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Spatially coherent oscillations in neural fields with inhibition and adaptation.
I. One-dimensional domains
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We study Hopf bifurcation of stationary activity bumps to localized, spatially coherent oscillations in a family
of elementary neural field models involving nonlocal synaptic excitation and inhibition with Heaviside firing
rate nonlinearity and local linear adaption, both with and without a localized input inhomogeneity, on the one-
dimensional spatial domain (—o0, 00), including cases of interacting pairs of neural fields. (We treat the same
neural fields on two-dimensional spatial domain R? separately.) A main focus is to categorize how the underlying
symmetries of the nonlinear operators in this family of equations give rise to a related set of spatially coherent
time-periodic solutions that bifurcate via Hopf bifurcation with respect to different spatial eigenmodes, each with
different spatial structures being selected as a result of the relative balance of synaptic inhibition to excitation.
A general framework is constructed to analyze stationary bump solutions in a neural field model containing N
neural fields with M linear gating variables that modulate different neural fields. Under a basic set of symmetry
assumptions on the synaptic weight functions and the input homogeneity, we show that all such neural fields have
two broad classes of eigenmodes with either even or odd spatial symmetry. When these eigenmodes destabilize
via Hopf bifurcation, it leads to various types of spatially coherent, time-periodic oscillations that can take the
form of breathing bumps or breathers that expand and contract and sloshing bumps or sloshers which move
side-to-side. Analytical treatments combined with numerical simulations provide a more complete picture of
the emergence of these periodic activity patterns and novel secondary bifurcations are found to occur, including
torus, period-doubled, and Rossler band-like dynamics. Interacting pairs of neural fields that support bumps,
breathers, and sloshers can lead to novel spatially coherent oscillations with different patterns of synchrony
and spatial positioning depending on the type of synaptic interactions between the neural fields including novel
in-phase and antiphase breathers and sloshers. A novel transition from a slosher to a spatially localized, traveling
periodic wave is also found. The approach is extended to the case of multibump solutions and bifurcations

leading to various multibump breathers and sloshers are observed.

DOI: 10.1103/zd32-vxww

I. INTRODUCTION

Neural field equations are nonlocal partial integrodiffer-
ential equations that describe the average activity in large
populations of neurons on spatial domains, or domains in
feature space, and are capable of a diverse range of spa-
tiotemporal behavior on one-dimensional domains, including
stationary, traveling, and oscillatory localized bump solutions
[1-52]. Inherent in the improvement of modeling equa-
tions for physical phenomena, such as activity in the brain
[53—69], is a deeper understanding of the basic underly-
ing spatiotemporal dynamics supported by these neural field
equations and its relationship to model parameters. We in-
vestigate the response in the activity of various networks of
neuronal populations that support stationary localized bump
and breather solutions, both in the presence of a sustained,
localized input inhomogeneity and in the input-free case. The
localized input inhomogeneity could represent a diverse set
of phenomena, including a sensory input to the layer, input
from another brain region to the layer, a locally depolarized
or hyperpolarized region within the layer, an external input
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due to an electrode or other device, etc. We are interested
in sustained responses of activity and whether they will be
modulated by an oscillation.

The objective of this paper is threefold. First, it compares
results for linear stability and Hopf bifurcation of station-
ary bumps across a family of elementary neural fields and
the dependence on network parameters. Second, it classifies
the spatial structure of the eigenmodes and demonstrates its
relation to the spatiotemporal structure of the time-periodic
solutions emerging in the Hopf bifurcation and model param-
eters. Third, in a large class of neural fields obeying symmetry
assumptions on the synaptic weight functions and inputs, it
shows that the linearization about an even-symmetric station-
ary bump yields two broad classes of eigenfunctions with even
or odd symmetry. Bifurcations with respect to these different
eigenmodes thereby lead to two different classes of spa-
tially localized, time-periodic oscillations termed breathers
and sloshers as they exhibit either expanding-and-contracting
or side-to-side motions. The analysis is extended to the case of
N neural fields with M gating variables, including multibump
solutions.

The family of elementary neural fields incorporates dif-
ferent forms of the fundamental types of excitatory and
inhibitory synaptic inputs as well as an adaptation gating

©2026 American Physical Society


https://orcid.org/0000-0002-0070-4273
https://ror.org/03k3c2t50
https://crossmark.crossref.org/dialog/?doi=10.1103/zd32-vxww&domain=pdf&date_stamp=2026-01-08
https://doi.org/10.1103/zd32-vxww

STEFANOS E. FOLIAS

PHYSICAL REVIEW E 113, 014203 (2026)

variable or negative feedback mechanism, which can model
the process of spike-rate adaptation observed in neurons in
cortex that decrease their firing rates after sustained firing.
Adaptation serves as a concrete case for incorporating gat-
ing variables in the stability analysis for the generalization
to more varied neural fields. It also compares two different
dynamic mechanisms, nonlocal synaptic interactions and lo-
cal negative feedback, that are capable of producing Hopf
bifurcations of bumps. Interacting neural fields may represent
interacting populations of neurons nearby or across in a layer,
between different layers, between different brain regions, etc.

We demonstrate a variety of novel types of activity pat-
terns, including bifurcations to multibump breathers as well
as single bump breathers with variable activity arising from
secondary bifurcations either to dynamics on a torus, period
doubling with mixed breathing and sloshing behavior, or a
period-doubling cascade leading to Rossler-like dynamics.
We show a novel transition from a stationary bump or multi-
bump to a spatially localized traveling periodic wave pinned
to the input as a parameter is varied. Evidence of a Hopf-
Hopf nonlinear mode interaction was sought, without success,
between the breather and slosher eigenmodes in the presence
of an input homogeneity as the analog to the drift-Hopf bifur-
cation found in the input-free case [51].

The paper is organized as follows. In Sec. II we outline
a family of elementary neural fields depicted in Fig. 1 and
studied herein. In Sec. III we construct a general vectorized
neural field model to analyze any configuration of N inter-
acting neural fields with M gating variables and proceed to
establish existence and stability conditions for the coupled
neural fields in the general case, including construction of the
eigenfunctions. In Sec. IV we analyze the (N x M) vectorized
system in the special case that the synaptic weight functions
and the input inhomogeneity are even-symmetric about the
same common center and show the eigenfunctions of the
linearization about a stationary bump fall in to two broad
classes of either even or odd spatial symmetry about the com-
mon center. In Sec. V we analyze the family of elementary
neural fields, outline the existence and stability results for
stationary bumps, obtain conditions for which different spatial
eigenmodes destabilize in a Hopf bifurcation, and discuss the
relationship to the spatiotemporal structure of the emergent
time-periodic solution. In Sec. VI we extend the analysis to
the case of multibump solutions and their Hopf bifurcation to
oscillatory multibumps.

II. ELEMENTARY NEURAL FIELD MODELS

The neural field models studied in this paper are mod-
els that involve different network topologies containing the
two fundamental types of excitatory and inhibitory synaptic
inputs generated either by separate populations of neurons
or an effective mix in a single population of neurons. We
also incorporate a local linear negative feedback mechanism
in the form of an adaptation gating variable that models
spike rate adaptation as a concrete example. The synaptic
connectivity assumed in the analysis is based on short range
connections found in regions of the cortex but can be gen-
eralized to other types of connectivity. Each neural field is
capable of supporting stationary bumps that undergo Hopf
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FIG. 1. Synaptic connectivity patterns for the neural fields stud-
ied in this paper. AE neural field represents a population of excitatory
neurons whose activity is modulated by an adaptation variable. Simi-
larly, Al and AA represent an inhibitory population and Amari neural
field modulated by adaptation. The Amari neural field is an effective
mix of excitation and inhibition in a single population using a Mex-
ican hat weight function. The E-I neural field is a two-population
neural field with distinct populations of excitatory and inhibitory
neurons. The AE-I neural field is an E-I neural field where the E
population is modulated by an adaptation variable. Interacting pairs
of neural fields are formed from these fundamental neural fields. In
the interacting pair of E-I neural fields, the interlayer connections
are symmetric though only one set is shown. Interlayer connections

project from the E population only to model long-range excitatory
connections in cortex.

bifurcation to time-oscillatory solutions. These fundamental
building blocks can be used to build more complex neural field
models.

We define the symbol w * f[u] for a nonlinear spatial con-
volution of a solution u(x, t) over (—oo, o0), where

(wjk *f[u])(x)=/ijk(llx—yll)f(u(y,t))dy ey

represents the total synaptic input from the neurons in pop-
ulation k fo the neurons in population j where wji(x) is
the synaptic weight function. The firing rate nonlinearity
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f(u), generally sigmoidal in form, is taken to be a Heaviside
function f[u] = H(u — 0) with threshold 6, as introduced by
Amari [2] for analytic tractability. I(x) is a stationary, local-
ized (Gaussian-like) input homogeneity.

A. Amari neural field

g—;‘—i—u:w*f[u]—i—l(x). 2)
The simplest neural field supporting a stationary bump is the
Amari neural field representing a single neuronal population
in which the net synaptic input can be net excitatory or
inhibitory, typically in the shape of a Mexican hat (locally
excitatory, laterally inhibitory) [2]. Stationary bumps occur
for other classes of synaptic weight function w in this model,
including a case with midrange excitation and both local and
long-range inhibition [19]. Though the Amari neural field is
not discussed here, we note that Hopf bifurcation of stationary
bumps do occur in the case of synaptic delays as analyzed in
Ref. [45].

B. AE, Al or AA neural field

3
a—l:—l—u:w*f[u]—ﬂn—l—l(x),
1 on

We take f[u] = H(u — 0), and 0 is a constant threshold. The
AE neural field represents a layer of coupled excitatory (E)
neurons (u = u,) with positive coupling strength (w(x) > 0)
subject to linear adaptation (A) in the form of the local neg-
ative feedback term —pBn, where n is a gating-like variable
governed by linear dynamics introduced by Pinto & Ermen-
trout [6,10]. The Al neural field is a layer of coupled inhibitory
() neurons (1 = u;) with negative synaptic coupling strength
(w(x) < 0). Other choices of w(x) lead to different neural
field models. If w(x) is a Mexican hat weight function (locally
excitatory, laterally inhibitory), this represents the Amari neu-
ral field with a layer of neurons (¥ = u) whose firing rate is
modulated by a gating variable, which we denote as the AA
neural field for adapting Amari neural field.

C. E-I neural field

u,
9t + Uy = Wee * fe[ue] — Wej * fi[ui] +Ie()€),
8u,~
rv + up = wie * felue] — wii * filwi] + Li(x), “4)

where we take f,[u] =H@w —0,), filul = H(u — 06;), and
0. and O; are constant thresholds. The E-I neural field is
a variation on the original Wilson-Cowan neural field [1].
We consider the formulation with all Heaviside nonlineari-
ties introduced in Ref. [24]. An alternative formulation was

considered in Ref. [11]. The synaptic weight functions w j;
are purely positive and the excitatory or inhibitory synaptic
currents are determined by the sign in the equations. Note that,
under certain assumptions, an E-I neural field can be directly
reduced to the Amari neural field [11].

D. AE-I neural field

ou,
81/; + Uy = Wee * fe[”e] — W * ft[ut] - ﬂne + Ie’
814,‘
T tui= wee * felue]l — wii * filuil + 1
1 dn, n 5)
- e = Ue,
o ot

where we take f.[u] = H(u — 0,), filul = H(u — 6;), and 6,
and 0; are constant thresholds. The AE-I neural field is the
natural combination of two population E-I neural field where
the E-population is additionally subject to linear adaptation
(A) introduced in Refs. [31,32]. This model could reflect, for
example, spike-rate adaptation observed in excitatory neurons
coupled to inhibitory interneurons in neocortex.

E. Interacting pair of AE/AI/AA neural fields

An interacting pair of Amari neural fields with symmetric
local and symmetric or asymmetric interlayer connections was
introduced and analyzed in Refs. [40,41]. Here we introduce
two forms of interacting pairs of AA/AE/AI neural fields with
the addition of adaptation variables n; and ny: (i) a symmetric
case where the two neural fields are identical in synaptic
weight functions, inputs, and parameters, but are allowed to
evolve independently and (ii) an asymmetric case where the
temporal dynamics are identical but all synaptic weight func-
tions, nonlinear thresholds, and inputs are allowed to differ.

Case I: Symmetric case

ou
8_1‘1 +up = Wioe * flur] + wiay * fluz] — Bng +1(x),
8u2
E + Uy = Wiee *f[MZ] + Wiay *f[ul] - /3’72 +I(X),
181’11 +
—— 4 = u,
o 0t ! !
Lom | (©)
—— 4+ m = u,
o 0t 2 2

where in our treatment f[u] = H(u — 0) and 0 is a constant
threshold. The synaptic weight function wj, represents the
local connection within each population, whereas wi,y repre-
sents the interlayer synaptic connections from one population
to the other. In this case, both weight functions are identical
for each population.
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Case I1: Asymmetric case

3141 oc
s +up = wif * filu] + wllazy * folup] — Bny + 1,
3I/t2 _ .. loc lay
5 + Uy = wyy * folus] +wyy * filug] — Bno + I,
1 ai’ll +
—— 4 n = u,
o 0t ! !
1 3]’12 + (7)
— =4 = u,
o ot 2 2

where we take fi[u] = H(u — 0y) and fp[u] = H(u — 6;),
and 0, and 0, are constant thresholds. In this case both the
local and interlayer synaptic weight functions are allowed to
be different. We still assume the weight functions themselves
are even-symmetric and translation-invariant, though asym-
metric synaptic weight functions have been investigated in
the AE neural field [30]. Note that the case of differing «;,
o, and B, B> may also be treated but the stability analysis is
more complicated. Here our focus is more on the asymmetry
in the synaptic connections in the two populations rather than
differences in the temporal dynamics.

F. Interacting pair of E-I neural fields

ou, .
o e = Wik fulue] — wie * filui] + wl * folvel+Le,

a i a
fa_bz Fou = % x fulug] — w % filw] + w'® x folv, ]+,

0V, a
o T U= Wik folve] — wis * filvi] + w2 * folu 4L,
81),-

Tt ui= W% s f[v,] — wi % filoi] + wi % folu+,
(8)

where we take f,[u] = H(u — 0,), filu] = H(u — 6;), and 0,
and 0; are constant thresholds. This neural field was intro-
duced by Folias and Ermentrout in Ref. [41]. For simplicity
we assume the two E-I neural fields are identical with sym-
metric connections. The interlayer connections between the
two E-I neural fields are projecting from the E cells only
to reflect the excitatory long-range connections in the neo-
cortex. Inhibitory interlayer connections naturally could be
introduced but are not considered here.

Of the neural fields listed here, stability and Hopf bifurca-
tion of stationary bumps have been previously be examined
by us in the AE/AA neural field in Refs. [18,39], in the E-I
neural field in the absence of inputs by Blomquist et al. [24]
and in the case of input inhomogenieties by us briefly in Ref.
[51] and herein, and in the dual E-I neural field in the absence
of inputs by us in Ref. [41]. Additionally we cast existence
and stability conditions in a systematic notation so that the
conditions in different models can be directly compared, and
we fully categorize the spatial structure of the eigenmodes to
investigate the various emergent solutions resulting from Hopf
bifurcation of different eigenmodes.

III. ANALYSIS OF STATIONARY BUMPS
A. Notation

We define notation to move between vector and scalar
notation for different steps of the analysis. The notation

u= [Lt]]

for j =1, ..., N will denote an N-dimensional vector whose
Jjth element is the expression u; which is a neural field or a
gating variable v;. Subsequently, the notation

(w);

is used to refer to jth element of any defined vector u. The
notation

M = [My]

forj=1,...,M, k=1,...,N denotes an (M x N) matrix
with element jk of the matrix given by expression M.
Similarly,

(M) j

refers to element jk of the matrix M.

B. Structure of the neural fields on (—o0, o0)

We construct a vector formulation for a family of N neural
fields with M linear gating variables each coupled only one
neural field (each neural field may couple to more than one
gating variable). The existence and stability of a stationary
bump in this vector formulation is based upon the type of
analysis that has appeared in various studies (e.g., see Refs.
[2,11,18,24]).

We consider two forms of a general neural field equa-
tion for N coupled neuronal populations of the form

ou

i Au+ W xH[u — 0] + I(x), 9)
where the vector u = [u;] represents a vector of N neural
fields uy, uy, ..., uy all defined along a universal spatial co-
ordinate x and time .

We also consider neural field equations with N neural fields
with M additional linear auxiliary or gating variables v;

Ju

o = Au+ Bv+ W H[u— 0]+ I(x),

av

— = Cu + Dy, (10)

ot
where u = [u;] is a vector of N neural fields uy, us, ..., uy
and v =[v] is a vector of M linear gating variables
V1, - .., Uy each defined along the universal spatial coordinate
x and time ¢.

Different neural fields u; are assumed to interact only
through nonlinear synaptic interactions and may be coupled
to more than one gating variable. Each gating variable is
assumed to be coupled to one neural field only and evolve
according to linear dynamics. These assumptions imply A
is an (N x N) diagonal matrix, D is an (M x M) diagonal
matrix, B is an (N x M) matrix, and C is an (M x N) matrix
which are assumed to be constant. Both B and CT have one
nonzero entry in each column in the same location so nonzero

014203-4



SPATIALLY COHERENT OSCILLATIONS IN NEURAL ...

PHYSICAL REVIEW E 113, 014203 (2026)

entry jk of B aligns with nonzero entry kj in C. This implies
BD~!Cis diagonal whenever D is invertible since its nonzero
elements occur when multiplying nonzero element jk of B
with corresponding nonzero element kj of C which produces
element jj on the diagonal, given that D' is diagonal. We
shall assume A, D, and (A — BD~!C) are invertible.

I(x) = [I;(x)] represents a localized excitatory input in-
homogeneity which, for each neural field u;, is assumed to
be a Gaussian-like and even-symmetric about some point
Xc,j in the universal coordinate system. A special case we
consider is where the input in each population is centered
about 0 or a common center x.. For concreteness we take
I;(x) = IJe=®/%)" or a translate. The case I(x) = 0 represents
the associated input-free neural field.

The convolution W *x H[u — 0] is defined as

W x« H[u — 0] =/ W(x — xYH[u(x', t) — 0]dx/,
R

where the vector function defined by

H(u —0p)
Hiu_ 0] — H (uy :— 02)
H(uy — 0y)

is a vector of Heaviside firing rate nonlinearities over the N
populations u; with thresholds ©; (where © = [0;]).

We define the syanptic kernel matrix W(x) as the (N x N)
matrix of synaptic weight functions wj(x) from neuronal
populations & to populations j:

wi1(x) wiy (x)

W =[wpel=| . .oan

wzv; (x) wyy (X)

The first index j denotes the post-synaptic population that
receives the synaptic input, while the second index k de-
notes the pre-synaptic population that induces the synaptic
currents. In Secs. III and IV, we shall assume that the sign
that determines whether the interaction between population j
and k is purely excitatory or purely inhibitory is contained
in the definition of the synaptic weight function w; itself.
In Secs. II and V, purely inhibitory synaptic connections are
represented by positive weight functions, premultiplied with
a — sign. A Mexican hat weight function can be formulated
by subtracting two positive weight functions with different
parameters to generate a mixture of excitation and inhibition
in the following form wy (x) = w(x; w,, 0.) — w(x; w;, 0;)

[2].

C. Existence of a stationary bump

We consider stationary bump solutions of neural field equa-
tions (9) and (10). A stationary bump is any such solution
where there is at most a single localized interval of activity
in the entire domain of each population.

In the case (v = 0) of no gating or auxiliary variables, a
stationary solution to the neural field equations for N coupled
neuronal populations satisfies the equation

0 = Au+ W« H[u— 0]+ I(x). (12)

Uj(x)

~ FIG. 2. Stationary bump profile U;(x) with threshold points x =
aj and aj in the jth neural field u;.

In the case (v # 0) where (linear) gating or auxiliary variables
are present, a stationary solution satisfies

0=Au-+Bv+WsxHu-— 0]+ I(x),
0 = Cu+ Dv. (13)

Provided D is invertible, the pair of vector equations (13) can
be reduced to the same form as Eq. (12) by solving for v =
—D~!Cu and defining matrix A = A — BD~!C to arrive at

0 = Au+ W +H[u— 0]+ 1(x). (14)

Equation (14) has the same form as Eq. (12). Both A in
Eq. (14) and A in Eq. (12) are diagonal under our assump-
tions on the matrices. We express A in terms of its diagonal
elements A;; by writing A = diag(Ai, ..., Ayn).

We assume a solution in the form of a localized stationary
bump u(x, r) = U(x) = [U;(x)] by requiring the bump profile
Uj(x) in each neural field j be superthreshold over a single
interval (aé, a{ ) for each j =1,...,N. The intervals need
not be centered around the same point (see, for example, the
stationary allotopic bump in Ref. [41]).

We assume each U;(x) is bounded on (—00, 00) and satis-
fies the following threshold conditions (see Fig. 2):

Uj(x) > 6;, x € (a},a]), ay < aj
Ujx) =0;, x:aé,a{,

Uj(x) < 0;, otherwise,

Uj(x) - 0, asx— Foo.

The convolution W x H[u — 0] can be expressed as the
vector function W(x;ay, @;) where

W Hu—-0]=W =[W,],
and W; is given by

N o d
W;(x a0, a1) = Z/ wjk(x —y)dy
k=179
N

= 2 (Wil = ab) = Wil = al)),

where ag = [aé] anda; = [a{] forj=1,...,N and

Wie(x) = / w () dy.
0
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Next, provided A in Eq. (12) or A in Eq. (14) is invertible,
each Eq. (12) or Eq. (14) may be solved for u for the profile
of a stationary bump.

A stationary bump, when no linear gating variables are
present, can then be expressed as

u(x, 1) =Ux) = A ' Wxiag. a;) +1(x)), (15)
or, when linear gating variables are present, as

u(x, 1) = U(x) = A~ (W(x:ap. a1) + 1(x)),

v(x,t) = V(x) = —D'CU(x), (16)

where A = A — BD~!C which is diagonal.

The unknown bump threshold points ag,a; with scalar
components aé, a{ for j =1, ..., N are determined by requir-
ing the bump profile U;(x) for each population j to satisfy
its left and right threshold conditions U;(a}) = 0; for [ =
0, I which can be expressed as the nonlinear system of 2N
equations

. 1 A A
Ujlag) = = (W;(ag:a0. @) +1(ap)) = 0
JJ
, 1 A A
Ujlal) = = (W;(ag:a0. @) +Lj(ar) =0, (17)
JJ

where A~! = diag(Z(l‘, ...,/T;,}V) reducing to A=A
in the case of no gating variables. Equation (17) represents
a system of 2N nonlinear equations in 2N variables a; for
j=1,...,Nandl =0, 1.

The stationary bump solution is U = [U;] where the jth
component can be expressed as

N
1
Uj(x) = = Z (ij(x — ag) — ij(x - a’f)) +1;(x) |-
AjiLia

In the special case that the bump is even-symmetric about a
common location x = x, in all populations, then the locations
of the vectors of left and right threshold points for neural field
j=1,..., N can be expressed as

ay=[x. —a'l, a; =[x +a'l,

where a/ is the bump half-width in the jth neural field.

Note that, at times these existence equations produce spu-
rious solutions that cross threshold more than two times
and violate the assumed threshold conditions for a stationary
bump; consequently any solution of the existence equa-
tions must be verified that it yields a stationary bump solution
that properly obeys the threshold crossings, otherwise it does
not correspond to a solution.

D. Stability analysis and spatial dependence of the
eigenfunctions of the linearization

To investigate the stability of a stationary bump U(x, 1),
Egs. (9) and (10) are linearized about the stationary solution
(U, V), by introducing the time-dependent perturbations

u(x, 1) = Ux) + 9(x, 1),
v(x, 1) = V(x) + ¥(x, 1),

and expanding to first order in @, 17} which leads to the linear
system of integrodifferential equations

0 - ~ ~ ~
a—t(o=A<p+B1ﬁ+N<p,

9 ~ o~
5'/’=C¢+D'/', (18)
where N is a nonlocal compact linear operator given by
No =W« [§(U — 0)¢]

_ A W(x — ) 8(U(y) — 0) () dy.

W is the matrix of synaptic weight functions in Eq. (11) and
8(U — 0)¢ is the vector of § functions over the N neural fields
@; with threshold 0; and bump profile U;(x):

85U —01) ¢

S(U, — 0
5(U— 0)p = (U | 2) @2

8(Uy — On) on

Setting @(x, 1) = (x)e and P(x,t) = ¥(x)e* in Eq.
(18) results in the spectral problem

A9 =A@+ By + No,
AP =Cop+Dy. (19)

Provided that (AI — D) is invertible, the function ¥ is deter-
mined uniquely by ¢ according to

¥ =OI-D) 'Co,
thereby reducing Eq. (19) to the reduced spectral problem
Lo =(LA)+N)o, (20)

where matrix operator L(1) = A + B(AI — D)~'C depends
on the spectral parameter A. When gating variables are not
present, L()) reduces to L(A) = A.

For A, B, C, D satisfying the assumptions in Sec. III B, it
follows that L(A) is diagonal assuming (AI — D) is invertible.
To reference the elements of L(1) we define

L) =diag(€i1 (1), €xn), ..., Lyn(1)).

We view the nonlocal operator N acting on the vector function
@(x) in terms of operators N,

N = [N,
each acting on its scalar component ¢ (x) according to

Nixor = wj* [H' (Ux — 6;) ¢x]
= / wje(x — 1) 8(Uk(n) — Or) g (n) dn

= Mii(x:ap) @i (ag) + M (x:a) g (ar),
where

wik(x — af)

M) = ")
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and

N
Uk( )_ |:Z wjk
k=1

If we define the 2N-dimensional constant vector @ below for
the special nonlocal values ¢ j(al’ ),

O = (g{)] (aé), ey (pN(af)V), (] (a%), ey QON(QIIV))T, (21)

we can express N¢ in terms of the (N x 2N) matrix M (x)
where

—wi(x —a})] + Ij/-(x)i|.

M) =[Molx) M),

Mii(xsaf)]-

N,and/ =0, 1.

No(x) = M(x) @,

M) =

M (x)isan (N x N) matrix, j,k=1,...,

1. Essential spectrum
N is a compact operator. The essential spectra of (L + N)
and L are the same, since L 4+ N is a compact perturbation of
L, and comprise the finite set of values

oess = 1],

which is the set of all solutions A = A% to the equation

N
[ ;00 -n =0,

j=1

where £;;(A) are the diagonal elements of L(X). Operator
(L — AI) has an infinite-dimensional kernel at each APSS.
Since (L + N) and L are closed operators and A{S are isolated
points with infinite geometric multiplicity, then A$S® belong to
the essential spectrum of L and (L 4+ N) [70]. The essential
spectrum lies in the open left-half complex plane whenever
Re (A8} < Oforalli=1,...,0.

2. Point spectrum

We rewrite the spectral problem Eq. (20) using Ne¢ =
M(x)D to express it as

(I — L(A)e(x) = Mx)D. (22)

Since the diagonal matrix (AI — L.(1)) is invertible whenever
A ¢ Oess, Eq. (22) generates nontrivial solutions whenever
the vector of special nonlocal values ® is nonzero. The
eigenfunctions over space are determined by the special
nonlocal values ® of the eigenfunctions at the threshold
points. A self-consistency or compatibility condition for the
vector of special nonlocal values @ is constructed by set-
ting x = aé, a{ in the jth entry of the vector equation (22)
stated as

DD Milxsap) eu(ap),

1=0 k=1

(A —=£;;(AM)g;(x) =

condition for
of the

to obtain the following compatibility
the existence of threshold points x = a), a]

bump

(A —£;;0))p;(a)) = Mii(af; af) ge(af),

MH
M=

~
Il
=
-
Il

1

M=

(= £;;(\)g;(a]) = Mii(alsaf) ou(af).  (23)

N
o
~
Il

1

Compatibility condition (23) is expressed compactly as
W —L)D = MO, (24)

where f(k) is a (2N x 2N) matrix (that can depend on spec-
tral parameter A if gating variables are present)

< . [LG) 0
L(A)_|: 0 L(A)}'

M is the (2N x 2N) matrix composed as a (2 x 2) block
matrix with (N x N) submatrices M,,,, where

My M '
w[e ] =)

M(al;d) = ,
i 0) = =)

p’7q

where p,g=0,1land j,k=1,...,N
Rewriting compatibility condition (24) for the vector of
special nonlocal values @ as

AWM —LO) —M)D = 0. (25)

Nontrivial solutions to Eq. (25) exists, and hence eigenfunc-
tions to spectral problem Eq. (19) exist, whenever det(Al —
L(X) — M) = 0 on the set of A ¢ 0egs.
Consequently, an Evans function £()) for the stationary
bump (U(x), V(x)) is
() = det(AI — L(x) — M) (26)
for A ¢ 0ess. The zero set of the Evans function represents the
set of all eigenvalues of (L(A) — N) in this region.

3. Eigenfunctions

From Eq. (22), an eigenfunction corresponding to eigen-
value A can be expressed as

(M — L) 'Mx) @,
(A —D)'Co).

o(x) =
Y(x) =

Note that (AI — L())) is invertible since A ¢ oess. The jth
element of @(x) = [¢;(x)] can be expressed as

Tt S el

1=0 k=1

M (x:af) gilar)
Mii(alsaf) pu(af)
N using Eq. (23).

@j(x) =

OR j 21:0 Zk:l
= gDk(ar) 1 N
D120 2k=1
forr=0,1land j=0,1,...,
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IV. SPATIAL STRUCTURE OF THE EIGENFUNCTIONS
FOR NEURAL FIELDS WITH EVEN SYMMETRY

When even symmetry is present in the synaptic weight
functions wjx(x) and the inputs /;(x) (when present), and,
moreover, the stationary bump in each population k shares
a common center x. then we show that the spatial structure
of operator L 4+ N in general can be decomposed into two
components with either even or odd symmetry that give rise
to eigenfunctions with even or odd spatial symmetry. As these
assumptions underlie the specific neural fields investigated in
this paper in Secs. II and V the following applies to all of
them.

Structure of M for even-symmetric U(x), W(x)
Claim: If wj(x), I;(x), and U;(x) are even-symmetric
about a common center x, for all j,k =1,..., N, then

My =M;; =@ and Mo =My = X,

so M reduces to the form
M — My My| |2 X
T | Mo Mg| [ X @f
To see why this is true, if the bump Ui (x) in each pop-
ulation k is even-symmetric about a common center x =
x., then |Uk’(a(’§)| = |U,§(a’1‘)| and |a} — ak| = |aj —dt| and

|a(’) — a’fl = |a{ — a’(§| for j,k=1,..., N, Consequently, by
the even symmetry of w j, it follows that for all j, k,

wjk(a{ —af)
Ui (a})]

wi(ag —af)
LACH]
which means for all j, &,

Mie(aps ag) = M (afs al),

s

= My = My;.

Similarly,

J
1
U} (ah)] Ui (ag)|
for all j, k, which means
Mii(ap:ah) = My(ajsa) = Mo =M.

|
By a similarity transformation for M, we may express

-1 _ M@ 0 _ IN IN
Q MQ_[O Mo| T -1
M@=SZ+Z,
Mezﬂ—z,

where Iy is the (N x N) identity matrix. Moreover, i(k)
is similar to_itself under this similarity transformation, so
L(») = Q7 'L(1)Q and we can conclude that

QL0 +M)Q = [L(“O* Mo L(A)iM@]' @7)

Consequently, we can express the Evans function £(1) as the
product (eigenvalues comprise the zero set of £(1))

E() =det(Al — L(1) — Mg) - det(Al — L(1) — Mg).
(28)

An eigenfunction ¢(x) corresponding to an eigenvalue A can
be expressed as

@(x) = A\ — L(1)) 'Ne(x), (29)

D,
D = o, |
= My(x)Dy + M (x)Dy,

the 2N-vector @ is expressed in terms of two N-vectors @¢ =
[pj(a})] and @, = [g;(aj)] where j =1,..., N and

M) =[ Mox) Mi()]

is a block matrix formed from two (N x N) submatrices
where

M) = [M(wiab)] - M) = [M (s )]

where j,k=1,...,N.

Based on the similarity transformation (27), nontrivial so-
lutions @ of the compatibility condition have one of the
following two forms where ¢ is an N-vector

o[- - [5)[2]

Note that the matrix function M (x) is a reflection of
M(x) across x = x, which is the common center point of
the stationary bump, i.e.,

Mi(=(x = x)) = Mo(x — x).

where
No((x) = Mx)®

In the & case, No(x) is even-symmetric about x = x,.
No(x) = (Mo(x) + M (x)) ¢,

and in the & case, No(x) is odd-symmetric about x = x,
No(x) = (Mo(x) — M (x)) §.

If we define diagonal matrix D = (Al — L(A))_l, then

from Eq. (20) eigenfunctions are given by one of the two
forms

9®(x) = D (Mo(x) + M, (x)) §,
9°(x) = D (My(x) — M, (x)) §.
If we define the matrix functions
M(x) = (Mo(x) + Mi(x)) = [M e ()],
A (x) = (Mo(x) = Mi(x)) = [ ji ()],

then the elements may be expressed as

) (- d)
M= =p@n @)

o wpli—d)  wu(i—d)
M=o " @

014203-8
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FIG. 3. Graphs of A j; (x) and X j; (x) in the case of Gaussian
weight functions w(x) which form the sum & and difference ©
eigenmodes for the linearization about an even symmetric stationary
bump in neural fields with even symmetric weight functions w j; and
inputs /;.

The component functions M jx (x) are even-symmetric and
X ji (x) are odd-symmetric functions about x = x,, the center
of the bump. Consequently, M (x) and A (x) are even and odd
functions about x = x,, respectively. Thus the eigenfunctions
corresponding to eigenvalues A associated with Mg and Mg
modes can be expressed as

0% (x) =D M (x)¢, P°(x) =D X (x)¢.

Note that the symbols A and X are chosen to caricature
the general shape of the component functions of the matrices
(Mpy(x) + Mi(x)) and (My(x) — My(x)) which take on

the characteristic form of the following figures:
Mty

when w is the exponential weight function e~™; if w is a
Gaussian, then the sharp corners become smooth as in Fig. 3.

V. EXISTENCE AND STABILITY OF BUMPS IN
ELEMENTARY NEURAL FIELDS ON (—o00, o)

The stationary bump solution for each neural field de-
scribed in this section is expressed in terms of the integral

Wr) = /0 w(y)dy

of the synaptic weight functions wj; for each model as de-
noted by various subscripts. For concrete calculations and
simulations, positive synaptic weight functions are taken to
be either —L_we~*/7" or -we M/ and in the AE/AVAA
model w(x) = w.(x) — w;(x) where excitatory and inhibitory
components w,(x) and w;(x) are positive weight functions.

In all cases a stationary bump solution is a bounded so-
lution U;(x) on (—00, 00) in which there is a bump in each
neural field variable, indexed by j, that is centered about
the origin in the universal coordinate system and satisfies the
threshold conditions U;(£a;) = 0; with U;(x) > 0;, forx €
(—aj, a;). Stationary bumps more generally could be formed
from bumps in each neural field centered around a different
point (as in Sec. III).

Spectral stability of the stationary bump is analyzed and,
in all models, the essential spectrum oess Was determined
to be negative and not a cause of instability. Stability of the

stationary bump is thereby determined by the eigenvalues in
the point spectrum and eigenvalues and eigenfunctions are
constructed.

A stationary bump is linearly stable if all eigenvalues
have negative real part except the generic, single O eigenvalue
associated with translation invariance of stationary solutions
in neural fields with translation symmetry. This is valid for
the neural fields in this section in the absence of any input
inhomogeneity and the translation mode in this case can-
not destabilize in a Hopf bifurcation except possibly in the
AE-I model. When input inhomogeneities are introduced, the
translation symmetry is broken and the translation eigenmode
generically has nonzero eigenvalues that may become com-
plex and lead to a Hopf bifurcation of the translation mode.
This results in side-to-side periodic oscillations that we have
termed sloshers due to their back-and-forth sloshing behavior
in contrast with the expanding-contracting periodic oscilla-
tions of the breathing bumps or breathers [39].

A. AE, Al and AA neural fields

A stationary bump solution to neural field equation (3) is
given by (u(x, t), n(x, t)) = (U(x), N(x)), where

A+pUX) =Wk+a)—Wk—a)+1(x),
N(x) =U(x),
where a is determined by the threshold condition
W(2a)+1(a) = 0(1 + B),

provided U (x) obeys the threshold behavior on (—o0, 00).
Perturbations (¢(x, t), ¥ (x,1)) of the stationary bump
(U (x), N(x)) evolve according to

07 o~
E""P—N(P—ﬂlﬂ,

19y |~

;E“FW—(,D. (31)

Setting (g, 1; ) = @(x)e* yields the spectral problem for A and
P(x) = (p(x), Y (),

-9 +No — By = rg,

ap —ay = Ay (32)
Solving for v leads to the reduced spectral problem
op
- No=[r1+—)o. 33
9 +Ng ( +5 +a)¢) (33)

The compatibility equation determining both the eigenvalues
and special nonlocal values of the eigenfunctions at the thresh-
old points is

_ ap
(Mg —1¢ = <)~ + m) o, 34
where
Mar — M@O) MQa) ¢ = p(+a)
AET I M@2a)  M(0) | “ \e(-a)
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FIG. 4. Various types of spatially coherent localized oscillations in the AE/AI/AA neural field. Each figure is composed of a (lower graph)
space-time plot of the neural activity variable u(x,t), and (upper graph) plots of the orbit of u(x,,?) in the (u, n)-phase plane plotted at
different spatial locations x near x = 0 to illustrate the nonlinear dynamics through a projection. (a) Breather resulting from destabilizing the
@ eigenmode with the orbit as a limit cycle. (b) Slosher resulting from destabilizing the © eigenmode with orbit as a limit cycle; note the orbit
has a period-doubled structure moving from the lateral region to x = 0. (c) Intermixed localized super/subthreshold activity driven by the input
inhomogeneity /(x), akin to large amplitude relaxation oscillations and different from a breather. (d) Period doubling (secondary bifurcation)
occurring on an even-symmetric breather giving rise to a period-2 orbit that exhibits a breather with a side-to-side or sloshing modulation. (e)
Secondary bifurcation to a torus exhibiting a slosher with more variable activity in time. (f) Mixed-mode oscillations that alternate between
superthreshold breathing oscillations and a relaxation oscillation intermixed with periods of subthreshold activity. This activity occurs just
beyond a secondary bifurcation point (purportedly subcritical) with the breathing activity appearing to correspond to the orbit passing in the
vicinity of the unstable limit cycle (breather).
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(2) ®) (©)

()
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o
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(d)

300
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100

AN

FIG. 5. Transition between different spatial patterns in the AA neural field as the input space constant o (measure of spatial extent of
elevated input) is increased: (a) at ¢ = 0.98, a stable stationary bump, (b) at ¢ = 1.5, a stable sloshing bump, (c) at o = 1.75, a mixed wave
pattern, (d) at o = 1.9, a mixed wave pattern, (e) at o = 2.0, a localized periodic traveling wave, (f) at o = 3.0, a localized periodic traveling
wave. As the input widens further, the region of localized periodic traveling waves continues to widen. The (supercritical) Hopf bifurcation
point occurs approximately at o = 1.0. Other parameters are Iy = 1, = 0.1, =1,6 =03, w, = 1.5, w; = 2.5,0, = 0.5, 0; = 1 and the
weight functions are Gaussian. Warmer shades indicate superthreshold values of the activity u(x, t) whereas cooler shades indicate subthreshold
values.

and M(x) = w(x)/|U’(a)|. The matrix Mag is symmetricand  where M®©= M (0)+ M (2a). Equation (34) can be written as
is diagonalized by the similarity transformation
(Mag — n(M)I)¢ =0, (35)

where u(A) =1+ A + % Nontrivial ¢ exist when
det(Mag — nw(M)I) = 0.

®
Q_IMAEQ=AAEE|:A(/)I /\26]’ QZI:} _11:|’
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Solving for w and then X in terms of © we obtain

O = _r+Jr—-a F=10+a-u%),

1@ = M® = MO+ M2a) A=a(+8—u9).

Solving Eq. (35) for the vector of special nonlocal values
we obtain the form ¢~ = (p(—a), ¢(a))T = (1, £1)T where
the + corresponds to the different spatial modes M. The
spatial eigenfunctions ¢~ (x) for the sum @ and difference &
eigenmodes are given by

@, \_ (@) _(1 @ ..
- (x)= (w(x)> = (k%)/\/l (x;a),

MO (a) = Q¥ (xia)/ U @),
Q®(x;a) =wx —a)x wlkx+ a).
At a Hopf bifurcation point the Hopf frequency is

wy = IMm{A} = Ja(f — ).

Determining whether the @& or & eigenmodes destabi-
lizes in a Hopf bifurcation of a stationary bump depends on
the real part of the complex eigenvalues for the two modes
and leads to the following condition. The @ gives rise to
expanding-contracting breathers and the © mode gives rise to
side-to-side sloshers. See Fig. 4 for examples of breathers and
sloshers including secondary bifurcations. Figure 5 depicts a
novel transition from a slosher to a localized periodic traveling
wave.

1. Condition for Hopf bifurcation of ® or © mode

In the absence of an input (/ = 0), difference mode © has a
persistent 0 eigenvalue associated with translation invariance
of the stationary bump and a second real eigenvalue. A drift
bifurcation of the difference mode © occurs when o =
leading to traveling bump solutions. In the case o > B, the
sum mode @ can only destabilize in a saddle-node bifurcation
(see Fig. 6 and Table I).

In the presence of an input inhomogeneity (I(x) # 0),
the eigenvalues are nonzero generically and both @& and ©
eigenmodes may have complex eigenvalues. Below we state a
condition determining which mode destabilizes first, assum-
ing all eigenvalues are complex.

The @ mode destabilizes first in a Hopf bifurcation if

w2a) >0

at the Hopf bifurcation point whereas the © mode destabilizes
first in a Hopf bifurcation when

w2a) < 0.

The @ gives rise to expanding-contracting breathers and the
© mode gives rise to side-to-side sloshers.

For o < B, the condition for a Hopf bifurcation of a stable
bump can be expressed in terms of the gradient of the input
I(a). A bump is stable if |I'(a)| satisfies

II'(a)| > D"(a)
B Dl(a) = (£22) Q®(a: a) + 2w(2a),
Di(a) = (£2) Q°(a; ),

w2a) > 0,
w2a) < 0,

with the Hopf bifurcation occurring at |I'(a)| = D' (a). See
Table I for the case o > B. For the general forms of the
synaptic weight function w(x) depicted in Fig. 6, we state
conditions for stability and bifurcations of stationary bumps
in Table I.

We mention that a condition determining whether the bi-
furcation is supercritical or subcritical is given by the relevant
coefficient in the normal form for the Hopf bifurcation which
is calculated for this neural field in Ref. [39].

B. E-I neural field

A stationary bump solution to neural field equation (4) is
given by (ue(x, 1), ui(x, 1)) = (Ue(x), Uj(x)), where

Ue(x) = [Wee(x + ae) — Wee(x — a)]
= [Weix + a;) = Wei(x — ap)] + L(x),
Ui(x) = [Wie(x + ae) — Wie(x — a,)]
= [Wilx + a;) = Wilx — ap)] + Li(x),
where a, and g; satisfy the threshold conditions
Wee(2ae) — Weilae + a;) + Weila, — a;) + L(a.) = 6.,
Wie(ai + a.) — Wie(ai — ae) — Wi(2a;) + Ii(a;) = 6;,

provided the threshold behavior is obeyed on (—oo, 00).
Perturbations (@, (x, ), @;(x,1)) of the stationary bump
(U,(x), Uj(x)) evolve according to

e~ - -

a1 +§0e=-/\/'ee(pe_-/\/ei(pi,

00~ ~ ~
Ta_gj—i_(pi:/\/‘ie(pe_-/\/ii(pi' (36)

Setting (@, ;) = @(x)e* yields the spectral problem for A
and g(x) = (@c(x), p:i(x)",

—@e +J\/;e Pe — J\/‘m‘ Vi = MOe,

1 1 1
——¢i + =Nie e — =Nii ¢i = 1. 37
T T T

The compatibility equation determining the eigenvalues and
special nonlocal values of the eigenfunctions at threshold
points a, and g; is

(Mg; — IgD¢ = A @, (38)
where Igy = diag (1, 1, 7!, t™1), aex; = a, + a;,
Mg
Mee(0)  Mee(ar) —Mei(@e—i) —Mei(@e+i)
Meeae)  Mee(0)  =Mei(aeyi) —Mei(ae—;)
IMie(@e—i) t Mie(@eri) —EM;i(0) —EM;Q2ar) |
I Mie(aeti) T Mie(ae—i) =t M;i(2a;) —LM;;(0)

@e(+a.)
wi(x) @e(—ac)

M. zf—’
=@ 7| pan
@i(—a;)
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I II I 1Y% \Y
2 0 2 2 0 2 -2 0 2 -2 0 2 -2 0 2
T

FIG. 6. Different forms of the synaptic weight function w(x) in the AE/AI/AA neural field. I. purely exciatory (AE), II. Mexican hat (AA),
III. inverted Mexican hat, IV. purely inhibitory (AI), V. bimodal inhibitory (Al).

The following similarity transform yields Compatibility equation (38) can be rewritten as
AS 0 -
Q 'MpQ = A = [ El e], (Mg —D(2))¢ =0, (39)
0 AR .
where D(A) = diag(1 + A, 1 + A, % + A, % + A). Nontrivial
i 8 i 8 solutions ¢ to Eq. (39) exist and yield eigenfunctions when
Q= - ~ ~
8 } 8 } det (Mg; — D(%)) = det (AE — D(1)) - det (A5, — D))

:0,

where D = diag (1 + A, 1+,
Solving for the eigenvalues A we obtain

@ _ M%(ag;ag) —M?(ae;ai)
e %Mga(ai;ae) —%M?(a,-;ai) '

ME (@) = Meo(0) £ Mo 2a,), o MOl M+
M (a:a1) = Mea, — a)) & Mei(a, + ar). 17 2 2
MO (asa,) = Mia, — ai) £ Miu(a, + ap), \/

+
MP(ara) = Mi(0) £ M;iQay). [

k]

M§—1+M?+12.M9M§

2 2T T

TABLE I. Each cell of the table describes the conditions for stability and bifurcations of any even-symmetric stationary bumps that may
exist for the AE/AI/AA neural field with the synaptic connectivity given by the synaptic weight function w(x) depicted in Fig. 6 with the
corresponding Roman numerals listed. STABLE/UNSTABLE indicates any bumps that may exist are stable/unstable throughout the case; NO
BUMPS indicates that the neural field models do not support stationary bumps when /(x) = 0; otherwise, the sufficient condition for stability
is provided for any bump with halfwidth a that may exist within the region. Only Hopf, drift, and fold/saddle-node bifurcations of stable
stationary bumps occurring in the models are listed. SN indicates a fold/saddle-node bifurcation; HOPF indicates a Hopf bifurcation and the
associated mode destabilizing in the bifurcation is indicated by the critical gradient D} or D¥; DRIFT indicates a drift (pitchfork) bifurcation
associated with translation mode © which gives rise to traveling bumps. Note that in Case III (inverted Mexican hat) with input /(a) > 0,
a bump can only destabilize via the sum @ mode in a Hopf bifurcation as DZ(a) < |I'(a)| is always satisfied (since w(0) < w(2a)) and, if
w(2a) > 0, a saddle-node bifurcation occurs prior to a Hopf bifurcation if w(0) < yw(2a) where y = (2 + 30 — B)/(B — ).

Stability and bifurcations of stable stationary bumps in the AE/AI/AA neural field
I(z) =0 I(z) >0
a> B a<p a>p | a<p
I UNSTABLE UNSTABLE Qw(S’;(f)BiEﬁ?(a)‘ STABLE IF Dy (a) < |I'(a)|, HOPF AT D}(a) = |I'(a)l
IT || STABLE (SN): w(2a) < 0 (=) | DRIFT AT: SN AT STABLE IF D"(a) < |I'(a)|, HOPF AT D¥(a) = |I'(a)|
111 UNSTABLE a=p 2w(2a) = |I'(a)| D" = D{ 1F w(2a) >0, D" =DZ IF w(2a) <0
v STABLE
NO BUMPS NO BUMPS STABLE - -
\Y STABLE IF Df (a) < |I'(a)], HOPF AT D¥(a) = |I'(a)|
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where M%:M%(aj;ak). From Eq. (39) the vector
of special nonlocal values for the eigenfunction is ¢ =

(@e(ac), pe(—ao), gia), gi(—a)’ = (1, 1,09, £v@)T
where

e) A€ +1- Me:e (aq;a,)
Vv = @
-M (a;a;)

[M%—l_’_M,,@H]i\/[M%)—I +M,-,@+1]2_M§>TM§@

2t 2t

= Ve

The spatial eigenfunctions ¢(x) are given by

@, \_ [P

@ (x)—<¢i>

L [MOxa,) — vEMP(x;a)]
e

— [MPx;a) —vEMP(xsan)] |
Tl®+l

MG ar) = 5 (a/1U @0,

S.Z.IQI?()C; ap) = wir(x — ar)  wir(x + ar).

At a Hopf bifurcation point the Hopf frequency is

bl

—(MD - ) (MP +1 Ve
wH=Im{A@}=\/ (M“ )(M” + )+M91 Mle

T

where (M9 — 1) = (MD + 1)/1.

Determining which of the @& or © eigenmode destabilizes
in a Hopf bifurcation of a stationary bump depends on the
real part of the eigenvalues for the two modes and leads to the
following condition.

1. Condition for Hopf bifurcation of & or © mode

In the absence of any input (I, = I; = 0), the difference
mode © has one persistent 0 eigenvalue reflecting the trans-
lation invariance of the stationary bump and a second real
eigenvalue. In this case, only the @& mode can destabilize in
a Hopf bifurcation. In the presence of an input inhomogeneity
where I,(x) # 0 and/or I;(x) # 0, the eigenvalues are nonzero
generically, and both & and © eigenmodes may have complex
eigenvalues.

Below we describe a condition for determining which
mode @ or © destabilizes first, assuming all eigenmodes are
complex, by identifying a dominate eigenvalue with the larger
real part of two pairs of complex eigenvalues.

The & mode destabilizes first in a Hopf bifurcation if

w;; (2a;)
T|U/(a;)l

We,(2a,)
U, (a.)|

at the bifurcation point (assuming complex) whereas the ©
mode destabilizes first in a Hopf bifurcation when

w;; (2a;)
7|U/(a;)

Wee (2a,)
U (ae)|

The sum @ mode gives rise to expanding-contracting
breathers and the © mode leads to side-to-side sloshers.

2. Drift and Hopf bifurcation for I1(x) = 0

In the case of no input inhomogeneity (I(x) = 0), a drift
bifurcation of a stationary bump can occur giving rise to
traveling bump solutions. A drift bifurcation is a pitchfork
bifurcation occurring on the translation mode () in the pres-
ence of the persistent 0 eigenvalue associated with translation
invariance of the neural field. Although drift bifurcations of a
bump could occur through different parameter values, we have
shown in Ref. [51] that stationary bumps always destabilize
in a drift bifurcation at a critical value Tcﬁt of the relative time
constant T given by

D _ 14+ M (ai; a;) .
T 1+ MS(a,;a,)

When the @ eigenmode has complex eigenvalues, it desta-
bilizes in a Hopf bifurcation at a critical value of 7,

H 1 +M?(ai;ai)

Ty — .
T 1+ ME(aca,)

Moreover, it is possible to have a mode interaction
(whereby the eigenmodes interact via nonlinear terms) be-
tween a drift bifurcation and a Hopf bifurcation leading to
a codimension 2 drift-Hopf bifurcation that serves as an or-
ganizing center for both stationary and traveling bumps and
breathers in the E-I neural field as depicted in Fig. 7 where X’
is the drift-Hopf bifurcation point [51].

C. AE-I neural field
A stationary bump solution to neural field equation (5) is
(ue(x, 1), uj(x,t), n.(x,t)) = (U,(x), U;(x), N.(x)), where
(1 + B)Ue(x) = [Wee(x + ac) — Wee(x — ac)]
= [Weilx + ai) — Wei(x — a;)] + L (x),
Ui(x) = [Wie(x + a.) — Wie(x — ac)]
= [Wilx + a;) — Wii(x — ai)] + Li(x),
Ne(x) = U,(x),

and where a, and q; satisfy the threshold conditions

Wee(2ae) — Woilae + ai) + Weila, — a;) + L(a,) = 0,
Wie(ai + a.) — Wie(a; — a.) — W;i(2a;) + Ii(a;) = 6;,

where 5e = 0.(1 + B), provided the threshold behavior is
obeyed on (—o00, 00). -

Perturbations (@.(x, 1), @;(x, 1), ¥.(x, 1)) of the stationary
bump (U, (x), U;(x), N.(x)) evolve according to

09, - " - ~

ate+¢e=-/\[e'e(pe_-/\/;'i§0i_ﬂWea

0P ~ ~ ~
Ta—(p'f‘(Pi:J\/;‘eﬁOe—/\/ii(Pi,

t
10%e ~
LW G=5. (40)
o 0t
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FIG. 7. Bumps and breathers in a E-I neural field in the absence of any input (/,(x) = I;(x) = 0), adapted from Ref. [51]. (a) In a parameter
region in the E-1 neural field (w;; is the I-to-I synaptic strength) stationary bumps can destabilize either in a Hopf bifurcation along curve H®,
giving rise to stable stationary breathers, or a drift bifurcation along curve D€, giving rise to stable traveling bump solutions. (b) Different
regions indicate the stable attractors that occur in numerical simulations. The stable traveling bumps in the blue region destabilize in a Hopf
bifurcation along curves ’HITZW , giving rise to traveling breather solutions. (c) Space-time plots of the various stationary and traveling bump
and breather solutions (excitatory variable u,(x, t) only). (d) To describe the stable attracting solutions around X, a diagram for a hypothetical
codim 2 bifurcation with a mode interaction occurring between the difference A®-eigenmode (drift instability) and the sum A®-eigenmode
(Hopf instability). H® is a curve of Hopf bifurcations of stationary bumps, D¢ is a curve of drift bifurcations of stationary bumps, H7" is a
curve of Hopf bifurcations of traveling bumps, and D55 is a curve of drift bifurcations of stationary breathers. H®, D° and H7" are calculated
from analytical results. Curve D553 is a proposed curve of drift bifurcations of stationary breathers based upon numerical simulations [51].
Curve D55 was recently verified and constructed via numerical continuation [52].

Setting (. 31, ¥.) = @(x)e* results in the spectral problem

for A and @(x) = (@e(x), @;(x),

Yo ()7,

—@e +~/\/'ee Pe _A/'ei i — ﬁwe = )»(Pe,

1 1
——¢i + _Me ©Pe —
T T

1
;Mi i = A;,

aQYe — O‘we = )"we-

The compatibility equation determining the eigenvalues and
special nonlocal values of the eigenfunctions at threshold

(41)
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where Ig; = diag (1, 1, =, t™1), ap+; = a. £ a;,
MEg;

Mee(0)  Mee(2ae) —Mei(@e-i) —Mei(@eyi)
Mee(2ae)  Mee(0)  —M.i(aeri) —Mei(ae—i)
IMie(ae—i) T Mie(aesi) —EMi(0) —2M;Q2ay) |
IMie(@eti) TMie(ae—i) =2 Mii(2a;) =L M;;(0)

@e(+ae)
w i () 0e(—a,)

M. — f—’ —
#O= 1@ = ita)
i(—a;)

The following similarity transform yields

_ A2 0
Q 'MgQ = Ay = |: OEI ASI]’

10 1 0
1 0 -1 0
Q=19 1 o 1|
01 0 -1
where
AS MO(aza)  —MPasar)
%M%(ai;ae) _%M?(Qi;ai)

and M%(x; ag) = Mj(x — ar) £ Mj(x + ap).
Compatibility equation (42) can be rewritten as

(Mgr — D(2))¢ =0, (43)

with D(0) = diag (1+4 + 22 T+ a4+ 28 Lo L.

Nontrivial solutions ¢ to Eq. (43) exist and yield eigenfunc-
tions when

det (Mg — D(%.)) = det (Ag — D(1)) - det (Ag — D(1))
=0,

where D(1) = diag (1 + 4 + 2£, L +2).

Two triads of eigenvalues satisfy the following pair (£) of
cubic equations
P+ T92 4+ AP+ E9 =0,
where the coefficients are given by
r® - tla+1-— Mg(ae;ae)] +[1+ M?(ai;ai)],
A9 = [ 41— M%(ae;ae)][wt +1+4 M?(a,-;a,«)]
+ MS (@ a) M (@ia0) + Ta(B — @),
E® = o[+ 1 - MP(a:a)|[1 + MP(ai;ap)]
+ o[ MP (@ apMPiai; a)].
Solving Eq. (39) for the vector of special nonlocal values ¢ =

(@e(ac). @e(—a0). gi(a). gi(—a)T = (1, 21,09, £v®)T
we obtain

o At +1l-Msa)
V = @ - .
_Mei (ac;a;)

The spatial eigenfunctions ¢(x) are given by

L [MPx;a,) —vEMP(x;a1)]

@e 169
o) =i | =|— - 1[/\/19()6; ac) — V®M§(x; ai)]
Ve e o
e Pe(x)
where
ap
ur)=r+1+ m

M 60 = F (s a)/1U (@)
QF (a) = wilr — ap) £ wax + ar).

The @ mode gives rise to expanding-contracting breathers and
the © mode leads to side-to-side sloshers. See Fig. § for an
example of a breather in the AE-I neural field that undergoes
a period-doubling cascade to a breather that exhibits Rossler-
band-like dynamics in a projection.

D. Interacting pair of AE/AI/AA neural fields
Case I: Symmetric case

A stationary bump solution to neural field equation (6) with
the same widths a in each population can be expressed as
(ur, uz, ny, np) = (U(x), V(x), N(x), M(x)), where

(I + BUx) = [Wioe(x + a) — Wioe(x — a)]
+ [Vvlay(x + a) - Vvlay(x - a)] + I(X),

V(x) =U(x),
N@x) =U(x),
M(x) = U(x),

where a satisfies the threshold condition
Wioe (2a) + VV]ay(Za) +1(a) =0(1+B),

provided the threshold behavior is obeyed on (—o0, 00).

We note that it is possible to have a solution with a different
size stationary bump in each population or a stationary bump
in only one neural field only. _

Perturbations (@1, @2, ¥1, ¥2)(x, t) of the stationary bump
(U(x),V(x),N(x), M(x)) evolve according to

I - - - ~
8—t1+§01 = Noc @1+ Nay @2 — BV 1,
oQ - N N ~
_8t2 + @2 = Noc @2 + Ny @1 — B2,
1oy, ~ .
-4 — ,
o ot Y1 =9
1Yy | ~
——2 + 9, =0, (44)
o Ot

Setting (@1, @2, %, 1;2) = @(x)e’ results in the spectral prob-
lem for A and @(x) = (¢ (x), @2(x), Y1 (x), Y2(x))",
—¢1 "l‘Moc(Dl +May(p2 —BY1=Ar¢1,

—@2 +Moc (%) +May§01 - ﬂll/Z = )\(/72,
ag — oy =AYy,
agy — oy = AYs. (45)
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FIG. 8. Rossler band-like chaotic behavior observed in breathers in the AE-I neural field. In each figure, one orbit or trajectory of the AE-I
neural field is plotted in the (u,, ., u;) phase space for one spatial point x = O (other spatial locations are similar). The u; axis (not shown) is
orthogonal to the figure. (a) At B = 1.76, the fine light blue orbit starts near an unstable period-1 breather (white ring) and approaches a stable
period-2 orbit breather (dark blue). (b) Stable period-4 orbit breather at § = 1.764, (c) long term behavior at 8 = 1.76437. (d) Long-term
behavior at 8 = 1.764585. Included in panels (b) and (d) are graphs of u,(0, #) and space-time plots of u,(x, t) (left) and u;(x, ¢) (right) for
comparison.

Solving for

_ ol @1(+a)

Y1(x) = <A+a><ﬂ1(x), MG = w;(x) o= o1(—a)

a Ul | e2(+a)

Yo(x) = <)\—><P2(X), ©2(—a)
+a

The following similarity transform yields:

Q 'MsymQ = Asym,

the compatibility equation determining both the eigenvalues
and special nonlocal values ¢ of the eigenfunctions at the
common threshold points x = +a is given by

«p ) . where

Msym — ¢ = <A+ Py (46)

OO O

FME
0
where Asym = 0
0

OOEO
| &

Mioc(0) Mioc(2a) Mlay(o) Mlay(za) - -

Mige(2a)  Mioe(0)  Migy(2a) Mgy (0) Lo } }

Mlay(o) Mlay(za) Mioc(0) Mioc(2a) ’ Q= 1 =1 1 =11
1

Mlay(2a) Mlay(o) Mioc(2a) Mioc(0) -1 -1 1

Msym=
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where
ME = M (a;a) + M, (a; a),
ME = M§ (a;a) — M, (a3 a),
ME = MG (a;a) + ng(a; a),

ME = M (a;a) — Mﬁy(a;a),

loc
and M2 (a;a) = M,(0) = M, (2a), where I € {loc, lay}.
Compatibility equation (46) can be rewritten as

Msym — u(M)I¢ =0, (47)

where u(A) = (1 + 1+ %). Nontrivial solutions ¢ to Eq.
(47) exist yielding eigenfunctions if det Mgym — n(M)I) =
0. Solving for x and then A in terms of u we obtain

I'= %(1—}—05—/1%),
1 = ME@a) £ MO (@a), A=a(l+8-u).

2O = r+yr2—a,

There are four spatial eigenmodes corresponding to the four
permutations of i~ expressed succinctly as

1
@1 =
‘ﬂi®()€) = fzzl =194 (Ml%ac(x;a) + M%(x;a)),
W2 +a
K@-&—a

MP @ a) = 9P (50)/1U' (@),
Q2 (x;a) = wix — a) £ wy(x + a).
Graphs of M%_(x; a)+ M%(x; a) in Fig. 9 reveal the spatial
structure of the four different eigenmodes ,ui®.
At a Hopf bifurcation point, the Hopf frequency is

oy =Im(®) = Ja(B —a).

Condition for Hopf bifurcation of the ui@ mode

In the absence of any input (I = 0), the difference mode
wS has one persistent 0 eigenvalue, reflecting the translation
invariance of the stationary bump, and a second real eigen-
value. Only the other three eigenmodes can undergo Hopf
bifurcation. In the presence of an input inhomogeneity where
I(x) # 0, the eigenvalues are nonzero generically, and it is
possible for all four eigenmodes to have complex eigenvalues
and destabilize in a Hopf bifurcation.

Below_ we describe a condition for determining which
mode p destabilizes first, assuming all eigenmodes are
complex, by identifying a dominate eigenvalue that has the
larger real part of two pairs of complex eigenvalues. The
opposite case occurs when the inequality is switched.

In-phase mode p” dominates antiphase mode u =" if

Wiay (0) & wiey (2a) > 0.
Sum mode u$ dominates difference mode g when

Wioe(2a) = wiay (2a) > 0.
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FIG. 9. Structure of the eigenmodes ((¢;(x), ¢2(x)) only) asso-
ciated with ui® depends on terms A\ j (x) in the sum (®) mode
and A j (x) in the difference (©) mode. (a) Sum mode u® leads to
in-phase breathers, (b) sum mode u® leads to antiphase breathers,
(c) difference mode ,u? leads to in-phase sloshers, (d) difference
mode ©° leads to antiphase sloshers.

Sum mode 1§ dominates difference mode 12 when
Wioc(2a) £ wlay(o) > 0,

extending the case of wj,(2a) in the AA neural field.
Note that the case —wjay(x) > +wiay(x) occurs only when
Wiay(x) < 0. Figure 10 illustrates in-phase and antiphase

breathers and sloshers bifurcating from eigenmodes ,ui®.
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FIG. 10. Graphs of in-phase and antiphase breathers and sloshers in an interacting pair of symmetric AE/AI/AA neural fields due to

destabilization of the uy eigenmodes (depicted in Fig. 9) in a Hopf bifurcation. Destabilization of (a) sum mode ;@

leads to in-phase

breathers, (b) sum mode u® leads to antiphase breathers, (c) difference mode /,Le leads to in-phase sloshers, and (d) difference mode u© leads
to antiphase sloshers. Curves indicate the threshold contours of activity variables u; and u,.

Case II: Asymmetric case

A stationary bump solution to neural field equation (7) with
different widths a; and a, in each population is expressed as
(w1, uz, ny, np) = (U (x), U2 (x), Ni(x), N2 (x)), where

(1+ BUI(x) = [W(x + ar1) — Wi (x — ay)]

+ WP+ a) - W —a)] + L],
[Wa5(x + a2) = Wi (x — a2)]

+ [Wzli‘y(x +ap)— Wzli'y(x —a))| + hx),
Ui (x),

Ux(x),

1+ Pl (x) =

Ni(x) =

M (x) =

where a; and a, satisfy the threshold condition
Wi Q2ar) + WS (a1 + a2) = W5 (a1 — a2) + T (a1) = B3,
W3 (2a2) + Wi (a2 + ar) — Wi (a2 — ay) + o (a2) = B,

where 0, = 0,(1 + B) and 0, = 05(1 + B) provided the
threshold behavior is obeyed on (—o0, 00).

Perturbations (@1, @2, ¥1, ¥2)(x, t) of the stationary bump
(Ui (x), Uy (x), N1 (x), N2(x)) evolve according to

991
8—t+§01 Nge §01+J\f12 T2 — BV,
9 ~ oc ~ ~ >~
245 = NI B+ N B — BT
131#1 ~
% o +¥1 =91,
19y
—= Y= (48)
o Ot

Setting (71, @». V1, V) = @(x)e™ yields the spectral problem
for A and g(x) = (¢1(x), @2(x), Y1 (x), Y2(x)T,

—p1 + N @ +/\/113y 02 — By = Aoy,

—@2 + N3 0a +N21 01 — By = Ao,
ap) —ayy = Ay,
agy —ayn = Ay, (49)

Similarly, the compatibility equation determining the
eigenvalues and special nonlocal values of the eigenfunctions
at threshold points a; and *a; is

ab ) ¢, (50)

Masym — D¢p = (A—I— T ta

where b = a; — ap and ¢ = a; + a,

MiF©O) MiEQa) ME®B) M)
MigQar) M) M) M ®)
MASYM - ldy ldy loc loc
Vb)) M) M) MgQa) |
‘ay(> “‘ya)) MEF(2az) ME;(0)
and
Wl () @1(+ar)
N _ | i(=an)
Mf"(x)_w,g(ak)r ?= | ealtar)
P2(—az)
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The following similarity transform yields

_ [ A® 0
o M= [ 5]
1 0 1 0
1 0 -1 0
Q=190 1 o 1|
_0 1 0 -1
A _ (MG @za) MG @a)
_M%)(az;dl) M%(az;az) '

where for j, k = 1,2 (k # j),

MPD(aj;a;) = M (0) £ M (2a)),
MP(ajia) = M% (@) — ar) £ M%)+ ap).

Compatibility equation (50) can be rewritten as
Masym — n(2)D¢ =0, 61y

where u(A) =1+ X1+ % For nontrivial values ¢ to exist,
we require det(Masym — 1(A)I) = 0. Solving for such u and
then solving for A in terms of © we obtain

2P = rxyrr-a, F:%(l—}—a—,u@),

A:oz(l—i—ﬂ—ﬂ@),

MG+ MF M = MPT?
M%):I: 112 zz]i\/[ 112 22:| +M§M§?,

where M% = M%(a > ax). This defines four pairs of eigen-
values corresponding to the four spatial eigenmodes associ-
ated with ©”. We note here that the condition for u3 to be
complex-valued is given by

M??(al;al)—M%(az;az)]z

M%}(al;az)/\/l%(az;al)<—[ 5 ,

which requires M%(al;az) or M% (ap;ay) be negative.
Solving Eq. (51) yields the vector of nonlocal values

d=(p1(—ar), g1(ar), p2(a), pa(—a))=(1, =1, v®, +vP),
® _ :uj:® - M%(aual)
S @
M3 (ar;az)
@ O @ ,®2
[M]l 2M22 :I:IZ\/I:MH 2M22 ] +M%M%

@
M3

The spatial eigenfunctions ¢(x) are given by

Ml@?(x;al) + VJ@M%(x;az)
¢1(x) vi@/\/lg(x; as) —i—/\/lgi?(x;al)

@y | 90|
¢i ('x) - wl (.X) - @g (ﬂl(x) 5
Yo (x) B

A@-ﬁ-a(pz(x)
ME (a0 = @F (v a0/ U (@),
Q%(x;ak) = wék(x —ay)=* wék(x + ay).

At a Hopf bifurcation point the Hopf frequency is
wn =M} = Va(B —a).

E. Interacting pair of EI neural fields

A stationary bump solution to neural field (8) can be ex-
pressed as (u, u;, ve, v;) = (U, (x), Uj(x), V. (x), V;(x)), where
the solution is identical in each neural field layer and ex-
pressed as

Ue(x) = [W2 (x + a.) — W (x — a,)]
— W+ @) — W (x — ap)]
+ (W2 (x4 ae) = W2 (x — ae) | + L(x),
Ui(x) = [Wr(x + ap) — Wi (x — a,)]
— Wi (x4 ar) — Wi (x — a;)]
+ W& (x4 a0) — W (x — a.)] + L),
Vex) = U, (x),
Vi(x) = U(x),
where a, and g; satisfy the threshold conditions
W (2ae) — Wi (ae + ai) + W) (a, — a;)
+ W™ (2a,) + I(a,) = 0.,
Wi (a; + a.) — Wi (a; — a.) — Wi (2a;)
+ W (a; + ao) — W (a; — a,) + Ii(a;) = 0.

Perturbations (@,, @;, 1;6, lzi)(x, t) of the stationary bump
(U (x), Ui(x), V.(x), Vi(x)) evolve according to

00e N N ~
o T = NI Ge — No Gi + N2 e,
a_’(;éi = Nloe g Afloe . Nlay Ny
T » + i =N Qe i @it Ny Ve,
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al/fe + we j\/;gc Je - /\/ell(}c lﬁz Nlay Des
81#, loc 77 loc 77 lay ~
e G = N T NI T NG (5)

Setting (@,, @;, Ize, 1%) = @(x)e yields the spectral problem
for A and @(x) = (@e(x), @i (x), Ye(x), Yi(x))T,

—@e + A/elgc - Nl(')c Nlay Ye = Ao,

1 1
gt N,
r(p T ¢
_we‘i‘/\[elscwe

1 1
__I/Ii + _'/\[ileoc vfe
T T

/\ﬂ“ o+ Nl“y Ve = A,
— N2 + N g, = M,

N1°°wl+ Nl"‘yrpe—w, (53)

The compatibility equation determining both the eigenvalues
and special nonlocal values of the eigenfunctions at threshold
points x = *+a, and *gq; is

(Mauat — Iqua) @ = 2 @, (54)

where Mgy, 1s an (8 x 8) matrix represented in block form

Mdual = |:Mlay Mlay] D = (:z)s

Mg |’
and @ is an (8 x 1) vector in block form where

@e(+ac) Ye(+a.)
_ @e(_aE) _ 'We(_ae)
= par | V= | victa
pi(—a;) Vi(—a;)

Idual =diag(17 1’ T_Iv 7:_17 17 ]’ T_lr_l)a

ME;
Mee(0)  MeeRae) —Mei(@e—i) —Mei(@eyi)
Meeas)  Mee(0)  —M,i(aeti) —M.i(ae—i)
| M@ EMiaer) —EMa(0) —EMa2a) |

Mie(@esi) T Mie(@e—i) = M;i(2a;) —1M;;(0)

M (0) M Qa) 0 0

M2 (2a,) MZ(0) 0 0
My = %Mizy(a,‘—ae) %Mﬁ;‘y(a,‘+ae) 0 ol
IMP@i+a) MP@-a) 0 0

where M’ (x) = wh, (x)/|U"(a)| and @, +; = a. * a;.
Mua is block diagonalized by a similarity transformation

ailMduala = Adual’ 6 = [8 _%i|v

where
(A2 0 0 0
0 A2 O 0
Adual = 0 O+ AQ_B 0 )
| 0 0 0 A°
1 0 1 0
1 0 -1 0
Q=19 0 1|
0 1 0 -1

:l:=

® [M(@(ae,ae)i/\/l@lay(ae;ae) M (ae,a)]

MOz an) £ MO ™ @ ar) —MEaisar)

M%(aj;aj) = M;j(0) £ M;;(2a)),

M%(a,j;ak) = M(a; — ay) £ Mj(a; + ar),

M @z a0) = M (a; - ag) £ MW (@ +ap).

Nonzero solutions of Eq. (54) exist if det(Mgya — Iqua —
Al) = 0, generating four pairs of eigenvalues A corresponding
to the four different spatial eigenmodes associated with AT

)\.®— |:M:t®.ee_l MS@+1:|
Iy = _

2 2t

\/[Mi@.w—l M?H]z MP ME
:l: - + - - )
2 2T T

where
M @0 = MP(ajian) £ MG ¥ (a5 ap).

Each pair of eigenvalues is denoted by + preceding the root.
The assomated vector (I) of special nonlocal Values is®Dy

@2, £6©)T where & = (1, (£1), v, @),

@ )L® +1 - Mj: ee(ae» ae)
—M 7 (ae; a;)

)

generating the four spatial eigenmodes (o T (x), where

[./\/li ee(X3a0) — V5 M@(x' ai)]

®+1
(M (xa) = vEMP ()]
(0® (.X') — r)»i®+l
. @ [M:l: ee(‘x af‘) — VL M?(X;ai)] ’
1
[Mi ie(X3ae) = Vi M?(X;ai)]
®+1

M) = [0F () £ Q5 ™ (s a) )/ 10 @),
M xa0) = [@F (s a0)] /10 @),
Q% l(x;ak) = wi-k(x —ag) £ wj-k(x + ay).

Although the eigenfunctions are complex-valued, we can
see the whether the components of the eigenfunctions asso-
ciated with the two neural field layers are aligned (+) and
in-phase or opposite (—) and antiphase.
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At a Hopf bifurcation point the Hopf frequency is

€ @ @ @
1 - Mz, ) (M5 1) + M2 MS
wy = Im{Ai@)} = \/( i"e)( i ) + +.,ie’ "V ei

T

where (M% e — 1= (/\/ISTa + 1)/t at the bifurcation point.

Condition for Hopf bifurcation of the A? mode

In the absence of any input (I, = I; = 0), the difference
(translation) mode ,uf has one persistent 0 eigenvalue, re-
flecting the translation invariance of the stationary bump, and
a second real eigenvalue. Only the other three eigenmodes
can undergo Hopf bifurcation. In the presence of an input
inhomogeneity where I,(x) # 0 and/or I;(x) # 0O, the eigen-
values are nonzero generically, and it is possible for all four
eigenmodes to have complex eigenvalues and destabilize in a
Hopf bifurcation.

Below we describe a condition for determining which
mode destabilizes first, assuming all eigenvalues are complex,
by identifying a dominate eigenvalue that has the larger real
part of two pairs of complex eigenvalues.

Assuming that a stationary bump is stable, that all eigen-
values A and A= are complex, and only one eigenmode
destabilizes in a Hopf bifurcation, the condition determin-
ing whether the in-phase AT or antiphase A@ eigenmodes
destabilize is determined by the pair of eigenvalues whose real
part is closer to 0 is as follows; the opposite dominance occurs
with the inequality flipped.

In-phase mode A+® dominates antiphase mode A@ if
M2 (0) £ M (2a,) > 0.
Sum mode A® dominates difference mode A when

(2a:
Mee(ae) £ M 2ap) > 24
T

Sum mode A dominates difference mode AS when

Mee(2a,) £ MP(0) > M

These conditions extend the single E-I neural field case and
also parallel the structure of the conditions in the case of the
interacting pair of symmetric AA neural fields.

For physiological reasons we assumed w'eiy(x) >0, to
represent excitatory long-range synaptic connections [40,41].
Allowing wiy(x) < 0 or including inhibitory interlayer con-
nections would introduce additional means to destabilize
different modes.

VI. MULTIBUMP SOLUTIONS

Multibump solutions exist in a variety of different forms
[12,15,16,19], but we describe one example exhibiting a Hopf
bifurcation in the AE/AI/AA neural field and demonstrate the
extension to multibump solutions.

AE, Al and AA neural fields

A stationary two-bump solution is a bounded solution
U™ (x) on (—o0, 00) in which there is an even-symmetric

Um™(x)

T

0 1

FIG. 11. Multibump solution profile U™"(x) with threshold

points x = £ay and +a; in a single neural field u(x, t).

pair of bumps centered about the origin (as depicted in
Fig. 11), satisfying threshold conditions

U™f(x) >0, xe(—a,—ay) U (ap,a),
U™ty =0, x=tay, +ai,

U™t(x) <0, otherwise,

U™ti(x) >0, asx — +oo.

Such a stationary two-bump solution to neural field (3) is
given by (u(x, 1), n(x, 1)) = (U™ (x), N™!(x)), where

(L+AHU™@) =W +a) =W +ap)]
+ W —ag) =Wx —a)]+1(x),
Nty = grmulice).
where a( and a; satisfy the threshold conditions
Wao +a1) —W(2ag) — W(ag — ar) + I(ap) = 6(1 + B),
WQ2ay) —W(ao +a1) + W(ar — ao) +1(ar) = 0(1 + ),

provided U™ (x) properly obeys the threshold behavior.
Perturbations (¢(x, 1), ¥ (x, 1)) of the stationary two-bump
(U™Ulti(x), N™Ut(x)) evolve according to

3G .
8—¢+¢=Nm”"'s0—ﬂw,
t
10y ~
__‘/’+¢:¢, (55)
o 0t

Setting (¢, 1/7 ) = @(x)e yields the spectral problem for A and
P(x) = (p(x), Y ))T,

—p + N™ly — By = A,
ap —ay = Ay, (56)

where, for a two-bump solution, the integral operator

1
N™p =3 IMxs —ar) p(—ar) + M(x; ap) p(ar)]

=0

and M(x; £a;) = w(x F a)/[U™ (a))].
Solving for ¢ leads to the reduced spectral problem

—p + N™lyp = (/\ + —AOfO[)w. (57)

014203-22



SPATIALLY COHERENT OSCILLATIONS IN NEURAL ...

PHYSICAL REVIEW E 113, 014203 (2026)

(@)

, ©

x

(®) (©

(d)
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FIG. 12. Multibump solution in the AA neural field. As the negative feedback strength B is increased, a stationary two-bump solution
(stable) undergoes a subcritical Hopf bifurcation at 8 & 0.151 with a sharp transition to a stable two-bump slosher as a result of destabilization
of the in-phase difference eigenmode 1§. A small region of bistability was detected near the bifurcation point. (a) At 8 = 0.1, a stable
stationary two-bump solution, (b) at § = 0.17, a stable two-bump slosher, (c) at 8 = 0.25, a stable two-bump slosher, (d) at § = 0.5, a
localized periodic traveling wave. Note that the bump locations move side-to-side in-phase but the bump amplitudes oscillate out of phase.
Other parameters are [y = 1.5,0 =3.5,0 =03, =0.1,w, = 1, w; =4, 0, = 1, 0; = 2, and the weight functions are Gaussian. Warm/light
colors represent superthreshold values of u(x, t), whereas cool/dark colors are subthreshold.

The compatibility equation for eigenvalues and special nonlo-
cal values of the eigenfunctions at x = +ay, £a, is

ap
(Mmui — D¢ = (k + m) é, (58)
where b = ay — a; and ¢ = ay + a;,
Mo(0)  Mo(2ap)  Mi(b) Mi(c)
Moy = Mo2ag)  Mo(0) M (c) M (b) ’
Mo (b) Mo(c) M (0)  Mi(2ay)
Mo(e) — Mob)  MiQ2ar) My (0)
and
» @(+ao)
w(x —a
Mi(x) = (O (g ¢ = gg+a(3
@(—ar)
The following similarity transform yields

_ [ A® 0
Q 1MmultiQ = 0 Aei|,

=)

I
1
OO = =
—_——O O

|
OO = =
—_——O O

A® _ [M(@(Clo;ao) M?(Clo;al):|
M(@(al;ao) M1®(al;a1) ’

where Mg)(aj;ak) = M(a; —ar) £ My(aj +ar) for
J, k =0, 1. Compatibility equation (58) then becomes

(Mmutti — p(A)D¢ = 0, (59)

where pu(A) =1+ X + % For nontrivial values ¢ to exist,
we require det(Mmyi — 1 (2)I) = 0. Solving for such u and
then solving for X in terms of u we obtain

€]

2© = r+yrr_a, F=%(1+a—ui),

A=a(l+p-ud),

M + M MS — MET?
M?:[M]i\/[M} +MEME,

2 2

where ./\/lJ@,? = ./\/lk@(aj;ak) for j, k = 0, 1. This defines four
pairs of eigenvalues corresponding to the four spatial eigen-
modes associated with ©}”. We note here that the condition

for ui@) to be complex-valued is given by

D4y MPD (g - 2
M?(ao;al)M?(a];ao)<_[Mo (ao,ao)z./\/l1 (al,a1)1| ’

which requires /\/l1®(a0; ap) or M(@ (a1;ap) be negative.
Solving Eq. (59) for the vector of special nonlocal values ¢ =

(@o(a0), po(—ao). gr(ar), @i1(—ar)) = (1, 21,02, £19)
we obtain

® _ Mi® - M?(ao;ao)
M%)(ao;a])

Vo =
[M] + \/[—MO@J@]2 + MM

+
Mgy
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The spatial eigenfunctions ¢@(x) are given by

0P () = <§Z> =<i> (Mgi)(x; a2 MP (x;a, ),
Ao

MP @ a) = F (.a0)/1U™ ()],
Q9 a) = wx — ap) + wx + ap).
At a Hopf bifurcation point the Hopf frequency is

oy =ImpP) = Ja(B —a).

€]

The eigenfunctions, in the case that vy~ = %1, resemble
the pattern illustrated in Fig. 9 for bumps in two different
interacting layers, except in this case it would be based around
the two-bump solution in a single layer. See Fig. 12 for an
example of a stationary two-bump solution that undergoes
a Hopf bifurcation resulting from destabilization of the u9
eigenmode.

VII. DISCUSSION

In this paper we have discussed a family of elementary neu-
ral fields whose activity is mediated by synaptic excitation and
inhibition and modulated by a linear adaptation or a negative
feedback gating variable and an input homogeneity on one-
dimensional domain (—o0, 00). (The two-dimensional case is
treated separately as there are many significant differences in
the model equations, structure of solutions and their bifurca-
tion.) For each neural field model, the linear stability and Hopf
bifurcation of stationary bump solutions was analyzed and
presented in a notation that facilitates direct comparison of the
structure and the dependency on the model parameters across
this family of neural fields on one-dimensional domains. We
also obtain conditions that clarify which eigenmode destabi-
lizes in the bifurcation and how its spatial structure relates to
the network parameters.

To facilitate the existence and stability analysis of sta-
tionary bumps across this family of neural fields, a general
vectorized neural field model to analyze any configuration
of N interacting neural fields with M linear gating variables
was established to analyze the general case. Included in its
analysis was the construction of the eigenfunctions associated
with different eigenmodes of the linearization to investigate
their spatial structure and the role it plays in bifurcations when
these modes destabilize.

Using the vectorized neural field framework and mak-
ing further symmetry assumptions on the synaptic weight
functions, input inhomogeneities, and stationary bump solu-
tions, we were able to show that for any neural of field of
this form with even-symmetric weight functions and input
inhomogeneities, the linearization about an even-symmetric
stationary bump yields two broad classes of eigenfunctions
that either exhibit even or odd spatial symmetry.

Hopf bifurcation of these classes of even and odd
eigenmodes was investigated across the family of neu-
ral fields demonstrating that Hopf instability of these two
broad classes of eigenmodes can lead to different patterns
of expanding-and-contracting breather-type solutions and
side-to-side slosher-type solutions, respectively, which may

additionally have in-phase and antiphase structure in the os-
cillation depending on the relative signs of the eigenfunctions
in different neural fields. Secondary bifurcations were also
shown to exist leading to novel forms of activity patterns,
including a secondary bifurcation from a limit cycle (slosher)
to a torus leading to a slosher with a variable amplitude
pattern, a period-doubling bifurcation of an expanding-
contracting breather leading to a breather whose activity is
modulated in a side-to-side sloshing fashion, and a period
doubling cascade on a limit cycle (breather) leading to Rossler
band-like nonlinear dynamics in a projection of the solution in
phase space. A novel pattern of a spatially localized traveling
periodic wave solution was found to emerge in the AA neural
field during a transition in two cases from either a stationary
slosher or multibump slosher as a parameter is varied and the
superthreshold activity pattern widens.

In the case of interacting pairs of symmetrically coupled
neural fields that support bumps, it was shown that both in-
phase and antiphase breather-type and slosher-type solutions
occur, where in-phase and antiphase are in reference to the
spatiotemporal dynamics in the different layers with respect
to a universal coordinate system. In the case of in-phase
breathers and sloshers, the activity bump in the two layers are
synchronous in time and identical in space. In the antiphase
breather case the oscillations in each population are out of
phase by half a period in time so one breather expands while
the other contracts, sharing a common center at all times. In
the antiphase slosher case the activity bumps in each popula-
tion displace in opposite directions and oscillate side-to-side
half a period out of phase in time. Depending on the number of
neural fields in a model, one can imagine mixtures of in-phase
and antiphase elements depending on the synaptic interactions
mediating the activity in the populations.

Evidence of a Hopf-Hopf bifurcation with a nonlinear
mode interaction was sought between the breather and slosher
eigenmodes in the presence of an input homogeneity as the
analog to the drift-Hopf bifurcation found in the input-free
case [51] which produces a tongue of traveling breather so-
lutions that issues from the codimension 2 bifurcation point
between a region of traveling bumps and a region of stationary
breathers connected to the drift and Hopf bifurcations, respec-
tively. Such a mode interaction was not explicitly identified
in numerical simulations of the AE/AI/AA neural field after
a considerable search over a variety of regions of parameter
space where the two types of Hopf bifurcation curves are
known to intersect and both bifurcations are supercritical. The
Hopf bifurcations in the AE/AI/AA neural field were deter-
mined to be supercritical (where stability of the stationary
bump is transferred to the periodic solution) using both nu-
merical simulations and the relevant coefficient at third order
of the normal form or amplitude equation calculated in Ref.
[39] which controls the direction of the bifurcation. The E-I
neural field was also investigated to a lesser extent to identify
such a mode interaction also without success.

Finally, the analysis was extended to the case of multibump
solutions. Hopf bifurcation of the multibump solutions was in-
vestigated and shown to give rise to Hopf bifurcations leading
to stable sloshing multibumps. We mention that such sloshing
multibump activity patterns have been observed in spiking
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networks with both periodic and without periodic boundary
conditions in Ref. [71]. Hopf bifurcations of stationary multi-
bumps also exist in the E-I neural field, though there are more
threshold points to track with two neuronal populations. The
multibump slosher was also found to transition to the novel
pattern of a localized traveling periodic wave solution as a
parameter is varied.

While this work serves to highlight a family of elemen-
tary neural fields, the main implication is to understand and
categorize how network interactions and symmetry lead to
the underlying spatiotemporal structure of spatially coher-
ent time-periodic oscillations arising from Hopf bifurcation
which may occur more universally in a wide range of more
complex and biologically relevant neural field models, given
the universality of bifurcations in nonlinear dynamical sys-
tems. It is also important to understand how modeling choices
could also lead to symmetry breaking or preclude certain types
of bifurcations. Although the Heaviside nonlinearity serves
as an analytically tractable edge case, it could be used to
predict where bifurcations occur, and one could subsequently
use numerical continuation [52] to explore related regions in
parameter space in models with smooth nonlinearity f where
such bifurcations may be more robust. Finally the compre-
hensive set of existence and stability results categorized and
consolidated in this paper may serve to support a wide variety
of applications of bumps and breathers in these or related
neural field models.

It may be possible to observe stationary and oscillatory
bumps either in in vitro or in vivo experimental preparations

using optogenetics and voltage sensitive dyes. Optogenetics
could be used to generate the input inhomogeneity by con-
tinually stimulating neurons in a local patch of tissue and
observing the activity across a layer of the cortex with popu-
lations of neurons that form approximately homogeneous and
isotropic (distance-dependent) short-range synaptic connec-
tions. Different pharmacological conditions in in vitro slice
preparations could be used to modify the properties of the
network to observe the changes in the spatiotemporal be-
havior. Two densely interconnected areas with reciprocal and
topographic connections, e.g., somatosensory cortices S1 and
S2 [72], could be investigated by stimulating local patches of
tissue in one or both regions and monitoring the activity in
both. While it would be difficult to predict when such solu-
tions should occur, our work suggests that one could expect
at least two characteristic forms of localized spatiotemporal
activity patterns as a steady-state response to a persistent
localized input inhomogeneity in the form of a stationary ac-
tivity bump of steady persistent activity or stationary activity
bump exhibiting spatiotemporal oscillations in the activity. We
have also found the localized oscillations can emit an outward
propagating circular wave, ring waves, and target patterns in
response to an input in the AE neural field [18] and in some
cases with inhibition when the network supports such waves
in the absence of an input, indicating other types of responses
one might observe that are not localized in space. Such waves
perhaps may be observed, for example, in disinhibited cortical
slice preparations that support wave propagation.
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