Amari (A) neural field where w is taken to be
of Mexican hat form, which is an abstract simplified model,
introduced by Amari [2], representing a mix of excitatory
and inhibitory synaptic input to a layer of neurons (u = u).
Though the Amari neural field is not specifically discussed
here, Hopf bifurcations of stationary bumps do occur in the
case of synaptic delays as analyzed in Ref. [36]. Moreover,
other choices of w lead to different models [16].

B. E-I neural field

∂ue

∂t
+ ue = wee ∗ fe[ue] − wei ∗ fi[ui] + Ie(r),

τ
∂ui

∂t
+ ui = wie ∗ fe[ue] − wii ∗ fi[ui] + Ii(r), (2)

where we take fe(u) = H (u − θe), fi(u) = H (u − θi ), and θe

and θi are constant thresholds. The E-I neural field is a variant
on the original Wilson-Cowan neural field [1]. We consider
the formulation with all Heaviside nonlinearities introduced
in Ref. [19]. An alternative formulation was considered in Ref.
[8]. The synaptic weight functions w jk are positive and synap-
tic currents are either excitatory or inhibitory.

C. AE-I neural field

∂ue

∂t
+ ue = wee ∗ fe[ue] − wei ∗ fi[ui] − βne + Ie,

τ
∂ui

∂t
+ ui = wie ∗ fe[ue] − wii ∗ fi[ui] + Ii,

1

α

∂ne

∂t
+ ne = ue, (3)

where we take fe(u) = H (u − θe), fi(u) = H (u − θi ), where
θe and θi are constant thresholds. The AE-I neural field is
the two population E-I neural field where the E-population is
subject to linear adaptation (A) introduced in Refs. [25,26].

D. Interacting AE/AA/AI neural fields

An interacting pair of Amari neural fields was introduced
and studied in Refs. [32,33]. We introduce two forms interact-
ing pairs of AA/AE/AI neural fields with adaptation variables
n1 and n2: a symmetric case where the two neural fields
are identical but are allowed to evolve independently and an
asymmetric case where temporal dynamics are identical but
synaptic weight functions, thresholds, and inputs differ.

Case I: Symmetric case

∂u1

∂t
+ u1 = wloc ∗ f [u1] + wlay ∗ f [u2] − βn1 + I (r),

∂u2

∂t
+ u2 = wloc ∗ f [u2] + wlay ∗ f [u1] − βn2 + I (r),

1

α

∂n1

∂t
+ n1 = u1,

1

α

∂n2

∂t
+ n2 = u2, (4)

where f (u) = H (u − θ) and θ is a constant threshold. Synap-
tic weight function wloc represents the local connections
within each population, whereas wlay represents the interlayer
synaptic connections from one population to the other. In this
case, the two sets of synaptic weight functions are assumed to
be identical for each population.

Case II: Asymmetric case

∂u1

∂t
+ u1 = wloc

11 ∗ f1[u1] + wlay
12 ∗ f2[u2] − βn1 + I1,

∂u2

∂t
+ u2 = wloc

22 ∗ f2[u2] + wlay
21 ∗ f1[u1] − βn2 + I2,

1

α

∂n1

∂t
+ n1 = u1,

1

α

∂n2

∂t
+ n2 = u2, (5)

where we take f1(u) = H (u − θ1) and f2(u) = H (u − θ2),
and θ1 and θ2 are constant thresholds. In this case both the
local and interlayer synaptic weight functions are allowed to
be different but we still assume the weight functions are radi-
ally symmetric and translation invariant. The case of differing
α1, α2 and β1, β2 is also treatable.

E. Interacting E-I neural fields

∂ue

∂t
+ ue = wloc

ee ∗ fe[ue] − wloc
ei ∗ fi[ui] + wlay

ee ∗ fe[ve] + Ie,

τ
∂ui

∂t
+ ui = wloc

ie ∗ fe[ue] − wloc
ii ∗ fi[ui] + w

lay
ie ∗ fe[ve] + Ii,

∂ve

∂t
+ ve = wloc

ee ∗ fe[ve] − wloc
ei ∗ fi[vi] + wlay

ee ∗ fe[ue] + Ie,

τ
∂vi

∂t
+ vi = wloc

ie ∗ fe[ve] − wloc
ii ∗ fi[vi] + w

lay
ie ∗ fe[ue] + Ii,

(6)

where we take fe[u] = H (u − θe), fi[u] = H (u − θi ), and
θe and θi are constant thresholds. This neural field was in-
troduced by Folias and Ermentrout in Refs. [32,33]. The
interlayer connections between the E-I neural fields are ex-
citatory (to model long-range connections in cortex) but
inhibitory connections are similar. For simplicity the E-I neu-
ral fields are identical with symmetric connections.
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III. ANALYSIS OF STATIONARY BUMPS

A. Notation

We define notation to move between vector and scalar
notation for different steps of the analysis.

The notation u = [u j] for j = 1, ..., N will denote an N-
dimensional vector whose jth element is the expression uj

which is a neural field or gating variable or related quantity.
Subsequently, the notation (u) j is used to refer to jth ele-
ment of any defined vector u. The notation M = [M jk] for
j = 1, . . . , M, k = 1, . . . , N denotes an (M×N ) matrix with
element jk given by expression M jk .

B. Structure of the neural fields on R2

We construct a vector formulation for a family of N neural
fields on the two-dimensional domain R2 modulated by M
linear gating variables, each coupled to only one neural field
(each neural field may be coupled to more than one gating
variable). We analyze the existence and stability of radially
symmetric stationary bump solutions in the vector formulation
along the lines we took in Ref. [15].

We consider two forms of a general neural field equa-
tion with N neural fields where the first is

∂u
∂t

(r, t ) = Au(r, t ) + W ∗ H[u − θ] + I(r), (7)

with the vector u = [uj (r, t )] representing a vector of N
neural fields u1, u2, . . . , uN all defined on a universal spatial
coordinate system on R2 and time t . We also consider a neural
field equation with N neural fields uj with M additional linear
auxiliary or gating variables vk

∂u
∂t

(r, t ) = Au(r, t ) + Bv(r, t ) + W ∗ H[u − θ] + I(r),

∂v
∂t

(r, t ) = Cu(r, t ) + Dv(r, t ), (8)

where additionally v = [vk (r, t )] represents a vector of M
auxiliary or gating variables v1, v2, . . . , vM . The input in-
homogeneity I(r) = [I j (r)] where I j (r) is radially symmetric
about the origin, Gaussian-like, and taken to be excitatory
(positive) or zero but could be inhibitory. For concreteness
we take I j (r) = I j

◦e−(r/σ j )2
. The case I(r) = 0 represents the

associated input-free neural field.
The synaptic kernel matrix W is defined in terms of

distance-dependent synaptic coupling between r = (r, θ ) and
r′ = (r′, θ ′) as the (N×N ) matrix function

W(‖r − r′‖) = [w jk (‖r − r′‖)]. (9)

Synaptic weight functions w jk mediate the synaptic inputs to
post-synaptic population j at location r from the pre-synaptic
population k at location r′. In this section only, w jk includes
negative signs for pure inhibition.

The convolution is an integral over R2,

W ∗ H[u − θ] =
∫
R2

W(‖r − r′‖) H[u(r′, t ) − θ] d2r′,

where

H[u − θ] =

⎡⎢⎢⎣
H (u1 − θ1)
H (u2 − θ2)

...

H (uN − θN )

⎤⎥⎥⎦
is a vector of Heaviside firing rate nonlinearities over the N
populations u j with thresholds θ j (where θ = [θ j]).

Different neural fields u j are assumed to interact only
through nonlinear synaptic interactions. Each gating vari-
able is assumed to be coupled to one neural field only and
evolve according to linear dynamics. These assumptions im-
ply A is an (N×N ) diagonal matrix, D is an (M×M) diagonal
matrix, B is an (N×M) matrix, and C is an (M×N ) matrix,
which are assumed to be constant. Both B and CT have
one nonzero entry in each column in the same location so
nonzero entry jk of B aligns with nonzero entry k j in C.
This implies BD−1C is diagonal whenever D is invertible
since its nonzero elements occur when multiplying nonzero
element jk of B with corresponding nonzero element k j of C
which produces element j j on the diagonal, given that D−1

is diagonal. We shall assume A, D and (A − BD−1C) are
invertible.

C. Stationary bump existence

We consider the existence of radially symmetric stationary
bump solutions u(r, t ) = U(r) of neural field equations (7)
and (8) with spatial profile U(r) = [Uj (r)] that depends on
radial coordinate r only. We assume profile Uj (r) is a bounded
function on [0,∞), satisfying the following threshold condi-
tions for each neural field j

Uj (r) > θ j, r ∈ [0, aj ),

Uj (aj ) = θ j, r = aj,

Uj (r) < θ j, r ∈ (aj,∞),

Uj (r) → 0, as r −→ ∞.

A stationary bump can be expressed as

u(r, t ) = U(r) = A−1(W (r; a) + I(r)), (10)

or, when gating variables are present, as follows below (where
the diagonal matrix Ã = A − BD−1C):

u(r, t ) = U(r) ≡ Ã−1(W (r; a) + I(r)),

v(r, t ) = V(r) ≡ −D−1C U(r; a), (11)

and Ã−1 = diag(Ã−1
11 , ..., Ã−1

NN ) which reduces to Ã = A in the
case of no gating variables.

The convolution can be expressed as a vector function

W ∗ H[u − θ] = W (r; a) = [W j (r; a)]

with components W j (r; a), where a = [a j] given by

W j (r; a) =
N∑

k=1

Wjk (r; ak ), j = 1, ..., N,
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where from our work in Ref. [15],

Wjk (r; ak ) =
∫
R2

w jk (‖r − r′‖)H (Uk (r′) − θk )d2r′

=
∫ 2π

0

∫ ak

0
w jk (‖r − r′‖)r′dr′dθ (12)

= 2πak

∫ ∞

0
w̆ jk (ρ)J0(rρ)J1(akρ) dρ. (13)

Functions Wjk are radially symmetric whenever w jk and Uj

are radially symmetric and, moreover, Wjk (r; ak ) is mono-
tonically decreasing in r whenever w jk (r) is monotonically
decreasing in r as we have shown in Ref. [15]. The form
in equation (13) is using the Fourier integral representation
expressed in terms of w̆, which is the Hankel transform of
order 0 of synaptic weight function w(r),

w(r) =
∫ ∞

0
w̆ jk (ρ)J0(rρ)ρ dρ. (14)

Jn(r) is the Bessel function of the first kind of order n. The
Hankel transform is the two-dimensional Fourier transform
for radially symmetric functions on R2[15,80]. Expressions
for Wjk (r; ak ) in the case of specific forms of the synaptic
weight functions are given in Sec. V.

The stationary bump solution is U = [Uj] where the jth
component can be expressed as

Uj (r) = 1

Ã j j

(
N∑

k=1

Wjk (r; ak ) + I j (r)

)
. (15)

D. Stationary bump stability

We now analyze the evolution of small time-dependent
perturbations of the stationary bump solution through linear
stability analysis. The behavior of the system near and beyond
the Hopf bifurcation is then studied in numerical simulations
as in one dimension.

Equation (8) is linearized about the stationary solution
(U, V) by introducing the time-dependent perturbations

u(r, t ) = U(r) + ϕ̃(r, t ),

v(r, t ) = V(r) + ψ̃(r, t ),

and expanding to first order in ϕ̃, ψ̃ which leads to the linear
system of integrodifferential equations

∂

∂t
ϕ̃ = Aϕ̃ + Bψ̃ + Nϕ̃,

∂

∂t
ψ̃ = Cϕ̃ + Dψ̃. (16)

where N is a nonlocal compact linear operator given by

Nϕ = W ∗ [δ(U − θ)ϕ]

=
∫
R2

W(||r − r′||) δ(U(r) − θ) ϕ(r′) d2r′.

W is the matrix of synaptic weight functions in Eq. (9) and
δ(U − θ)ϕ is the vector of δ functions over the N neural fields

ϕ j with thresholds θ j and bump profiles Uj (r),

δ(U − θ)ϕ =

⎡⎢⎢⎣
δ(U1 − θ1) ϕ1

δ(U2 − θ2) ϕ2
...

δ(UN − θN ) ϕN

⎤⎥⎥⎦.

Setting ϕ̃(r, t ) = ϕ(r)eλt and ψ̃(r, t ) = ψ(r)eλt in Eq. (16)
results in the spectral problem

λ ϕ = Aϕ + Bψ + Nϕ,

λ ψ = Cϕ + Dψ. (17)

When matrix (λI − D) is invertible, ψ = (λI − D)−1Cϕ is de-
termined uniquely by ϕ thereby reducing (17) to the reduced
spectral problem

(L(λ) + N)ϕ = λ ϕ, (18)

where matrix operator L(λ) = A + B(λI − D)−1C depends on
the spectral parameter λ. When linear gating variables are not
present, L(λ) reduces to L(λ) = A.

For A, B, C, D satisfying the assumptions in Sec. III B, it
follows that L(λ) is diagonal whenever (λI − D) is invertible.
To reference the elements of L(λ) we define

L(λ) = diag(�11(λ), �22(λ), . . . �NN (λ)).

We view operator N acting on the vector function ϕ(r) as
a matrix of nonlocal integral operators N jk

N = [N jk],

each acting on its scalar component ϕk (x) according to

N jk ϕk (r, θ ) = w jk ∗ [H ′(Uk − θk ) ϕk]

=
∫
R2

w jk (‖r − r′‖) δ(Uk (r′) − θk ) ϕk (r′) d2r′

=
∫ 2π

0

∫ ∞

0
w jk (

√
r2 + (r′)2 − 2rr′ cos(θ − θ ′))

× δ(Uk (r′) − θk )ϕk (r′, θ ′) r′ dr′dθ ′

= 1

|U ′
k (ak )| ak

∫ 2π

0
w jk (

√
r2 + ak

2 − 2 rakcos(φ))

× ϕk (ak, θ − φ) dφ

where |U ′
k (ak )| is calculated from Eq. (15) by differentiating

U ′
j (r) = 1

Ã j j

(
N∑

k=1

∂Wjk

∂r
(r; ak ) + I ′

j (r)

)
,

and expressions for ∂Wjk

∂r (r; ak ) are calculated in Sec. V.

1. Essential spectrum

The essential spectra of (L + N) and L are the same, since
N is a compact operator and L + N is a compact perturbation
of L, and comprise the finite set of values

σess = {
λess

i

}Q

i=1,
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where σess is the set of all solutions to the equation

N∏
j=1

(� j j (λ) − λ) = 0,

where � j j (λ) are the diagonal elements of L(λ) and
� j j (λ) = Aj j when no gating variables are present. (L(λ) −
λI) has an infinite-dimensional kernel formed from functions
with arbitrary spatial dependence satisfying Nϕ = 0. Since
(L + N) and L are closed operators and these λess

i are isolated
points of the spectrum with infinite geometric multiplicity, it
follows that they belong to the essential spectrum of L and
(L + N) [81]. The essential spectrum lies in the open left-half
complex plane whenever Re{λess

i } < 0 for all i = 1, . . . , Q.
In this case, spectral stability of the stationary bump is de-
termined by eigenvalues λ in the point spectrum which occur
when spectral problem (18) has nontrivial solutions ϕ(r, θ ).

2. Point spectrum

Solutions to the system of linear integral equations (18)
(with continuity conditions at θ = ±π ) are of the form

ϕn(r, θ ) = Φn(r)einθ n ∈ Z

where the radial component Φn = [Φ j
n(r)] satisfies the fol-

lowing nonlocal equation for j = 1, ..., N

(λ − � j j (λ))Φ j
n(r) =

N∑
k=1

� jk
n (r; ak )

|U ′
k (ak )| Φ

k
n(ak ), (19)

where

� jk
n (r; ak ) = ak

∫ 2π

0
w jk

(√
r2 + a2

k − 2rakcos(φ)
)

cos(nφ) dφ.

Φ
j
n(r) is determined by its value Φ

j
n(aj ) at r = aj and the N

unknown values Φ
j
n(aj ) are determined by requiring (19) to

hold at the restriction to r = aj for j = 1, ..., N resulting in
the following compatibility condition:

(λ − � j j (λ))Φ j
n(aj ) =

N∑
k=1

M jk
n (aj; ak )Φ

k
n(ak ) (20)

where M jk
n (aj; ak ) = �

jk
n (aj; ak )/|U ′

k (ak )|. Compatibility con-
dition (20) can be expressed compactly as

(λI − L(λ))φn = Mnφn, (21)

where matrix Mn = [M jk
n (aj; ak )] and φn = [Φ j

n(aj )] is the
vector of special nonlocal values.

Rewriting compatibility condition (21) as

(λI − L(λ) − Mn)φn = 0, (22)

nontrivial solutions φn exist for the set λ /∈ σess whenever
det(λI − L(λ) − Mn) = 0 giving rise to eigenvalues λn and
eigenfunctions ϕn(r, θ ) of the nth eigenmode on the set of
λ where (λI − L(λ)) is invertible. Note that the set where
(λI − L(λ)) is not invertible coincides with the essential spec-
trum σess. Consequently, an Evans function En(λ) for the nth
eigenmode of the linearization about the stationary bump u(x)
is given by

En(λ) = det(λI − L(λ) − Mn). (23)

Eigenvalues λn of the nonlocal operator (L(λ) + N) are given
by the zero sets of En(λ) for n = 0, 1, 2, . . ..

3. Construction of the eigenspaces

Since the eigenfunctions are vector functions of the
form (ϕ(r, θ ),ψ(r, θ )) where ψ(r, θ ) = (λI − D)−1Cϕ(r, θ ),
we concentrate on component ϕ(r, θ ). Eigenvalues λ0 asso-
ciated with the n = 0 mode correspond to one-dimensional
eigenspaces spanned by radially symmetric eigenfunction

ϕ0(r, θ ) = C0(λ)M0(r) φ0,

and each eigenvalue λn has a two-dimensional eigenspace for
n � 1 spanned by two linearly independent functions

ϕ1
n(r, θ ) = ϕ̂n(r) einθ , ϕ̂n(r) = Cn(λ)Mn(r) φn,

ϕ2
n(r, θ ) = ϕ̂n(r) e−inθ ,

where Cn(λ) = (λnI − L(λn))
−1 = diag((λn − � j j (λn))

−1
) is a

constant diagonal matrix and

Mn(r) = [
M jk

n (r; ak )
]
, M jk

n (r; ak ) = � jk
n (r; ak )

|U ′
k (ak )| , (24)

and j, k = 1, ..., N . The jth component of the vector expres-
sion ϕ̂n(r) for j = 1, ..., N can be written as

(ϕ̂n(r)) j = 1

(λn − � j j (λn))

N∑
k=1

(
Φk

n(ak )

|U ′
k (ak )|

)
� jk

n (r; ak )

OR= Φ j
n(aj )

∑N
k=1

M jk
n (r; ak )Φk

n(ak )∑N
k=1

M jk
n (aj; ak )Φk

n(ak )
, (25)

where the last expression comes from using Eq. (20). The
profiles � jk

n (r; ak )einθ determine the spatial structure of the
eigenmode. (See Sec. V for explicit calculations.)

The spatial eigenspaces for eigenmodes n � 1 generically
are two-dimensional and spanned by two linearly independent
eigenfunctions ϕ1

n(r, θ ) and ϕ2
n(r, θ ) as stated above, which

could be written in real form with cos(nθ ) and sin(nθ ). This
multiplicity arises from the rotational symmetry and conti-
nuity or boundary conditions in the angular coordinate θ .
We discuss the implication of this multiplicity on the Hopf
bifurcation of stationary solutions in Sec. IV.

IV. HOPF BIFURCATION WITH O(2) SYMMETRY

Due to the symmetry in our 2D neural field equations,
care must be taken in the stability analysis to determine
how the spatial eigenmodes (indexed by n) destabilize via
Hopf bifurcation and lead to the spatial structure of time-
periodic solutions that emerge in the bifurcation. The issue
is that the usual conditions for a Hopf bifurcation are not
met for spatial eigenmodes n � 1 because two pairs of eigen-
values are simultaneously becoming critical whenever one of
these modes destabilizes in a Hopf bifurcation. This can be
seen from the fact that for n � 1 the spatial eigenspaces are
two-dimensional (spanned by two eigenfunctions, containing
e±inθ or cos(nθ ) and sin(nθ )) due to rotational symmetry
and continuity conditions in θ . Consequently, the geometric
and algebraic multiplicity of the critical eigenvalues are both
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2. In contrast, in the n = 0 case, each eigenspace is one-
dimensional.

When the eigenvalue multiplicity is greater than 1 due
to symmetry present in our equations, the equivariant Hopf
theorem from equivariant bifurcation theory and group theory
[82] provides a rigorous Hopf bifurcation theorem as well
as a characterization of the number of bifurcating solutions
and their spatiotemporal symmetries, based upon the relevant
symmetry groups.

Although breathers occur in neural field models without
input inhomogeneities, most of the cases we have consid-
ered are in the presence of a localized input inhomogeneity
I (r) = I (‖r‖) which breaks translation symmetry in the Eu-
clidean group. So we consider O(2) (the orthogonal group
of rotations and reflections of the plane that keep the origin
fixed) as the relevant symmetry group for our neural fields
since the localized input inhomogeneity is radially symmet-
ric and centered at the origin. Consequently, O(2) × S1 is
the relevant spatiotemporal symmetry group for the sym-
metric Hopf bifurcation, where S1 is the circle group of
temporal phase shifts acting on the space of 2π -periodic
functions.

The spatiotemporal structure of the periodic solutions
emerging in a Hopf bifurcation with O(2) symmetry, accord-
ing to the equivariant Hopf theorem [82], are determined
by the specific conjugacy classes of isotropy subgroups in
O(2) × S1 that have two-dimensional fixed point subspaces
which, using the standard action, are S̃O(2) and Z2(κ ) ⊕
Zc

2 (π, π ). Isotropy subgroups of periodic solutions are formed
from the spatial and spatiotemporal symmetries that leave the
periodic solution invariant. The equivariant Hopf theorem in-
dicates that two branches of periodic solutions simultaneously
bifurcate from the equilibrium, one corresponding to each of
these isotropy subgroups which we describe below. However,
the equations for the spatial eigenmodes (indexed by n) have
an additional rotational symmetry Zn (reflected by einθ in
the eigenfunctions), consequently Zn is added to the isotropy
subgroups for the nth eigenmode via a nonstandard action
wherein Zn acts trivially, imposing additional symmetry on the
bifurcating solution branches from higher spatial eigenmodes
n � 2 as discussed below.

The two branches of periodic solutions bifurcating from
the equilibrium may appear on either side of the Hopf bifur-
cation point where an equilibrium loses stability. When one or
both branches of solutions are subcritical (meaning that, when
varying a parameter, they appear on the side of the bifurcation
point where the eigenvalues have negative real part, prior
to the destabilization of the equilibrium) then both periodic
solutions are unstable. For one of the periodic solutions to be
stable, both branches of solutions must be supercritical (mean-
ing that, when varying a parameter, they appear on the side of
the bifurcation point where the eigenvalues have positive real
part and the equilibrium is unstable) in which case, depending
on higher-order terms, one of the two branches of solutions
is orbitally asymptotically stable (meaning that solutions in a
neighborhood of the periodic solution approach the orbit of
the periodic solution as t −→ ∞).

All periodic solutions have a spatiotemporal symmetry that
spatial rotation by angle π is equivalent to a temporal phase
shift of π (or half a period of time), i.e., Rπ u(t ) = u(t + π )

since spatiotemporal symmetry (π, π ) ∈ O(2) × S1 acts triv-
ially. However the isotropy subgroups with two-dimensional
fixed point subspaces dictate the remaining symmetries of
the different branches of periodic solutions which we now
describe.

Periodic solutions with isotropy subgroup S̃O(2) =
{(θ, θ ) ∈ SO(2) × S1} satisfy a spatiotemporal symmetry
property that spatial rotation by angle θ has the same effect
as temporal phase shift by θ (or θ/2π of a period), i.e.,
Rθ u(t ) = u(t + θ ), giving rise to time-periodic solutions that
take the form of rotating waves about a point. Moreover, the
bifurcating rotating waves associated with the nth eigenmode
have an additional cyclic group symmetry Zn (invariance un-
der spatial rotations by 2π/n).

Periodic solutions with isotropy Z2(κ ) ⊕ Zc
2 (π, π ) =

〈κ, (π, π )〉 however, satisfy a spatial symmetry property
of invariance under a reflection κ across an axis through
the origin at all instants of time (κ u(t ) = u(t )), which
gives rise to time-periodic solutions in the form of stand-
ing waves. The standing waves associated with the nth
eigenmode have an additional dihedral group symmetry Dn

(invariance under rotations and reflections that preserve an
n-gon) due to the combination of the reflection κ with the
additional rotational symmetry Zn of the nth eigenmode
(Dn = 〈κ, Zn〉).

We shall assume an equivariant Hopf theorem holds and
proceed to verify our neural field equations are equivariant
with respect to the symmetry group O(2) on R2.

γ ∈ O(2) is a symmetry of ∂u
∂t = F (u, μ) if γ u is a solution

whenever u is a solution. This holds whenever γ satisfies the
commutivity relation

γ · F (u, μ) = F (γ · u, μ).

Such functions F are said to be equivariant with respect to the
symmetry. If F and ∂u

∂t = F (u, μ) satisfy this for all γ ∈ O(2),
then they are said to be equivariant with respect to O(2). To
show that our neural field equations satisfy this, the action of
O(2) on R2 is given by

θ · r = Rθr,

κ · r = κr,

where r = (x, y), κr = (x,−y), and Rθ is the usual rotation
matrix by angle θ . The group action on a function f (r) is
given by

γ · f (r) = f (γ −1 · r),

and the group action on the weight function w(r, r′) is

γ · w(r, r′) = w(γ −1 · r, γ −1 · r′).

For both γ = θ (rotations about the origin by angle θ )
and γ = κ (reflections), our weight functions of the form
w(r, r′) = ŵ(‖r − r′‖) naturally satisfy

w(γ −1 · r, γ −1 · r′) = w(r, r′),
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TABLE I. The existence and stability results depend on the functions W (r; a) and �n(r, a) listed in Eq. (26) which are calculated explicitly
for a family of Gaussian and modified Bessel synaptic weight functions. In(x) and Kn(x) denote the modified Bessel functions of the first and
second kind of order n and Ln(x) denotes the Laguerre polynomial of order n. All expressions are finite sums of elementary/special functions
and exact, except for the Gaussian where W (r; a) is expressed as an infinite series.

Explicit calculations for integrals in the analysis of stationary bumps on R2

w(r) = w̄

πσ 2 e−( r
σ )2

w(r) = 2w̄

3πσ 2 [K0( r
σ

) − K0( 2r
σ

)]

W (r; a) w̄e− r2

σ 2
∑∞

n = 0
(−1)n

(n+1)! ( a
σ

)
2n+2

Ln( r2

σ 2 )

{
w̄ 4a

3σ

[
K0

(
r
σ

)
I1

(
a
σ

) − 1
2 K0

(
2r
σ

)
I1

(
2a
σ

)]
r � a

w̄
(
1 − 4a

3σ
[K1

(
a
σ

)
I0

(
r
σ

) − 1
2 K1

(
2a
σ

)
I0

(
2r
σ

)
]
)

r < a

W (a; a) w̄

2

[
1 − e− 2a2

σ 2 I0( 2a2

σ 2 )

]
w̄ 4a

3σ

[
K0

(
a
σ

)
I1

(
a
σ

) − 1
2 K0

(
2a
σ

)
I1

(
2a
σ

)]
∂W
∂r (r; a) − w̄ 2a

σ 2 e− r2+a2

σ 2 I1

(
2ar
σ 2

) ⎧⎨⎩− w̄ 4a
3σ 2

[
K1

(
r
σ

)
I1

(
a
σ

) − K1

(
2r
σ

)
I1

(
2a
σ

)]
r � a

− w̄ 4a
3σ 2

[
K1

(
a
σ

)
I1

(
r
σ

) − K1

(
2a
σ

)
I1

(
2r
σ

)]
r < a

∂W
∂r (a; a) − w̄ 2a

σ 2 e− 2a2

σ 2 I1

(
2a2

σ 2

) − w̄ 4a
3σ 2

[
K1

(
a
σ

)
I1

(
a
σ

) − K1

(
2a
σ

)
I1

(
2a
σ

)]
�n(r; a) w̄ 2a

σ 2 e− r2+a2

σ 2 In

(
2ar
σ 2

) ⎧⎨⎩w̄ 4a
3σ 2

[
Kn

(
r
σ

)
In

(
a
σ

) − Kn

(
2r
σ

)
In

(
2a
σ

)]
r � a

w̄ 4a
3σ 2

[
Kn

(
a
σ

)
In

(
r
σ

) − Kn

(
2a
σ

)
In

(
2r
σ

)]
r < a

�n(a; a) w̄ 2a
σ 2 e− 2a2

σ 2 In

(
2a2

σ 2

)
w̄ 4a

3σ 2

[
Kn

(
a
σ

)
In

(
a
σ

) − Kn

(
2a
σ

)
In

(
2a
σ

)]

since (omitting the dot · henceforth)

w(γ −1r, γ −1r′) = ŵ(‖γ −1r − γ −1r′‖) = ŵ(‖γ −1(r − r′)‖)

= ŵ(‖r − r‖) = w(r, r′).

This means w(γ −1r, r′) = w(r, γ r′), since

ŵ(‖γ −1r − r′‖) = ŵ(‖γ (γ −1r − r′)‖) = ŵ(‖r − γ r′‖).

Consider the simplest form of the neural field equations
considered here (which can be generalized to other cases):

∂u

∂t
(r, t ) + u(r, t ) =

∫
R2

w(r, r′) f (u(r′, t ))d2r′ + I (‖r‖).

The group action on a solution is γ u(r, t ) = u(γ −1r, t ) and the
group action on the neural field equation is

∂u

∂t
(γ −1r, t ) + u(γ −1r, t )

=
∫
R2

w(γ −1r, r′) f (u(r′, t ))d2r′ + I (‖γ −1r‖)

=
∫
R2

w(r, γ r′) f (u(r′, t ))d2r′ + I (‖r‖)

=
∫
R2

w(r, r̂) f (u(γ −1r̂, t ))d2r̂ + I (‖r‖),

where r̂ = γ r′ and d2r′ = d2(γ −1r̂) = |±1|d2r̂. Since
γ u(r, t ) = u(γ −1r, t ), this shows that γ u(r, t ) is a solution
whenever u(r, t ) is a solution to our neural field equation.
It also shows that γ F (u) = F (γ u) where F (u) = w ∗ f (u)
is the nonlinear synaptic convolution term. Therefore both

the synaptic convolutions w ∗ f (u) and the neural field
equation are equivariant with respect to O(2). Moreover,
since all of our synaptic convolution terms and neural field
equations are of the same general form, it can be shown that
all are equivariant with respect to O(2).

V. EXPLICIT INTEGRAL CALCULATIONS
FOR SYNAPTIC WEIGHT FUNCTIONS

We briefly (i) summarize the definitions of two important
symbols and (ii) provide exact expressions for these quantities
in Table I for two specific weight functions.

A. Formulas

Closed form expressions for the integral formulas for func-
tions Wjk (r; ak ) and � jk

n (r; ak ) in the analysis that need to
be calculated explicitly are summarized here. Note that in
Table I the weight function indices jk have been dropped for
simplicity:

Wjk (r; ak ) =
∫ 2π

0

∫ ak

0
w jk (‖r − r′‖)r′dr′dθ

= 2πak

∫ ∞

0
w̆ jk (ρ)J0(rρ)J1(akρ) dρ,

� jk
n (r; ak ) = ak

∫ 2π

0
w jk (

√
r2 + ak

2 − 2rakcos(φ))cos(nφ) dφ

= 2πak

∫ ∞

0
w̆ jk (ρ)Jn(rρ)Jn(akρ) dρ, (26)

where w̆ jk (ρ) represents the Hankel transform of order 0 of
synaptic weight function w jk (r).
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FIG. 2. Plots of the Gaussian (solid gray), exponential (dashed
gray), and modified Bessel (solid black) synaptic weight functions
with w = 1 and σ = 1 except where indicated. All weight functions
are normalized so their integral over R2 equals 1. Due to the rapid
decay of the Gaussian, two plots of the Gaussian are shown, with
case σ = 1.5 included as it is similar to the other weight functions
near r = 0. The modified Bessel weight function well approximates
the exponential case and permits exact calculation of the necessary
expressions for the existence and stability calculations [15].

B. Positive weight functions

For explicit calculations and numerical simulations the fol-
lowing two forms of synaptic weight functions were used:

Gaussian: w(r) = w

πσ 2
e

−( r
σ )2

Modified Bessel: w(r) = 2

3π

w

σ 2

[
K0

( r

σ

)
− K0

(
2r

σ

)]
.

We introduced this modified Bessel weight function [15]
since the difference of Bessel functions well approximated
the exponential weight function 1

2π
e−r and permitted the exact

calculation of important integrals in closed form. K0 denotes
the modified Bessel function of the first kind of order 0. Some
properties of the modified Bessel weight function are listed
below for clarity

lim
r→0+

w(r) = w

σ 2

1

2π
· 4

3
ln(2) ≈ w

σ 2

1

2π
0.924

lim
r→0+

w′(r) = 0

w(r) ∼ w

3
√

πσ
3
2

(√
2e− r

σ − e− 2r
σ√

r

)
, for large r.

A comparison between the modified Bessel, Gaussian, and
exponential weight functions is illustrated in Fig. 2.

C. Mexican hat weight function

A Mexican hat weight function can be formulated by
adding two positive weight functions with different param-
eters and negating one of them to generate a mixture of
excitation and inhibition in the following form:

wM (r) = w(r ; w̄e, σe) − w(r ; w̄i, σi ), (27)

where w̄e, w̄i, σe, and σi are positive constants associated with
excitation and inhibition that are chosen so that the function is

locally positive (near r = 0) and laterally negative (for large
enough r) [2]. This would be switched for an inverted Mexican
hat which is locally negative near r = 0 and laterally positive
for large enough r. Such functions provide an abstraction
allowing a single neural field layer to generate both excitation
and inhibition.

VI. EXISTENCE AND STABILITY OF BUMPS
IN ELEMENTARY NEURAL FIELDS ON R2

The stationary bump solutions and stability analysis for
each of the neural fields explored in this section can be
expressed in terms of integrals listed in Sec. V with differ-
ent neural fields denoted by various subscripts. In all cases
a stationary bump solution is a bounded solution Uj (r) on
[0,∞) in which there is a bump in each neural field variable
indexed by j satisfying the threshold condition Uj (a j ) = θ j

with Uj (r) > θ j for r ∈ [0, a j ) and Uj (r) < θ j otherwise.
Linear stability of the stationary bump is analyzed and

the essential spectrum σess is determined to be negative in
all of the models and thereby not a cause of instability. Sta-
bility of the stationary bump is consequently determined by
the eigenvalues in the point spectrum and eigenvalues and
eigenfunctions are constructed. A stationary bump is linearly
stable if all eigenvalues have negative real part except the
generic 0-eigenvalue associated with translation invariance of
stationary solutions in neural fields with translation symmetry.
This holds for the neural fields in this section in the absence
of input inhomogeneities and the translation mode cannot
destabilize in a Hopf bifurcation in this case except possibly
in the AE-I neural field. When input inhomogeneities are
introduced, translation symmetry is broken and the translation
eigenmode (n = 1) has a pair of nonzero eigenvalues that can
become complex and lead to a Hopf bifurcation.

A. AE, AI, and AA neural fields

A stationary bump solution to neural field equation (1) with
radius a is (u(r, t ), n(r, t )) = (U (r), N (r)) where

(1 + β )U (r) = W (r; a) + I (r),

N (r) = U (r),

and the radius a is determined by the threshold condition

W (a; a) + I (a) = θ(1 + β )

provided U (r) obeys the threshold behavior on (0,∞).
Time-dependent perturbations (̃ϕ(r, t ), ψ̃ (r, t )) of the sta-

tionary bump (U (r), N (r)) evolve according to

∂ϕ̃

∂t
+ ϕ̃ = N ϕ̃ − βψ̃,

1

α

∂ψ̃

∂t
+ ψ̃ = ϕ̃. (28)

Setting (̃ϕ, ψ̃ ) = ϕ(r)eλt results in the spectral problem for λ

and ϕ(r) = (ϕ(r), ψ (r)),

−ϕ + Nϕ − βψ = λϕ

αϕ − αψ = λψ. (29)
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Setting ϕ(r, θ ) = ϕ̂(r)einθ and ψ (r, θ ) = ( α
λ+α

)ϕ(r, θ ) the
compatibility equation determining the eigenvalues and spe-
cial nonlocal values of the eigenfunctions at the threshold
point r = a is given by

(Mn(a; a) − 1)ϕ̂(a) =
(
λ + αβ

λ + α

)
ϕ̂(a), (30)

where Mn(a; a) = �n(a; a)/|U ′(a)|. Compatibility equa-
tion (30) can be rewritten as

(Mn(a; a) − μ(λ))φn = 0, (31)

where μ(λ) = 1 + λ + αβ

λ+α
and φn = ϕ̂(a). Nontrivial solu-

tions to Eq. (31) exist only when

μ(λ) = Mn(a; a),

then solving for λ we obtain

λn = −� ±
√

�2 − �2, � = 1
2 (1 + α − μn),

μn = Mn(a; a), � = α(1 + β − μn).

The special nonlocal value can take on any fixed value (gener-
ating a family of eigenfunctions); for simplicity we set φn =
ϕ̂(a) = 1. Spatial eigenfunctions ϕn(r, θ ) for each eigenvalue
λ in the nth eigenmode are given by

ϕ1
n(r, θ ) = ϕ̂n(r)einθ ,

ϕ2
n(r, θ ) = ϕ̂n(r)e−inθ ,

where

ϕ̂n(r) =
(

ϕ̂n(r)

ψ̂n(r)

)
=
(

1
α

λn+α

)
Mn(r; a),

where Mn(r; a) = �n(r; a)/|U ′(a)|. Note that, in a real basis
for the eigenspace, the eigenfunctions for the neural field
variable ϕ in this case could be expressed as

ϕ1
n(r, θ ) = Mn(r; a) cos(nθ ),

ϕ2
n(r, θ ) = Mn(r; a) sin(nθ ).

At a Hopf bifurcation point the Hopf frequency is

ωH = Im{λn} =
√

α(β − α).

B. E-I neural field

A stationary bump solution to neural field equation (2) is
(ue(r, t ), ui(r, t )) = (Ue(r),Ui(r)), where

Ue(r) = Wee(r; ae) − Wei(r; ai ) + Ie(r),

Ui(r) = Wie(r; ae) − Wii(r; ai ) + Ii(r),

and the radii ae and ai satisfy the threshold conditions

Wee(ae; ae) − Wei(ae; ai ) + Ie(ae) = θe

Wie(ai; ae) − Wii(ai; ai ) + Ii(ai ) = θi

provided the threshold behavior is obeyed on (0,∞).
Time-dependent perturbations (ϕ̃e(r, t ), ϕ̃i(r, t )) of the sta-

tionary bump (Ue(r),Ui(r)) evolve according to

∂ϕ̃e

∂t
+ ϕ̃e = Nee ϕ̃e − Nei ϕ̃i,

τ
∂ϕ̃i

∂t
+ ϕ̃i = Nie ϕ̃e − Nii ϕ̃i. (32)

Setting (ϕ̃e, ϕ̃i ) = ϕ(r)eλt leads to the spectral problem for λ

and ϕ(r) = (ϕe(r), ϕi(r)):

−ϕe + Nee ϕe − Nei ϕi = λϕe,

− 1

τ
ϕi + 1

τ
Nie ϕe − 1

τ
Nii ϕi = λϕi. (33)

Setting ϕe(r, θ ) = ϕ̂e(r)einθ and ϕi(r, θ ) = ϕ̂i(r)einθ the
compatibility equation determining both the eigenvalues and
special nonlocal values of the eigenfunctions for the nth eigen-
mode at threshold points r = ae, ai is(

MEI
n − IEI

)
φn = λ φn, (34)

where IEI = diag (1, τ −1 )

MEI
n =

[
Mee

n (ae; ae) −Mei
n (ae; ai )

1
τ
Mie

n (ai; ae) − 1
τ
Mii

n (ai; ai )

]
, φn =

(
ϕ̂e(ae)

ϕ̂i(ai )

)
,

and M jk
n (a j ; ak ) = �

jk
n (a j ; ak )/|U ′

k (ak )|. Condition (34) can
be rewritten as (

MEI
n − D(λ)

)
φn = 0, (35)

where D(λ) = diag (1 + λ, 1
τ

+ λ). Equation (35) has non-
trivial solutions when det(MEI

n − D(λ)) = 0 Solving for the
eigenvalues λ we obtain

λn =
[Mee

n − 1

2
− Mii

n + 1

2τ

]

±
√[Mee

n − 1

2
+ Mii

n + 1

2τ

]2

− Mei
n Mie

n

τ
,

where M jk
n = M jk

n (a j, ak ). The corresponding vector of
special nonlocal values may be expressed in the form
φn = (ϕ̂e(ae), ϕ̂i(ai )) = (1, νn), where

νn =λn + 1 − Mee
n (ae; ae)

−Mei
n (ae; ai )

=

[
Mee

n −1
2 + Mii

n +1
2τ

]
±
√[

Mee
n −1
2 + Mii

n +1
2τ

]2
− Mei

n Mie
n

τ

−Mei
n

and M jk
n = M jk

n (a j ; ak ). Spatial eigenfunctions ϕn(r, θ ) for an
eigenvalue λ in the nth eigenmode are

ϕ1
n(r, θ ) = ϕ̂n(r)einθ ,

ϕ2
n(r, θ ) = ϕ̂n(r)e−inθ ,

where

ϕ̂n(r) =
(

ϕ̂n
e

ϕ̂n
i

)
=
(

1
λ+1

[
Mee

n (r; ae) − νnMei
n(r; ai )

]
1

τλ+1

[
Mie

n(r; ae) − νnMii
n(r; ai)

]).

At a Hopf bifurcation point the Hopf frequency is

ωH = Im{λn} =
√

−(Mee
n − 1)(Mii

n + 1) + Mei
n Mie

n

τ
,

where (Mee
n − 1) = (Mii

n + 1)/τ .
See Figs. 3 and 4 for examples of expanding-contracting

breathers and rotors exhibiting n-fold symmetry in the E-I
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FIG. 3. n-fold breathers or expanding-contracting stationary
waves in the E-I neural field model as a result of the destabilization
of a stationary bump solution via Hopf bifurcation with respect to
eigenmodes with different spatial structure: (a) destabilization of the
n = 0 mode leading to a radially symmetric breather; (b) destabiliza-
tion of the n = 1 mode leading to a onefold breather with D1 dihedral
symmetry; (c) destabilization of the n = 2 mode leading to a onefold
breather with D2 dihedral symmetry; (d) destabilization of the n = 3
mode leading to a threefold breather with D3 dihedral symmetry.
Lighter/warmer colors (orange and yellow) indicate values above
threshold θe and darker/cooler colors indicate subthreshold values.

neural field. Figure 5 depicts a complicated oscillatory solu-
tion well beyond a Hopf bifurcation point where the n = 3
eigenmode destabilizes in the E-I neural field.

C. AE-I neural field

A stationary bump solution to neural field equation (3) is
(ue(r, t ), ui(r, t ), ne(r, t )) = (Ue(r),Ui(r), Ne(r)), where

(1 + β )Ue(r) = Wee(r; ae) − Wei(r; ai) + Ie(r),

Ui(r) = Wie(r; ae) − Wii(r; ai ) + Ii(r),

Ne(r) = Ue(r),

where the radii ae and ai satisfy the threshold conditions

Wee(ae; ae) − Wei(ae; ai ) + Ie(ae) = θe(1 + β )

Wie(ai; ae) − Wii(ai; ai ) + Ii(ai ) = θi

provided the threshold behavior is obeyed on (0,∞).

FIG. 4. n-fold rotors or rotating waves in the E-I neural field
model at different points in time t resulting from the destabilization
of a stationary bump via Hopf bifurcation with respect to eigenmodes
with different spatial structure: (a) destabilization of the n = 1 mode
leading to a onefold rotor with Z1 rotational symmetry; (b) desta-
bilization of the n = 2 mode leading to a twofold rotor with Z2

rotational symmetry; (c) destabilization of the n = 3 mode leading to
a threefold rotor with Z3 rotational symmetry; (d) destabilization of
the n = 4 mode leading to a fourfold rotor with Z4 rotational symme-
try. Lighter/warmer colors (orange and yellow) indicate values above
threshold θe and darker/cooler colors indicate subthreshold values.

Time-dependent perturbations (ϕ̃e, ϕ̃i, ψ̃e)(r, t ) of a sta-
tionary bump (Ue(r),Ui(r), Ne(r)) evolve according to

∂ϕ̃e

∂t
+ ϕ̃e = Nee ϕ̃e − Nei ϕ̃i − βψ̃e,

τ
∂ϕ̃i

∂t
+ ϕ̃i = Nie ϕ̃e − Nii ϕ̃i, (36)

1

α

∂ψ̃e

∂t
+ ψ̃e = ϕ̃e.

Setting (ϕ̃e, ϕ̃i, ψ̃e) = ϕ(r)eλt results in the spectral problem
for λ and ϕ(r) = (ϕe(r), ϕi(r), ψe(r)):

−ϕe + Nee ϕe − Nei ϕi − βψe = λϕe,

− 1

τ
ϕi + 1

τ
Nie ϕe − 1

τ
Nii ϕi = λϕi, (37)

αϕe − αψe = λψe.
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FIG. 5. Examples of a complicated oscillatory solution in the E-I
neural field in a parameter region where multiple eigenmodes have
complex eigenvalues with negative real part and both the n = 3 and
n = 2 (and other modes) destabilize at different locations. A small
lobe on the boundary of the activity bump emerges and then retracts
at different points during the oscillatory behavior that appears to have
a three-prong structure. The lobes continually emerge at different
locations, and long-term plotting of the orbit projected onto the phase
plane for different spatial locations (not shown) appears to show a
complicated attractor in the projection.

Setting

ϕe(r, θ ) = ϕ̂e(r)einθ ,

ϕi(r, θ ) = ϕ̂i(r)einθ ,

ψe(r, θ ) =
(

α

λ + α

)
ϕe(r, θ ),

the compatibility equation determining both the eigenvalues
and special nonlocal values of the eigenfunctions of the nth
eigenmode at threshold points ae and ai is

(
MEI

n − IEI
)
φn =

[
λ + αβ

λ+α
0

0 λ

]
φn, (38)

where IEI = diag (1, τ−1 ) and

MEI
n =

[
Mee

n (ae; ae) −Mei
n (ae; ai )

1
τ
Mie

n (ai; ae) − 1
τ
Mii

n (ai; ai )

]
,φn =

(
ϕ̂e(ae)
ϕ̂i(ai )

)
and M jk

n (aj; ak ) = �
jk
n (aj; ak )/|U ′

k (ak )|. Compatibility condi-
tion (38) can be rewritten as(

MEI
n − D(λ)

)
φn = 0, (39)

where D(λ) = diag (1 + λ + αβ

λ+α
, 1

τ
+ λ), which has nontriv-

ial solutions when λ satisfies det(MEI
n − D(λ)) = 0.

Eigenvalues thereby satisfy the following cubic equation:

τλ3 + �nλ
2 + �nλ + En = 0,

where the coefficients are given by

�n = τ
[
α + 1 − Mee

n (ae; ae)
] + [

1 + Mii
n(ai; ai )

]
,

�n = [
α + 1 − Mee

n (ae; ae)
][

τα + 1 + Mii
n(ai; ai )

]
+ Mei

n(ae; ai )Mie
n(ai; ae) + τα(β − α),

En = α
[
β + 1 − Mee

n (ae; ae)
][

1 + Mii
n(ai; ai )

]
+ α

[
Mei

n(ae; ai )Mie
n(ai; ae)

]
.

Solving Eq. (38) for the vector of special nonlocal values in
the form φn = (ϕ̂e(ae), ϕ̂i(ai )) = (1, νn) we obtain

νn =λn + α
λn+α

+ 1 − Mee
n (ae; ae)

−Mei
n(ae; ai )

.

The spatial eigenfunctions ϕn(r, θ ) for an eigenvalue λ the nth
eigenmode are given by

ϕ1
n(r, θ ) = ϕ̂n(r)einθ , ϕ2

n(r, θ ) = ϕ̂n(r)e−inθ ,

where μ(λ) = λ + 1 + αβ

λ+α
and

ϕ̂n(r) =

⎛⎜⎝ ϕ̂n
e

ϕ̂n
i

ψ̂n
e

⎞⎟⎠ =

⎛⎜⎜⎝
1

μ(λn )

[
Mee

n (r; ae) − νnMei
n (r; ai )

]
1

τλn+1

[
Mie

n (r; ae) − νnMii
n (r; ai)

]
α

λn+α
ϕ̂n

e (r)

⎞⎟⎟⎠.

D. Interacting pair of AE/AI/AA neural fields

The two cases of symmetric and asymmetric couplings in
Eqs. (4) and (5) are treated separately below.

Case I: Symmetric case

A stationary bump solution to neural field equation (4)
with the same radii a in each population can be expressed as
(u1, u2, n1, n2) = (U (r),V (r), N (r), M(r)), where

(1 + β )U (r) = W loc(r; a) + W lay(r; a) + I (r),

M(r) = N (r) = V (r) = U (r),

and a satisfies the threshold condition

W loc(a; a) + W lay(a; a) + I (a) = θ(1 + β )

provided the threshold behavior is obeyed on (0,∞).
Time-dependent perturbations (ϕ̃1, ϕ̃2, ψ̃1, ψ̃2 )(r, t ) of sta-

tionary bump (U (r),V (r), N (r), M(r)) evolve according to

∂ϕ̃ 1

∂t
+ ϕ̃ 1 = N loc ϕ̃ 1 + N lay ϕ̃ 2 − βψ̃ 1,

∂ϕ̃ 2

∂t
+ ϕ̃ 2 = N loc ϕ̃ 2 + N lay ϕ̃ 1 − βψ̃ 2, (40)

1

α

∂ψ̃ 1

∂t
+ ψ̃ 1 = ϕ̃ 1,

1

α

∂ψ̃ 2

∂t
+ ψ̃ 2 = ϕ̃ 2,
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FIG. 6. Examples of n-fold breathers or standing waves in the
interacting pair of symmetric E-I neural fields at different points in
t as a result of the destabilization of a stationary bump solution via
Hopf bifurcation with respect to eigenmodes with different spatial
structure. The in-phase (not shown) and anitphase (shown) periodic
solutions occur when the �+

n and �−
n modes destabilize, respectively.

(a) destabilization of the n = 0 mode leading to a radially symmetric
antiphase breather; (b) destabilization of the n = 1 mode leading to
a onefold antiphase breather with D1 dihedral symmetry; (c) desta-
bilization of the n = 2 mode leading to a twofold antiphase breather
with D2 dihedral symmetry; (d) destabilization of the n = 3 mode
leading to a threefold antiphase breather with D3 dihedral symmetry.
Solid and dashed curves represent the threshold boundary in layers I
and II.

where (̃ϕ1, ϕ̃2, ψ̃1, ψ̃2) = ϕ(r)eλt leads to the spectral prob-
lem for λ and ϕ(r) = (ϕ 1(r), ϕ 2(r), ψ 1(r), ψ 2(r)):

−ϕ 1 + N loc ϕ 1 + N lay ϕ2 − βψ 1 = λϕ 1,

−ϕ 2 + N loc ϕ 2 + N lay ϕ 1 − βψ 2 = λϕ 2,

αϕ1 − αψ 1 = λψ 1,

αϕ2 − αψ 2 = λψ 2. (41)

Setting ϕ1(r, θ ) = ϕ̂1(r)einθ and ϕ2(r, θ ) = ϕ̂2(r)einθ and

ψ1(r, θ ) =
(

α

λ + α

)
ϕ1(r, θ ),

ψ2(r, θ ) =
(

α

λ + α

)
ϕ2(r, θ ).

FIG. 7. Examples of n-fold rotors or rotating waves in the in-
teracting pair of symmetric E-I neural fields at different points in t
as a result of the destabilization of a radially symmetric stationary
bump via Hopf bifurcation with respect to different spatial eigen-
modes. Both in-phase (not shown) and anitphase (shown) periodic
solutions occur when the �+

n and �−
n modes destabilize respectively.

(a) Destabilization of the n = 1 mode leading to a onefold antiphase
rotor with Z1 rotational symmetry; (b) destabilization of the n = 2
mode leading to a twofold antiphase rotor with Z2 rotational sym-
metry; (c) destabilization of the n = 3 mode leading to a threefold
antiphase rotor with Z3 rotational symmetry; (d) destabilization of the
n = 4 mode leading to a fourfold antiphase rotor with Z4 rotational
symmetry. Solid and dashed curves represent the threshold boundary
in layers I and II.

The compatibility equation determining the eigenvalues and
special nonlocal values of the eigenfunctions of the nth eigen-
mode at the common threshold point r = a is(

MSYM
n − I

)
φn =

(
λ + αβ

λ + α

)
φn, (42)

where

MSYM
n =

[
Mloc

n (a; a) Mlay
n (a; a)

Mlay
n (a; a) Mloc

n (a; a)

]
, φn =

(
ϕ̂1(a)
ϕ̂2(a)

)
,

and Ml
n(a; a) = �l

n(a; a)/|U ′(a)|. MSYM
n is symmetric and can

be diagonalized by the similarity transformation

Q−1MSYM
n Q = �SYM ≡

[
M+

n 0

0 M−
n

]
, Q =

[
1 1

1 −1

]
,

014204-14



SPATIALLY COHERENT OSCILLATIONS IN NEURAL … PHYSICAL REVIEW E 113, 014204 (2026)

where M±
n = Mloc

n (a; a) ± Mlay
n (a; a). Compatibility equa-

tion (42) can be rewritten as(
MSYM

n − μ(λ)I
)
φn = 0, (43)

where μ(λ) = 1 + λ + αβ

λ+α
. Nontrivial φn exist when

det(MSYM
n − μ(λ)I) = 0. Solving for μ and then λ in terms

of μ we obtain

λ±
n = −� ±

√
�2 − �, � = 1

2 (1 + α − μ±
n ),

μ±
n = Mloc

n (a; a) ± Mlay
n (a; a), � = α(1 + β − μ±

n ).

Solving Eq. (43) for the vector of special nonlocal values we
obtain the form φ±

n = (ϕ̂1(a), ϕ̂2(a)) = (1,±1) where the ±
corresponds to the different spatial modes M±

n . There are two
nth spatial eigenmodes corresponding to μ+

n or μ−
n . Spatial

eigenfunctions ϕn(r, θ ) for an eigenvalue λ in the nth eigen-
mode are given by

ϕ1
n(r, θ ) = ϕ̂n(r)einθ ,

ϕ2
n(r, θ ) = ϕ̂n(r)e−inθ ,

where for the in-phase mode (+) and antiphase mode (-)

ϕ̂±
n (r) =

⎛⎜⎜⎜⎜⎝
ϕ̂n

1

ϕ̂n
2

ψ̂n
1

ψ̂n
2

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1

±1

α
λ±

n +α

±α
λ±

n +α

⎞⎟⎟⎟⎟⎟⎟⎠
(
Mloc

n (r; a) ± Mlay
n (r; a)

)
.

Although the eigenfunctions are complex-valued, we can see
whether the components of the eigenfunctions associated with
the two neural field layers are aligned (+) and in-phase or
opposite (−) and antiphase. At a Hopf bifurcation point the
Hopf frequency is

ωH = Im{λ±
n} =

√
α(β − α).

Condition for Hopf bifurcation of μ+
n or μ−

n mode

If we assume that a stationary bump is stable, that both λ+
n

and λ−
n are complex, and one of the two nth eigenmodes desta-

bilizes in a Hopf bifurcation, then the condition determining
whether the μ+

n or μ−
n eigenmode destabilizes is determined by

the pair of eigenvalues whose real part is nearer to 0. In this
case we have

Re{λ+
n} − Re{λ−

n} = 1
2 (μ+

n − μ−
n ) = Mlay

n (a; a).

So, when Mlay
n (a; a) > 0 at the Hopf bifurcation point,

Re{λ+
n} > Re{λ−

n} and in-phase mode μ+
n destabilizes in a

Hopf bifurcation. When Mlay
n (a; a) < 0 at the Hopf bifurca-

tion point, then antiphase mode μ−
n destabilizes in a Hopf

bifurcation.

Case II: Asymmetric case

A stationary bump solution to neural field (5) with
different radii a1 and a2 in each population can be

expressed as (u1, u2, n1, n2) = (U1(r),U2(r), N1(r), N2(r)),
where

(1 + β )U1(r) = W loc
11 (r; a1) + W lay

12 (r; a2) + I1(r),

(1 + β )U2(r) = W loc
22 (r; a2) + W lay

21 (r; a1) + I2(r),

N1(r) = U1(r),

N2(r) = U2(r),

and a1 and a2 satisfy the threshold condition

W loc
11 (a1; a1) + W lay

12 (a1; a2) + I1(a1) = θ1(1 + β )

W loc
22 (a2; a2) + W lay

21 (a2; a1) + I2(a2) = θ2(1 + β )

provided the threshold behavior is obeyed on (0,∞).
Time-dependent perturbations (ϕ̃1, ϕ̃2, ψ̃1, ψ̃2 )(r, t ) of

the stationary bump (U1(r),U2(r), N1(r), N2(r)) evolve
according to

∂ϕ̃ 1

∂t
+ ϕ̃ 1 = N loc

11 ϕ̃ 1 + N lay
12 ϕ̃ 2 − βψ̃ 1,

∂ϕ̃ 2

∂t
+ ϕ̃ 2 = N loc

22 ϕ̃ 2 + N lay
21 ϕ̃ 1 − βψ̃ 2,

1

α

∂ψ̃ 1

∂t
+ ψ̃ 1 = ϕ̃ 1,

1

α

∂ψ̃ 2

∂t
+ ψ̃ 2 = ϕ̃ 2, (44)

where (̃ϕ 1, ϕ̃ 2, ψ̃ 1, ψ̃ 2) = ϕ(r)eλt yields the spectral problem
for λ and ϕ(r) = (ϕ 1(r), ϕ 2(r), ψ 1(r), ψ 2(r)):

−ϕ 1 + N loc
11 ϕ 1 + N lay

12 ϕ2 − βψ 1 = λϕ 1,

−ϕ 2 + N loc
22 ϕ 2 + N lay

21 ϕ 1 − βψ 2 = λϕ 2,

αϕ1 − αψ 1 = λψ 1,

αϕ2 − αψ 2 = λψ 2. (45)

Setting ϕ1(r, θ ) = ϕ̂1(r)einθ and ϕ2(r, θ ) = ϕ̂2(r)einθ , the
compatibility equation determining the eigenvalues and spe-
cial nonlocal values of the eigenfunctions of the nth eigen-
mode at threshold points a1 and a2 is

(
MASYM

n − I
)
φn =

(
λ + αβ

λ + α

)
φn, (46)

where

MASYM
n =

[M11
n (a1; a1) M12

n (a1; a2)

M21
n (a2; a1) M22

n (a2; a2)

]
, φn =

(
ϕ̂1(a1)

ϕ̂2(a2)

)

and M jk
n (aj; ak ) = �

jk
n (aj; ak )/|U ′

k (ak )|. Compatibility equa-
tion (46) can be rewritten as(

MASYM
n − μ(λ)I

)
φn = 0, (47)

where μ(λ) = 1 + λ + αβ

λ+α
. For nontrivial values φn to Eq.

(47) exist, we require det(MASYM
n − μ(λn)I) = 0. Solving for
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μ and then solving for λ in terms of μ we obtain

λ±
n = −� ±

√
�2 − �,

� = 1
2

(
1 + α − μ±

n

)
, � = α

(
1 + β − μ±

n

)
,

μ±
n =

[
M11

n +M22
n

2

]
±
√[

M11
n −M22

n
2

]2
+ M12

n M21
n ,

where M jk
n = M jk

n (a j ; ak ). This defines two pairs of eigenval-
ues λ±

n corresponding to spatial eigenmodes μ±
n . We note that

the condition for μ±
n to be complex is

M12
n (a1; a2)M21

n (a2; a1)< −
[M11

n (a1; a1) − M22
n (a2; a2)

2

]2

,

requiring either M12
n (a1; a2) or M21

n (a2; a1) be negative.
Solving Eq. (47) for the vector of special nonlocal values
φn = (ϕ̂1(a1), ϕ̂2(a2)) = (1, ν±

n ) we obtain

ν±
n = μ±

n − M11
n (a1; a1)

M12
n (a1; a2)

=
[M11

n −M22
n

2

] ±
√[M11

n −M22
n

2

]2 + M12
n M21

n

M12
n

,

where superscript ± corresponds spatial modes μ±
n .

Spatial eigenfunctions ϕn(r, θ ) for an eigenvalue λ in the
nth eigenmode are given by

ϕ1
n(r, θ ) = ϕ̂n(r)einθ , ϕ2

n(r, θ ) = ϕ̂n(r)e−inθ ,

where radial component corresponding to μ±
n is given by

ϕ̂±
n (r) =

⎛⎜⎜⎝
ϕ̂n

1 (r)
ϕ̂n

2 (r)
ψ̂n

1 (r)
ψ̂n

2 (r)

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
M11

n (r; a1) + ν±
n M12

n (r; a2)

ν±
n M22

n (r; a2) + M21
n (r; a1)

α
λ±

n +α
ϕ̂n

1 (r)
α

λ±
n +α

ϕ̂n
2 (r)

⎞⎟⎟⎟⎟⎠.

At a Hopf bifurcation point the Hopf frequency is

ωH = Im{λ±
n } =

√
α(β − α).

E. Interacting pair of E-I neural fields

A stationary bump to neural field equation (6) can be ex-
pressed as (ue, ui, ve, vi ) = (Ue(r),Ui(r),Ve(r),Vi(r)) where
the solution is identical in each neural field layer and ex-
pressed as

Ue(r) = W loc
ee (r; ae) − W loc

ei (r; ai ) + W lay
ee (r; ae) + Ie(r),

Ui(r) = W loc
ie (r; ae) − W loc

ii (r; ai ) + W lay
ie (r; ae) + Ii(r),

Ve(r) = Ue(r),

Vi(r) = Ui(r),

where the radii of the bumps in the E- and I-populations ae

and ai satisfy the threshold conditions

W loc
ee (ae; ae) − W loc

ei (ae; ai ) + W lay
ee (ae; ae) + Ie(ae) = θe,

W loc
ie (ai; ae) − W loc

ii (ai; ai ) + W lay
ie (ai; ae) + Ii(ai ) = θi.

Time-dependent perturbations (ϕ̃e, ϕ̃i, ψ̃e, ψ̃i )(r, t ) of
the stationary bump (Ue(r),Ui(r),Ve(r),Vi(r)) evolve

according to

∂ϕ̃e

∂t
+ ϕ̃e = N loc

ee ϕ̃e − N loc
ei ϕ̃i + N lay

ee ψ̃e,

τ
∂ϕ̃i

∂t
+ ϕ̃i = N loc

ie ϕ̃e − N loc
ii ϕ̃i + N lay

ie ψ̃e,

∂ψ̃e

∂t
+ ψ̃e = N loc

ee ψ̃e − N loc
ei ψ̃i + N lay

ee ϕ̃e,

τ
∂ψ̃i

∂t
+ ψ̃i = N loc

ie ψ̃e − N loc
ii ψ̃i + N lay

ie ϕ̃e, (48)

where (ϕ̃e, ϕ̃i, ψ̃e, ψ̃i ) = ϕ(r)eλt results in the spectral prob-
lem for λ and ϕ(r) = (ϕe(r), ϕi(r), ψe(r), ψi(r)):

−ϕe + N loc
ee ϕe − N loc

ei ϕi + N lay
ee ψe = λϕe,

− 1

τ
ϕi + 1

τ
N loc

ie ϕe − 1

τ
N loc

ii ϕi + 1

τ
N lay

ie ψe = λϕi,

−ψe + N loc
ee ψe − N loc

ei ψi + N lay
ee ϕe = λψe,

− 1

τ
ψi + 1

τ
N loc

ie ψe − 1

τ
N loc

ii ψi + 1

τ
N lay

ie ϕe = λψi. (49)

The compatibility equation determining the eigenvalues and
special nonlocal values of the eigenfunctions of the nth eigen-
mode at threshold points r = ae and ai is(

Mdual
n − Idual

)
φn = λ φn. (50)

Idual = diag (1, τ−1, 1, τ−1) and Mdual
n is a (4 × 4) matrix

φn = (ϕ̂e(ae), ϕ̂i(ai ), ψ̂e(ae), ψ̂i(ai )) and

Mdual
n =

⎡⎣MEI
n Mlay

n

Mlay
n MEI

n

⎤⎦, Mlay
n =

⎡⎣ Mlay
n,ee(ae; ae) 0

1
τ
Mlay

n,ie(ai; ae) 0

⎤⎦,

MEI
n =

[
Mee

n (ae; ae) −Mei
n (ae; ai )

1
τ
Mie

n (ai; ae) − 1
τ
Mii

n (ai; ai )

]
,

where M jk
n (a j ; ak ) = �

jk
n (a j ; ak )/|U ′

k (ak )| and similarly
Mlay

n, jk (a j ; ak ) = �
lay
n, jk (a j ; ak )/|U ′

k (ak )|. Mdual
n is block

diagonalized by a similarity transformation as follows:

Q−1Mdual
n Q = �dual ≡

[
�+

n 0
0 �−

n

]
, Q =

[
I2 I2

I2 −I2

]
,

where

�±
n =

[
Mee

n (ae; ae) ± Mlay
n,ee(ae; ae) −Mei

n (ae; ai )
1
τ
Mie

n (ai; ae) ± 1
τ
Mlay

n,ie(ai; ae) − 1
τ
Mii

n (ai; ai )

]
.

Nontrivial values φn exist if det(Mdual
n − Idual − λI) = 0.

Solving for λ results in two pairs of eigenvalues corresponding
to the spatial eigenmodes associated with �±

n

λ±
n =

[
M±

n,ee−1
2 − Mii

n +1
2τ

]
±
√[

M±
n,ee−1
2 + Mii

n +1
2τ

]2
− Mei

n M±
n,ie

τ
,

where M±
n, jk (a j ; ak ) = M jk

n (a j ; ak ) ± Mlay
n, jk (a j ; ak ).

The vector of special nonlocal values in the form
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FIG. 8. Threefold antidirectional rotor in the interacting pair of E-I neural fields where the rotors in the E populations in layer I (solid blue
curve) and layer II (dashed green curve) rotate in opposite directions. Plotted curves indicate the threshold boundary of the superthreshold
region at different points in time t . This is an example of a periodic solution that occurs well beyond a Hopf bifurcation point.

φn = (ϕ̂e(ae), ϕ̂i(ai ), ψ̂e(ae), ψ̂i(ai )) = (1, ν±
n ,±1,±ν±

n )
is

ν±
n = λ±

n + 1 − M±
n,ee(ae; ae)

−Mei
n (ae; ai )

.

Spatial eigenfunctions for the nth eigenmode are

ϕ1
n(r, θ ) = ϕ̂n(r)einθ , ϕ2

n(r, θ ) = ϕ̂n(r)e−inθ .

The spatial eigenmodes corresponding to �+
n and �−

n are the
in-phase mode (+) and antiphase mode (−) where

ϕ̂±
n (r) =

⎛⎜⎜⎜⎜⎝
1

λ+
n +1

[
M±

n,ee(r; ae) − ν±
n Mei

n (r; ai )
]

1
τλ+

n +1

[
M±

n,ie(r; ae) − ν±
n Mii

n (r; ai )
]

± 1
λ+

n +1

[
M±

n,ee(r; ae) − ν±
n Mei

n (r; ai )
]

± 1
τλ+

n +1

[
M±

n,ie(r; ae) − ν±
n Mii

n (r; ai)
]
⎞⎟⎟⎟⎟⎠.

At a Hopf bifurcation point the Hopf frequency is

ωH = Im{λ±
n } =

√
−(M±

n,ee − 1)(Mii
n + 1) + Mei

n M±
n,ie

τ
,

where (M±
n,ee − 1) = (Mii

n + 1)/τ .

Condition for Hopf bifurcation of the �±
n mode

If we assume that a stationary bump is stable, that both λ+
n

and λ−
n are complex, and one of the two nth eigenmodes desta-

bilizes in a Hopf bifurcation, then the condition determining
if the �+

n or �−
n eigenmode destabilizes is determined by the

eigenvalues with real part closer to 0:

Re{λ+
n } − Re{λ−

n } = Mlay
n,ee(ae; ae).

When Mlay
n,ee(r; a) > 0, in-phase mode �+

n destabilizes first
in the Hopf bifurcation. The antiphase mode �−

n destabilizes
if Mlay

n,ee(ae; ae) < 0 at the bifurcation point. We assumed
w

lay
ee (r) > 0 to represent excitatory, long-range connections

[32,33]. Permitting w
lay
ee (r) < 0 or adding inhibitory interlayer

connections introduce further means to destabilize the an-
tiphase mode �−

n mode.
Figures 6 and 7 illustrate examples of antiphase breathers

and rotors with n-fold symmetry in the interacting pair of E-I
neural fields. In Fig. 8 shows a solution well beyond a Hopf
bifurcation point that exhibits antidirectional rotors.

F. Comment on Hopf bifurcation

We mention that the Hopf bifurcation results in this anal-
ysis should be expected to apply only in a vicinity of any
supercritical Hopf bifurcation point with regard to the behav-
ior of the emergent periodic solutions. Stable solutions far
from the bifurcation point can change and behave differently
due to secondary or subcritical bifurcations and other stable
attractors may coexist nearby.

VII. RING SOLUTIONS IN E-I NEURAL FIELD

Ring solutions come in different forms but we briefly
describe two examples encountered in the E-I neural field
that underwent Hopf bifurcation. Case I is a ring in the E
population with a bump in the I population. Case II is a ring
in the E population with a bump surrounded by a ring in the I
population.

A. Case I: Ring solution in one population only

We consider a stationary solution to E-I neural field (2)
where the activity in the E-population is a radially symmetric
ring with two threshold crossings at 0 < ae

0 < ae
1 satisfying

the conditions below on [0,∞) (see Fig. 9)

U ring
e (r) > θe, r ∈ (

ae
0, ae

1

)
;

U ring
e

(
ae

j

) = θe, j = 0, 1;

FIG. 9. Diagram of the profile of a ring solution for Case I in
the E-I neural field, with a ring in the E population with threshold
crossings ae

0 and ae
1 and a bump in the I population with one threshold

crossing at r = ai
0.
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U ring
e (r) < θe, r ∈ [

0, ae
0

) ∪ (
ae

1,∞
)

U ring
e (r) → 0 as r −→ ∞ (51)

and the I-population is a stationary bump with a single thresh-
old crossing at r = ai

0 satisfying

Ui(r) > θi, r ∈ [0, ai
0);

Ui(a
i
0) = θi,

Ui(r) < θi, r ∈ (ai
0,∞).

Ui(r) → 0 as r → ∞ (52)

The synaptic terms for a ring in the E population and a bump
in the I population for j ∈ e, i are given by

W ring
je

(
r; ae

0, ae
1

) =
∫
R2

w jk (||r − r′||)H(
U ring

e (r′) − θe
)
d2r′

=
∫ 2π

0

∫ ae
1

ae
0

w je(||r − r′||)r′dr′dθ,

= Wje
(
r; ae

1

) − Wje
(
r; ae

0

)
,

Wji(r; ai
0) =

∫
R2

w ji(||r − r′||)H (Ui(r
′) − θi )d

2r′

=
∫ 2π

0

∫ ai
0

0
w ji(||r − r′||)r′dr′dθ. (53)

where Wjk (r; a) was defined in Eq. (13). The ring solution (51)
and (52) can accordingly be expressed in the form

U ring
e (r) = W ring

ee

(
r; ae

0, ae
1

) − Wei
(
r; ai

0

) + Ie(r),

Ui(r) = W ring
ie

(
r; ae

0, ae
1

) − Wii
(
r; ai

0

) + Ii(r).

Threshold conditions (51) and (52) can then be expressed as

W ring
ee

(
ae

0; ae
0, ae

1

) − Wei
(
ae

0; ai
0

) + Ie
(
ae

0

) = θe

W ring
ee

(
ae

1; ae
0, ae

1

) − Wei
(
ae

1; ai
0

) + Ie
(
ae

1

) = θe

W ring
ie

(
ai

0; ae
0, ae

1

) − Wii
(
ai

0; ai
0

) + Ii
(
ai

0

) = θi

Small perturbations (̃ϕe, ϕ̃i ) to the ring solution
(U ring

e (r),Ui(r)) evolve according to

∂ϕ̃e

∂t
+ ϕ̃e = N ring

ee ϕ̃e − Nei ϕ̃i,

τ
∂ϕ̃i

∂t
+ ϕ̃i = N ring

ie ϕ̃e − Nii ϕ̃i. (54)

Setting (ϕ̃e, ϕ̃i ) = ϕ(r)eλt leads to the spectral problem for λ

and ϕ(r) = (ϕe(r), ϕi(r)):

−ϕe + N ring
ee ϕe − Nei ϕi = λϕe,

− 1

τ
ϕi + 1

τ
N ring

ie ϕe − 1

τ
Nii ϕi = λϕi. (55)

Setting ϕe(r, θ ) = ϕ̂e(r)einθ and ϕi(r, θ ) = ϕ̂i(r)einθ the com-
patibility equation determining both the eigenvalues and
special nonlocal values of the eigenfunctions of the nth eigen-
mode at threshold points ae and ai is given by(

MEIring1
n − IEIring1

)
φn = λn φn, (56)

FIG. 10. Diagram of the profile of a ring solution for Case II in
the E-I neural field, with a ring in the E population with threshold
crossings ae

0 and ae
1 and a bump encircled by a ring in the I population

with threshold points ai
0, ai

1, and ai
2.

where IEIring1 = diag (1, 1, τ−1),

φn = (
ϕ̂e
(
ae

0

)
, ϕ̂e

(
ae

1

)
, ϕ̂i

(
ai

0

))
,

and MEIring1
n is the (3 × 3) matrix

MEIring1
n

=

⎡⎢⎢⎣
Mee

n

(
ae

0; ae
0

)
Mee

n

(
ae

0; ae
1

) −Mei
n

(
ae

0; ai
0

)
Mee

n

(
ae

1; ae
0

)
Mee

n

(
ae

1; ae
1

) −Mei
n

(
ae

1; ai
0

)
1
τ
Mie

n

(
ai

0; ae
0

)
1
τ
Mie

n

(
ai

0; ae
1

) − 1
τ
Mii

n

(
ai

0; ai
0

)
⎤⎥⎥⎦

and M jk
n (a j ; ak ) = �

jk
n (a j ; ak )/|U ring ′

k (ak )|.
Accordingly eigenvalues λn for the nth eigenmode in the

linearization about the ring solution are given by

det
(
MEIring1

n − IEIring1 − λnI
) = 0.

Consequently, the function En(λ) where

En(λ) = det
(
MEIring1

n − IEIring1 − λnI
)

is an Evans function for the nth eigenmode of the station-
ary ring solution and we combine cases n = 0, 1, 2, . . .. The
spatial eigenfunctions ϕn(r, θ ) for the nth eigenmode can be
expressed in a similar form as before

ϕ1
n(r, θ ) = ϕ̂n(r)einθ , ϕ2

n(r, θ ) = ϕ̂n(r)e−inθ ,

where ϕ̂n(r) = (ϕ̂n
e (r), ϕ̂n

i (r)).

B. Case II: Ring solution in both populations

We consider a stationary solution to E-I neural field (2)
where superthreshold activity in the E-population is a radially
symmetric ring with two threshold crossings at (0 < ae

0 < ae
1)

satisfying the following conditions on [0,∞) (see Fig. 10):

U ring
e (r) > θe, r ∈ (

ae
0, ae

1

)
;

U ring
e

(
ae

j

) = θe, j = 0, 1;

U ring
e (r) < θe, r ∈ [

0, ae
0

) ∪ (
ae

1,∞
)

U ring
e (r) → 0 as r → ∞ (57)

and the I-population is a stationary solution with three thresh-
old crossings at radii (0 < ai

0 < ai
1 < ai

2) having the form
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of an inner superthreshold bump surrounded by a concentric
outer superthreshold ring satisfying

U ring
i (r) > θi, r ∈ [

0, ai
0

) ∪ (
ai

1, ai
2

)
;

U ring
i (ai

j ) = θi, j = 0, 1, 2;

U ring
i (r) < θi, r ∈ (

ai
0, ai

1

) ∪ (
ai

2,∞
)
;

U ring
i (r) → 0 as r −→ ∞. (58)

The synaptic terms due to a ring in the E population and a
bump encircled by a ring in the I population for j ∈ e, i are
given by

W ring
je

(
r; ae

0, ae
1

) =
∫
R2

w jk (||r − r′||)H(
U ring

e (r′) − θe
)
d2r′

=
∫ 2π

0

∫ ae
1

ae
0

w je(||r − r′||)r′dr′dθ,

= Wje
(
r; ae

1

) − Wje
(
r; ae

0

)
,

W ring
ji

(
r; ai

0, ai
1, ai

2

) =
∫
R2

w ji(||r − r′||)H(
U ring

i (r′) − θi
)
d2r′

=
∫ 2π

0

∫ ai
0

0
w ji(||r − r′||)r′dr′dθ.

+
∫ 2π

0

∫ ai
2

ai
1

w je(||r − r′||)r′dr′dθ

= Wji
(
r; ai

0

) + Wji
(
r; ai

2

) − Wji
(
r; ai

1

)
where Wjk (r; a) was defined in Eq. (13). Consequently, the
ring solution can be expressed in the form

U ring
e (r) = W ring

ee

(
r; ae

0, ae
1

) − W ring
ei

(
r; ai

0, ai
1, ai

2

) + Ie(r),

U ring
i (r) = W ring

ie

(
r; ae

0, ae
1

) − W ring
ii

(
r; ai

0, ai
1, ai

2

) + Ii(r).

Threshold conditions (57) and (58) can then be expressed as

W ring
ee

(
ae

0; ae
0, ae

1

) − W ring
ei

(
ae

0; ai
0, ai

1, ai
2

) + Ie
(
ae

0

) = θe

W ring
ee

(
ae

1; ae
0, ae

1

) − W ring
ei

(
ae

1; ai
0, ai

1, ai
2

) + Ie
(
ae

1

) = θe

W ring
ie

(
ai

0; ae
0, ae

1

) − W ring
ii

(
ai

0; ai
0, ai

1, ai
2

) + Ii
(
ai

0

) = θi

W ring
ie

(
ai

1; ae
0, ae

1

) − W ring
ii

(
ai

1; ai
0, ai

1, ai
2

) + Ii
(
ai

1

) = θi

W ring
ie

(
ai

2; ae
0, ae

1

) − W ring
ii

(
ai

2; ai
0, ai

1, ai
2

) + Ii
(
ai

2

) = θi

Small perturbations (̃ϕe, ϕ̃i ) to the ring solution
(U ring

e (r),U ring
i (r)) evolve according to

∂ϕ̃e

∂t
+ ϕ̃e = N ring

ee ϕ̃e − N ring
ei ϕ̃i,

τ
∂ϕ̃i

∂t
+ ϕ̃i = N ring

ie ϕ̃e − N ring
ii ϕ̃i. (59)

Setting (ϕ̃e, ϕ̃i ) = ϕ(r)eλt leads to the spectral problem for λ

and ϕ(r) = (ϕe(r), ϕi(r)):

−ϕe + N ring
ee ϕe − N ring

ei ϕi = λϕe,

− 1
τ
ϕi + 1

τ
N ring

ie ϕe − 1
τ
N ring

ii ϕi = λϕi. (60)

Setting ϕe(r, θ ) = ϕ̂e(r)einθ and ϕi(r, θ ) = ϕ̂i(r)einθ the
compatibility equation determining the eigenvalues and spe-
cial nonlocal values of the eigenfunctions of the nth eigen-
mode at threshold points ae and ai is(

MEIring2
n − IEIring2

)
φn = λn φn, (61)

where IEIring2 = diag (1, 1, τ−1, τ−1, τ−1), and the vector
φn of special nonlocal values

φn = (
ϕ̂e
(
ae

0

)
, ϕ̂e

(
ae

1

)
, ϕ̂i

(
ai

0

)
, ϕ̂i

(
ai

1

)
, ϕ̂i

(
ai

2

))
,

and MEIring2
n is the (5 × 5) block matrix

MEIring2
n =

⎡⎣ Mee
n Mei

n

Mie
n Mii

n

⎤⎦,

where the block submatrices are

Mee
n =

[
Mee

n

(
ae

0; ae
0

)
Mee

n

(
ae

0; ae
1

)
Mee

n

(
ae

1; ae
0

)
Mee

n

(
ae

1; ae
1

)],

Mei
n =

[
−Mei

n

(
ae

0; ai
0

) −Mei
n

(
ae

0; ai
1

) −Mei
n

(
ae

0; ai
2

)
−Mei

n

(
ae

1; ai
0

) −Mei
n

(
ae

1; ai
1

) −Mei
n

(
ae

1; ai
2

)],

Mie
n =

⎡⎢⎣
1
τ
Mie

n

(
ai

0, ae
0

)
1
τ
Mie

n

(
ai

0, ae
1

)
1
τ
Mie

n

(
ai

1, ae
0

)
1
τ
Mie

n

(
ai

1, ae
1

)
1
τ
Mie

n

(
ai

2, ae
0

)
1
τ
Mie

n

(
ai

2, ae
1

)
⎤⎥⎦,

Mii
n =

⎡⎢⎢⎣
− 1

τ
Mii

n

(
ai

0, ai
0

) − 1
τ
Mii

n

(
ai

0, ai
1

) − 1
τ
Mii

n

(
ai

0, ai
2

)
− 1

τ
Mii

n

(
ai

1, ai
0

) − 1
τ
Mii

n

(
ai

1, ai
1

) − 1
τ
Mii

n

(
ai

1, ai
2

)
− 1

τ
Mii

n

(
ai

2, ai
0

) − 1
τ
Mii

n

(
ai

2, ai
1

) − 1
τ
Mii

n

(
ai

2, ai
2

)
⎤⎥⎥⎦,

and M jk
n (a j ; ak ) = �

jk
n (a j ; ak )/|U ring ′

k (ak )|.
Accordingly, eigenvalues λn for the nth eigenmode in the

linearization about the ring solution are solutions to

det
(
MEIring2

n − IEIring2 − λnI
) = 0.

Thus, the Evans function En(λ) for the nth eigenmode is

En(λ) = det
(
MEIring2

n − IEIring2 − λnI
)
.

The spatial eigenfunctions ϕn(r, θ ) for the nth eigenmode
can be expressed in a similar form as before,

ϕ1
n(r, θ ) = ϕ̂n(r)einθ , ϕ2

n(r, θ ) = ϕ̂n(r)e−inθ ,

where ϕ̂n(r) = (ϕ̂n
e (r), ϕ̂n

i (r)).
Fig. 11 illustrates some examples of ring breathers and

rotors with n-fold symmetry observed in the E-I neural field.

VIII. DISUCSSION

In this paper we have discussed a family of elementary neu-
ral fields whose activity is mediated by synaptic excitation and
inhibition and modulated by a linear adaptation or a negative
feedback gating variable and in the presence or absence of an
input homogeneity on two-dimensional domain R2. For each
of these elementary neural field models, the linear stability
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FIG. 11. Ring breathers and rotors in the E-I neural field re-
sulting from destabilization of a stationary ring solution via Hopf
bifurcation with respect to different eigenmodes: (a) destabilization
of the n = 0 mode leading to an expanding contracting, radially
symmetric ring breather; (b) destabilization of the n = 1 mode in
a Hopf bifurcation to a onefold ring rotor or rotating solution with Z1

rotational symmetry; (c) destabilization of the n = 1 mode in a Hopf
bifurcation to a onefold expanding-contracting ring breather with D1

dihedral symmetry across a single axis at all times; (d) destabilization
of the n = 2 mode in a Hopf bifurcation leading to a twofold expand-
ing contracting ring breather with D2 dihedral symmetry across two
axes at all times.

and Hopf bifurcation of stationary bump solutions was ana-
lyzed and presented in a notation permitting direct comparison
of the structure and dependency on model parameters across
this family of neural fields. We also obtain conditions that
clarify when the in-phase and antiphase eigenmodes desta-
bilize in the bifurcation and how it relates to the network
parameters. To facilitate the existence and stability analysis of
stationary bumps across this family of neural fields, a general
vectorized neural field model to analyze any configuration of
N interacting neural fields with M linear gating variables was
established to analyze the general case.

Stationary bumps and their Hopf bifurcation on one-
dimensional domain (−∞,∞) are treated separately as there
are significant differences in the model equations, its analysis,
the structure of solutions and their bifurcations. An analogy
may be drawn between the even-symmetric sum mode ⊕ on
R and the case n = 0 on R2. A breather bifurcating from the

n = 0 mode on R2 will appear as an expanding-contracting
breather on R if we restrict the solution to any line through
the origin. An analogy may also be drawn between the odd-
symmetric difference mode � on R and the case n = 1 on R2.
An expanding-contracting breather or rotor bifurcating from
the n = 1 mode on R2 will appear as a side-to-side slosher on
R if we restrict the solution to the line of reflection symmetry
through the origin in the case of a breather with D1 symmetry
or any line through the origin in the case of a rotor with Z1

symmetry. Higher-order even and odd modes exhibit a related
structure.

Analytical results for stability and Hopf bifurcation
with O(2) symmetry of stationary bumps were com-
pared with numerical simulations in all neural fields dis-
cussed in this paper. In particular, in the vicinity of
the Hopf bifurcation point, the type of emergent solution in
purported supercritical Hopf bifurcations was compared to ex-
pectations from theory which should lead to n-fold breathers
(i.e., stationary waves with Dn dihedral symmetry) or n-fold
rotors (i.e., rotating waves with Zn rotational symmetry). It
was further sought to properly classify the Hopf bifurcation
and clarify our previous work [15,20] in which we found
additional types of time-periodic solutions. Different forms
of radial and angular perturbations of the bump-like initial
conditions were used to probe the nonlinear dynamics of the
neural fields in the vicinity of the stationary bump to more
effectively vet the stability of the bump and identify the types
of stable solutions that can be approached in the vicinity of
Hopf bifurcation points in this infinite-dimensional dynamical
system.

In all of the cases we carefully inspected, it was consis-
tently found that, in the vicinity of Hopf bifurcation points
that were purported to be supercritical, the emergent solu-
tions were either of the form of an expanding-contracting
n-fold breather with Dn symmetry or an n-fold rotor with
Zn symmetry, where, in the case of breathers, the axis
of alignment of the breather varied with initial conditions.
Moreover, in the case of interacting pairs of symmetric
neural fields, the n-fold breathers and rotors could be in-
phase or antiphase depending on whether the ± eigenmode
destabilizes.

However, near a Hopf bifurcation point in some param-
eter regions it was possible to find other types of periodic
or oscillatory solutions and even multiple coexistent periodic
solutions, particularly in the presence of an input inhomo-
geneity. These spatiotemporal oscillations could take the form
of rotors with a different lobe count than n corresponding to
the mode undergoing the Hopf bifurcation. Another form the
oscillations could take on is similar to a rotor but characterized
instead by counterpropagating lobes that emerge and collide
on the boundary of the activity bump as observed in Fig. 4 in
Ref. [20]. One can imagine such a solution by taking an n-fold
rotor and reflecting a subset of the lobes so they rotate in the
opposite direction and collide (or emerge) at various points.
We have sometimes referred to these time-periodic solutions
as swimmers as they appeared to do the breaststroke when the
counterpropagating lobes are symmetric across an axis and
emerge from the bump (see Fig. 4 in Ref. [20] for reference).
When these occur, multiple forms of such solutions can be
approached via different initial perturbations for the same
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parameter values. In the interacting pair of symmetric neural
fields, an interesting type of solution well beyond a Hopf
bifurcation was a pair of antidirectional rotors, where the rotor
in neural field layer I rotated at the same rate but opposite
direction as the rotor in neural field layer II. Consequently,
the investigation and description of these additional types
of time-periodic spatiotemporal behavior warrants a separate
treatment.

This work highlights a family of elementary neural fields
and the main implication is to understand how network in-
teractions and symmetry lead to the spatiotemporal structure
of spatially coherent time-periodic oscillations arising from
Hopf bifurcation. Such bifurcations may occur more uni-
versally in a wide range of more complex and biologically
relevant neural field models, given the universality of bifur-
cations in nonlinear dynamical systems. It is also important
to understand how modeling choices may lead to symmetry
breaking or preclude certain types of bifurcations. Addition-
ally, the set of existence and stability results collected herein
may serve to support different applications of bumps and
breathers in related neural field models.

It may be possible to observe stationary and oscillatory
bumps either in in vitro or in vivo experimental preparations
using optogenetics and voltage sensitive dyes. Optogenet-
ics could be used to generate the input inhomogeneity by
continually stimulating neurons in a local patch of tissue

and observing the activity across a layer of the cortex with
populations of neurons that form short-range synaptic con-
nections that are approximately homogeneous and isotropic
(distance-dependent). Different pharmacological conditions
in in vitro slice preparations could be used to modify the
properties of the network to observe the changes in the spa-
tiotemporal behavior. Two densely interconnected areas with
reciprocal and topographic connections, e.g., somatosensory
cortices S1 and S2 [83], could be investigated by stimulating
local patches of tissue in one or both regions and monitoring
the activity in both. While it would be difficult to predict
when such solutions should occur, our work suggests that
one could expect at least two characteristic forms of localized
spatiotemporal activity patterns as a steady-state response to
a persistent localized input inhomogeneity in the form of a
stationary activity bump of steady persistent activity or a sta-
tionary activity bump exhibiting spatiotemporal oscillations in
the activity. We have also found the localized oscillations can
emit an outward propagating circular wave, ring waves, and
target patterns in response to an input in the AE neural field
[15] and in some cases with inhibition when the network sup-
ports such waves in the absence of an input, indicating other
types of responses one might observe that are not localized in
space. Such waves perhaps might be observed, for example,
in disinhibited cortical slice preparations that support wave
propagation.
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