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We study Hopf bifurcation of stationary activity bumps to localized, spatially coherent oscillations
in a family of elementary neural field models involving nonlocal synaptic excitation and inhibition
with Heaviside firing rate nonlinearity and local linear adaption, both with and without a localized
input inhomogeneity, on the one-dimensional spatial domain (−∞,∞), including cases of interacting
pairs of neural fields. (We treat the same neural fields on two-dimensional spatial domain R2

separately.) A main focus is to categorize how the underlying symmetries of the nonlinear operators
in this family of equations give rise to a related set of spatially-coherent time-periodic solutions
that bifurcate via Hopf bifurcation with respect to different spatial eigenmodes, each with different
spatial structures being selected as a result of the relative balance of synaptic inhibition to excitation.
A general framework is constructed to analyze stationary bump solutions in a neural field model
containingN neural fields withM linear gating variables that modulate different neural fields. Under
a basic set of symmetry assumptions on the synaptic weight functions and the input homogeneity,
we show that all such neural fields have two broad classes of eigenmodes with either even or odd
spatial symmetry. When these eigenmodes destabilize via Hopf bifurcation, it leads to various
types of spatially coherent, time-periodic oscillations that can take the form of breathing bumps
or breathers that expand and contract and sloshing bumps or sloshers which move side-to-side.
Analytical treatments combined with numerical simulations provide a more complete picture of the
emergence of these periodic activity patterns and novel secondary bifurcations are found to occur,
including torus, period-doubled, and Rossler band-like dynamics. Interacting pairs of neural fields
that support bumps, breathers and sloshers can lead to novel spatially coherent oscillations with
different patterns of synchrony and spatial positioning depending on the type of synaptic interactions
between the neural fields including novel in-phase and anti-phase breathers and sloshers. A novel
transition from a slosher to a spatially-localized, traveling periodic wave is also found. The approach
is extended to the case of multibump solutions and bifurcations leading to various multibump
breathers and sloshers are observed.

I. INTRODUCTION

Neural field equations are nonlocal partial integrodif-
ferential equations that describe the average activity in
large populations of neurons on spatial domains, or do-
mains in feature space, and are capable of a diverse range
of spatiotemporal behavior on one-dimensional domains,
including stationary, traveling and oscillatory localized
bump solutions [1–52]. Inherent in the improvement of
modeling equations for physical phenomena, such as ac-
tivity in the brain [53–69], is a deeper understanding of
the basic underlying spatiotemporal dynamics supported
by these neural field equations and its relationship to
model parameters. We investigate the response in the
activity of various networks of neuronal populations that
support stationary localized bump and breather solu-
tions, both in the presence of a sustained, localized in-
put inhomogeneity and in the input-free case. The local-
ized input inhomogeneity could represent a diverse set
of phenomena, including a sensory input to the layer,
input from another brain region to the layer, a locally
depolarized or hyperpolarized region within the layer, an
external input due to an electrode or other device, etc.
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We are interested in sustained responses of activity and
whether they will be modulated by an oscillation.

The objective of this paper is three-fold. First, it
compares results for linear stability and Hopf bifurca-
tion of stationary bumps across a family of elementary
neural fields and the dependence on network parameters.
Second, it classifies the spatial structure of the eigen-
modes and demonstrates its relation to the spatiotem-
poral structure of the time-periodic solutions emerging
in the Hopf bifurcation and model parameters. Third,
in a large class of neural fields obeying symmetry as-
sumptions on the synaptic weight functions and inputs,
it shows that the linearization about an even-symmetric
stationary bump yields two broad classes of eigenfunc-
tions with even or odd symmetry. Bifurcations with re-
spect to these different eigenmodes thereby lead to two
different classes of spatially-localized, time-periodic os-
cillations termed breathers and sloshers as they exhibit
either expanding-and-contracting or side-to-side motions.
The analysis is extended to the case of N neural fields
with M gating variables, including multibump solutions.

The family of elementary neural fields incorporates dif-
ferent forms of the fundamental types of excitatory and
inhibitory synaptic inputs as well as an adaptation gat-
ing variable or negative feedback mechanism, which can
model the process of spike-rate adaptation observed in
neurons in cortex that decrease their firing rates after
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sustained firing. Adaptation serves as a concrete case for
incorporating gating variables in the stability analysis for
the generalization to more varied neural fields. It also
compares two different dynamic mechanisms, nonlocal
synaptic interactions and local negative feedback, that
are capable of producing Hopf bifurcations of bumps.
Interacting neural fields may represent interacting pop-
ulations of neurons nearby or across in a layer, between
different layers, between different brain regions, etc.

We demonstrate a variety of novel types of activity
patterns, including bifurcations to multibump breathers
as well as single bump breathers with variable activity
arising from secondary bifurcations either to dynamics
on a torus, period doubling with mixed breathing and
sloshing behavior, or a period-doubling cascade leading
to Rossler-like dynamics. We show a novel transition
from a stationary bump or multibump to a spatially-
localized traveling periodic wave pinned to the input as a
parameter is varied. Evidence of a Hopf-Hopf nonlinear
mode interaction was sought, without success, between
the breather and slosher eigenmodes in the presence of
an input homogeneity as the analogue to the drift-Hopf
bifurcation found in the input-free case [51].

The paper is organized as follows. In Sec. II we outline
a family of elementary neural fields depicted in Fig. 1 and
studied herein. In Sec. III we construct a general vec-
torized neural field model to analyze any configuration
of N interacting neural fields with M gating variables
and proceed to establish existence and stability condi-
tions for the coupled neural fields in the general case, in-
cluding construction of the eigenfunctions. In Sec. IV we
analyze the (N×M) vectorized system in the special case
that the synaptic weight functions and the input inho-
mogeneity are even-symmetric about the same common
center and show the eigenfunctions of the linearization
about a stationary bump fall in to two broad classes of
either even or odd spatial symmetry about the common
center. In Sec. V we analyze the family of elementary
neural fields, outline the existence and stability results
for stationary bumps, obtain conditions for which differ-
ent spatial eigenmodes destabilize in a Hopf bifurcation,
and discuss the relationship to the spatiotemporal struc-
ture of the emergent time-periodic solution. In Sec. VI
we extend the analysis to the case of multibump solutions
and their Hopf bifurcation to oscillatory multibumps.

II. ELEMENTARY NEURAL FIELD MODELS

The neural field models studied in this paper are mod-
els that involve different network topologies containing
the two fundamental types of excitatory and inhibitory
synaptic inputs generated either by separate populations
of neurons or an effective mix in a single population of
neurons. We also incorporate a local linear negative feed-
back mechanism in the form of an adaptation gating vari-
able that models spike rate adaptation as a concrete ex-
ample. The synaptic connectivity assumed in the analy-
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FIG. 1. Synaptic connectivity patterns for the neural fields
studied in this paper. AE neural field represents a population
of excitatory neurons whose activity is modulated by an adap-
tation variable. Similarly AI and AA represent an inhibitory
population and Amari neural field modulated by adaptation.
The Amari neural field is an effective mix of excitation and
inhibition in a single population using a Mexican hat weight
function. The E-I neural field is a two-population neural field
with distinct populations of excitatory and inhibitory neu-
rons. The AE-I neural field is an E-I neural field where the E
population is modulated by an adaptation variable. Interact-
ing pairs of neural fields are formed from these fundamental
neural fields. In the interacting pair of E-I neural fields, the
interlayer connections are symmetric though only one set is
shown. Interlayer connections project from the E population
only to model long-range excitatory connections in cortex.

sis is based on short range connections found in regions
of the cortex but can be generalized to other types of
connectivity. Each neural field is capable of supporting
stationary bumps that undergo Hopf bifurcation to time-
oscillatory solutions. These fundamental building blocks
can be used to build more complex neural field models.
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We define the symbol w ∗ f [u] for a nonlinear spatial
convolution of a solution u(x, t) over (−∞,∞) where(

wjk ∗ f [u]
)
(x) =

∫
R
wjk

(
∥x− y∥

)
f
(
u(y, t)

)
dy (1)

represents the total synaptic input from the neurons in
population k to the neurons in population j where wjk(x)
is the synaptic weight function. The firing rate nonlin-
earity f(u), generally sigmoidal in form, is taken to be a
Heaviside function f [u] = H(u − θ) with threshold θ, as
introduced by Amari [2] for analytic tractability. I(x) is a
stationary, localized (Gaussian-like) input homogeneity.

Amari Neural Field

∂u

∂t
+ u = w ∗ f [u] + I(x) (2)

The simplest neural field supporting a stationary bump
is the Amari neural field representing a single neuronal
population in which the net synaptic input can be net
excitatory or inhibitory, typically in the shape of a Mex-
ican hat (locally excitatory, laterally inhibitory) [2]. Sta-
tionary bumps occur for other classes of synaptic weight
function w in this model, including a case with midrange
excitation and both local and long-range inhibition [19].
Though the Amari neural field is not discussed here, we
note that Hopf bifurcation of stationary bumps do occur
in the case of synaptic delays as analyzed in [45].

AE, AI or AA Neural Field

∂u

∂t
+ u = w ∗ f [u]− βn+ I(x)

1

α

∂n

∂t
+ n = u

(3)

We take f [u] = H(u − θ) and θ is a constant threshold.
The AE neural field represents a layer of coupled excita-
tory (E) neurons (u = ue) with positive coupling strength
(w(x) > 0) subject to linear adaptation (A) in the form
of the local negative feedback term −βn, where n is a
gating-like variable governed by linear dynamics intro-
duced by Pinto & Ermentrout [6, 10]. The AI neural field
is a layer of coupled inhibitory (I) neurons (u = ui) with
negative synaptic coupling strength (w(x) < 0). Other
choices of w(x) lead to different neural field models. If
w(x) is a Mexican hat weight function (locally excita-
tory, laterally inhibitory), this represents the Amari neu-
ral field with a layer of neurons (u = u) whose firing rate
is modulated by a gating variable, which we denote as
the AA neural field for adapting Amari neural field.

E-I Neural Field

∂ue
∂t

+ ue = wee ∗ fe[ue]− wei ∗ fi[ui] + Ie(x)

τ
∂ui
∂t

+ ui = wie ∗ fe[ue]− wii ∗ fi[ui] + Ii(x)

(4)

where we take fe[u] = H(u− θe), fi[u] = H(u− θi) and
θe and θi are constant thresholds. The E-I neural field is
a variation on the original Wilson-Cowan neural field [1].
We consider the formulation with all Heaviside nonlinear-
ities introduced in [24]. An alternative formulation was
considered in [11]. The synaptic weight functions wjk are
purely positive and the excitatory or inhibitory synap-
tic currents are determined by the sign in the equations.
Note that, under certain assumptions, an E-I neural field
can be directly reduced to the Amari neural field [11].

AE-I Neural Field

∂ue
∂t

+ ue = wee ∗ fe[ue]− wei ∗ fi[ui]− βne + Ie

τ
∂ui
∂t

+ ui = wie ∗ fe[ue]− wii ∗ fi[ui] + Ii

1

α

∂ne
∂t

+ ne = ue

(5)

where we take fe[u] = H(u− θe), fi[u] = H(u− θi) and
θe and θi are constant thresholds. The AE-I neural field
is the natural combination of two population E-I neural
field where the E-population is additionally subject to
linear adaptation (A) introduced in [31, 32]. This model
could reflect, for example, spike-rate adaptation observed
in excitatory neurons coupled to inhibitory interneurons
in neocortex.

Interacting Pair of AE/AI/AA Neural Fields

An interacting pair of Amari neural fields with sym-
metric local and symmetric or asymmetric interlayer con-
nections was introduced and analyzed in [40, 41]. Here
we introduce two forms of interacting pairs of AA/AE/AI
neural fields with the addition of adaptation variables n1
and n2: (i) a symmetric case where the two neural fields
are identical in synaptic weight functions, inputs, and
parameters, but are allowed to evolve independently and
(ii) an asymmetric case where the temporal dynamics
are identical but all synaptic weight functions, nonlinear
thresholds, and inputs are allowed to differ.

Symmetric Case

∂u1

∂t
+ u1 = wloc ∗ f [u1] + wlay ∗ f [u2]− βn1 + I(x)

∂u2

∂t
+ u2 = wloc ∗ f [u2] + wlay ∗ f [u1]− βn2 + I(x)

1

α

∂n1

∂t
+ n1 = u1

1

α

∂n2

∂t
+ n2 = u2

(6)

where in our treatment f [u] = H(u − θ) and θ is a
constant threshold. The synaptic weight function wloc

represents the local connection within each population,
whereas wlay represents the interlayer synaptic connec-
tions from one population to the other. In this case,
both weight functions are identical for each population.
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Asymmetric Case

∂u1

∂t
+ u1 = wloc

11 ∗ f1[u1] + wlay

12 ∗ f2[u2]− βn1 + I1

∂u2

∂t
+ u2 = wloc

22 ∗ f2[u2] + wlay

21 ∗ f1[u1]− βn2 + I2

1

α

∂n1

∂t
+ n1 = u1

1

α

∂n2

∂t
+ n2 = u2

(7)

where we take f1[u] = H(u− θ1) and f2[u] = H(u− θ2)
and θ1 and θ2 are constant thresholds. In this case
both the local and interlayer synaptic weight functions
are allowed to be different. We still assume the weight
functions themselves are even-symmetric and translation-
invariant, though asymmetric synaptic weight functions
have been investigated in the AE neural field [30]. Note
that the case of differing α1, α2 and β1, β2 may also be
treated but the stability analysis is more complicated.
Here our focus is more on the asymmetry in the synaptic
connections in the two populations rather than differ-
ences in the temporal dynamics.

Interacting Pair of E-I Neural Fields

∂ue
∂t

+ ue = wloc

ee ∗fe[ue]− wloc

ei ∗fi[ui] + wlay

ee ∗fe[ve] + Ie

τ
∂ui
∂t

+ ui = wloc

ie ∗fe[ue]− wloc

ii ∗fi[ui] + wlay

ie ∗fe[ve] + Ii

∂ve
∂t

+ ve = wloc

ee ∗fe[ve]− wloc

ei ∗fi[vi] + wlay

ee ∗fe[ue] + Ie

τ
∂vi
∂t

+ vi = wloc

ie ∗fe[ve]− wloc

ii ∗fi[vi] + wlay

ie ∗fe[ue] + Ii

(8)

where we take fe[u] = H(u− θe), fi[u] = H(u− θi) and
θe and θi are constant thresholds. This neural field was
introduced by Folias and Ermentrout in [41]. For simplic-
ity we assume the two E-I neural fields are identical with
symmetric connections. The interlayer connections be-
tween the two E-I neural fields are projecting from the E
cells only to reflect the excitatory long-range connections
in the neocortex. Inhibitory interlayer connections natu-
rally could be introduced but are not considered here.

Of the neural fields listed here, stability and Hopf bi-
furcation of stationary bumps have been previously be
examined by us in the AE/AA neural field in [18, 39], in
the E-I neural field in the absence of inputs by Blomquist
et al. [24] and in the case of input inhomogenieties by
us briefly in [51] and herein, and in the dual E-I neural
field in the absence of inputs by us in [41]. Additionally
we cast existence and stability conditions in a systematic
notation so that the conditions in different models can
be directly compared, and we fully categorize the spa-
tial structure of the eigenmodes to investigate the var-
ious emergent solutions resulting from Hopf bifurcation
of different eigenmodes.

III. ANALYSIS OF STATIONARY BUMPS

A. Notation

We define notation to move between vector and scalar
notation for different steps of the analysis. The notation

u = [uj ]

for j = 1, ..., N will denote a N -dimensional vector whose
jth element is the expression uj which is a neural field
or a gating variable vj . Subsequently, the notation

(u)j

is used to refer to jth element of any defined vector u.
The notation

M = [Mjk]

for j = 1, . . . ,M, k = 1, . . . , N denotes an (M×N) matrix
with element jk of the matrix given by expression Mjk.
Similarly

(M)jk

refers to element jk of the matrix M.

B. Structure of the neural fields on (−∞,∞)

We construct a vector formulation for a family of N
neural fields with M linear gating variables each cou-
pled only one neural field (each neural field may couple
to more than one gating variable). The existence and
stability of a stationary bump in this vector formulation
is based upon the type of analysis that has appeared in
various studies (e.g., see [2, 11, 18, 24]).
We consider two forms of a general neural field equa-

tion for N coupled neuronal populations of the form

∂u

∂t
= Au+W ∗ H[u− θ] + I(x) (9)

where the vector u = [uj ] represents a vector of N neural
fields u1, u2, ... uN all defined along a universal spatial
coordinate x and time t.
We also consider neural field equations with N neural

fields with M additional linear auxiliary or gating vari-
ables vj

∂u

∂t
= Au+Bv +W ∗ H[u− θ] + I(x)

∂v

∂t
= Cu+Dv

(10)

where u = [uj ] is a vector of N neural fields u1, u2, . . . uN

and v = [vk] is a vector of M linear gating variables
v1, . . . vM each defined along the universal spatial coordi-
nate x and time t.
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Different neural fields uj are assumed to interact only
through nonlinear synaptic interactions and may be cou-
pled to more than one gating variable. Each gating vari-
able is assumed to be coupled to one neural field only and
evolve according to linear dynamics. These assumptions
imply A is an (N×N) diagonal matrix, D is an (M×M)
diagonal matrix, B is an (N×M) matrix, and C is an
(M×N) matrix which are assumed to be constant. Both
B and CT have one nonzero entry in each column in
the same location so nonzero entry jk of B aligns with
nonzero entry kj in C. This implies BD−1C is diago-
nal whenever D is invertible since its nonzero elements
occur when multiplying nonzero element jk of B with
corresponding nonzero element kj of C which produces
element jj on the diagonal, given that D−1 is diagonal.
We shall assume A, D, and (A−BD−1C) are invertible.

I(x) = [Ij(x)] represents a localized excitatory input
inhomogeneity which, for each neural field uj , is assumed
to be a Gaussian-like and even-symmetric about some
point xc,j in the universal coordinate system. A special
case we consider is where the input in each population is
centered about 0 or a common center xc. For concrete-
ness we take Ij(x) = Ij

◦e
−(x/σj)

2

or a translate. The case
I(x) = 0 represents the associated input-free neural field.
The convolution W ∗ H[u− θ] is defined as

W ∗ H[u− θ] =

∫
R
W(x− x′)H[u(x′, t)− θ] dx′,

where the vector function defined by

H[u− θ] =


H(u1 − θ1)
H(u2 − θ2)

...
H(uN − θN)


is a vector of Heaviside firing rate nonlinearities over the
N populations uj with thresholds θj (where θ = [θj ]).
We define the syanptic kernel matrix W(x) as the

(N×N) matrix of synaptic weight functions wjk(x) from
neuronal populations k to populations j.

W(x) = [wjk(x)] =

 w11(x) · · · w1N(x)

...
. . .

wN1(x) wNN(x)

 (11)

The first index j denotes the post-synaptic population
that receives the synaptic input, while the second index
k denotes the pre-synaptic population that induces the
synaptic currents. In Sec. III & IV, we shall assume
that the sign that determines whether the interaction be-
tween population j and k is purely excitatory or purely
inhibitory is contained in the definition of the synaptic
weight function wjk itself. In Sec. II & V, purely in-
hibitory synaptic connections are represented by positive
weight functions, premultiplied with a − sign. A Mexi-
can hat weight function can be formulated by subtracting
two positive weight functions with different parameters
to generate a mixture of excitation and inhibition in the
following form wM(x) = w (x; w̄e, σe)− w (x; w̄i, σi) [2].

Uj(x)

θ

FIG. 2. Stationary bump profile Uj(x) with threshold points
x = aj

0 and aj
1 in the jth neural field uj .

C. Existence of a stationary bump.

We consider stationary bump solutions of neural field
equations (9) and (10). A stationary bump is any such
solution where there is at most a single localized interval
of activity in the entire domain of each population.
In the case (v = 0) of no gating or auxiliary variables,

a stationary solution to the neural field equations for N
coupled neuronal populations satisfies the equation

0 = Au+W ∗ H[u− θ] + I(x). (12)

In the case (v ̸= 0) where (linear) gating or auxiliary
variables are present, a stationary solution satisfies

0 = Au+Bv +W ∗ H[u− θ] + I(x)

0 = Cu+Dv
(13)

ProvidedD is invertible, the pair of vector equations (13)
can be reduced to the same form as (12) by solving for

v = −D−1Cu and defining the matrix Ã = A−BD−1C
to arrive at

0 = Ãu+W ∗ H[u− θ] + I(x). (14)

Equation (14) has the same form as (12). Both Ã in (14)
and A in (12) are diagonal under our assumptions on the

matrices. We express Ã in terms of its diagonal elements

Ãjj by writing Ã = diag(Ã11, ... , ÃNN).
We assume a solution in the form of a localized sta-

tionary bump u(x, t) = U(x) = [Uj(x)] by requiring the
bump profile Uj(x) in each neural field j be superthresh-
old over a single interval (aj

0, a
j
1) for each j = 1, ... , N .

The intervals need not be centered around the same point
(see, for example, the stationary allotopic bump in [41]).
We assume each Uj(x) is bounded on (−∞,∞) and

satisfies the following threshold conditions (see Fig. 2)

Uj(x) > θj , x ∈ (aj

0, a
j

1), aj

0 < aj

1

Uj(x) = θj , x = aj

0, a
j

1

Uj(x) < θj , otherwise

Uj(x) → 0, as x→ ±∞.
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The convolution W∗H[u− θ] can be expressed as the
vector function W(x;a0,a1) where

W ∗ H[u− θ] = W = [Wj ]

and Wj is given by

Wj(x;a0,a1) =

N∑
k= 1

∫ ak
1

ak
0

wjk(x− y) dy

=

N∑
k= 1

(
Wjk(x− ak

0)−Wjk(x− ak

1)
)

where a0 = [aj
0] and a1 = [aj

1] for j = 1, ..., N and

Wjk(x) =

∫ x

0

wjk(y) dy.

Next, provided A in (12) or Ã in (14) is invertible,
each equation (12) or (14) may be solved for u for the
profile of a stationary bump.

A stationary bump, when no linear gating variables are
present, can then be expressed as

u(x, t) = U(x) = A−1
(
W(x;a0,a1) + I(x)

)
(15)

or, when linear gating variables are present, as

u(x, t) = U(x) = Ã−1
(
W(x;a0,a1) + I(x)

)
v(x, t) = V(x) = −D−1CU(x).

(16)

where Ã = A−BD−1C which is diagonal.
The unknown bump threshold points a0,a1 with scalar

components aj
0, a

j
1 for j = 1, ... , N are determined by re-

quiring the bump profile Uj(x) for each population j to
satisfy its left and right threshold conditions Uj(a

j
l ) = θj

for l = 0, 1 which can be expressed as the nonlinear sys-
tem of 2N equations

Uj(a
j

0) ≡ 1

Ãjj

(
Wj(a

j

0;a0,a1) + Ij(a
j

0)
)

= θj ,

Uj(a
j

1) ≡ 1

Ãjj

(
Wj(a

j

1;a0,a1) + Ij(a
j

1)
)

= θj ,
(17)

where Ã−1 = diag(Ã−1
11 , ... , Ã

−1
NN) reducing to Ã−1 = A−1

in the case of no gating variables. Equation (17) repre-
sents a system of 2N nonlinear equations in 2N variables
aj

l for j = 1, ... , N and l = 0, 1.
The stationary bump solution is U = [Uj ] where the

jth component can be expressed as

Uj(x) =
1

Ãjj

[ N∑
k= 1

(
Wjk(x− ak

0)−Wjk(x− ak

1)
)
+ Ij(x)

]
In the special case that the bump is even-symmetric

about a common location x = xc in all populations, then
the locations of the vectors of left and right threshold
points for neural field j = 1, ..., N can be expressed as

a0 = [xc − aj], a1 = [xc + aj]

where aj is the bump half-width in the jth neural field.
Note that, at times these existence equations produce

spurious solutions that cross threshold more than two
times and violate the assumed threshold conditions for
a stationary bump; consequently any solution of the ex-
istence equations must be verified that it yields a sta-
tionary bump solution that properly obeys the threshold
crossings, otherwise it does not correspond to a solution.

D. Stability analysis & spatial dependence of the
eigenfunctions of the linearization

To investigate the stability of a stationary bump
U(x, t), equations (9) and (10) are linearized about the
stationary solution (U,V), by introducing the time-
dependent perturbations

u(x, t) = U(x) + φ̃(x, t)

v(x, t) = V(x) + ψ̃(x, t)

and expanding to first order in φ̃, ψ̃ which leads to the
linear system of integrodifferential equations

∂

∂t
φ̃ = Aφ̃+Bψ̃ +Nφ̃

∂

∂t
ψ̃ = Cφ̃+Dψ̃

(18)

where N is a nonlocal compact linear operator given by

Nφ = W ∗ [δ(U− θ)φ]

=

∫
R
W(x− y) δ(U(y)− θ)φ(y) dy

W is the matrix of synaptic weight functions in (11) and
δ(U− θ)φ is the vector of δ-functions over the N neural
fields φj with threshold θj and bump profile Uj(x)

δ(U− θ)φ =


δ
(
U1 − θ1

)
φ1

δ(U2 − θ2)φ2

...
δ(UN − θN )φN

 .
Setting φ̃(x, t) = φ(x)eλt and ψ̃(x, t) = ψ(x)eλt in

(18) results in the spectral problem

λφ = Aφ+Bψ +Nφ

λψ = Cφ+Dψ
(19)

Provided that (λI − D) is invertible, the function ψ is
determined uniquely by φ according to

ψ = (λI−D)−1Cφ

thereby reducing (19) to the reduced spectral problem

λφ =
(
L(λ) +N

)
φ (20)

where matrix operator L(λ) = A + B(λI − D)−1C de-
pends on the spectral parameter λ. When gating vari-
ables are not present, L(λ) reduces to L(λ) = A.
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For A,B,C,D satisfying the assumptions in Section
III B, it follows that L(λ) is diagonal assuming (λI−D)
is invertible. To reference the elements of L(λ) we define

L(λ) = diag(ℓ11(λ), ℓ22(λ), . . . ℓNN(λ))

We view the nonlocal operator N acting on the vector
function φ(x) in terms of operators Njk

N = [Njk]

each acting on its scalar component φk(x) according to

Njk φk = wjk ∗
[
H ′(Uk − θk)φk

]
=

∫ ∞

−∞
wjk(x− η) δ

(
Uk(η)− θk

)
φk(η) dη

= Mjk(x; a
k

0) φk(a
k

0) +Mjk(x; a
k

1)φk(a
k

1)

where

Mjk(x; a
k

l ) =
wjk(x− ak

l )

|U ′
k(a

k
l )|

and

U ′
k(x) =

1

Ãjj

[ N∑
k= 1

[
wjk(x− ak

0)− wjk(x− ak

1)
]
+ I ′j(x)

]
If we define the 2N -dimensional constant vector Φ below
for the special nonlocal values φj(a

j
l ),

Φ =
(
φ1(a

1

0), ..., φN(a
N

0 ), φ1(a
1

1), ..., φN(a
N

1 )
)T
, (21)

we can express Nφ in terms of the (N×2N) matrix M(x)
where

Nφ(x) = M(x)Φ

M(x) =
[
M0(x) M1(x)

]
Ml(x) =

[
Mjk(x; a

k

l )
]
.

Ml(x) is an (N×N) matrix, j, k = 1, . . . , N, and l = 0, 1.

Essential Spectrum. N is a compact operator. The
essential spectra of (L + N) and L are the same, since
L+N is a compact perturbation of L, and comprise the
finite set of values

σess =
{
λessi }Qi=1

which is the set of all solutions λ = λessi to the equation

N∏
j =1

(ℓjj(λ)− λ) = 0

where ℓjj(λ) are the diagonal elements of L(λ). Operator
(L − λI) has an infinite-dimensional kernel at each λessi .
Since (L+N) and L are closed operators and λessi are iso-
lated points with infinite geometric multiplicity, then λessi

belong to the essential spectrum of L and (L +N) [70].
The essential spectrum lies in the open left-half complex
plane whenever Re {λessi } < 0 for all i = 1, . . . , Q.

Point Spectrum. We rewrite the spectral problem (20)
using Nφ = M(x)Φ to express it as(

λI− L(λ)
)
φ(x) = M(x)Φ (22)

Since the diagonal matrix
(
λI−L(λ)

)
is invertible when-

ever λ /∈ σess, equation (22) generates nontrivial solu-
tions whenever the vector of special nonlocal values Φ is
nonzero. The eigenfunctions over space are determined
by the special nonlocal values Φ of the eigenfunctions at
the threshold points. A self-consistency or compatibility
condition for the vector of special nonlocal values Φ is
constructed by setting x = aj

0, a
j
1 in the jth entry of the

vector equation (22) stated below

(
λ− ℓjj(λ)

)
φj(x) =

1∑
l=0

N∑
k=1

Mjk(x; a
k

l )φk(a
k

l ),

to obtain the following compatibility condition for the
existence of the threshold points x = aj

0, a
j
1 of the bump

(
λ− ℓjj(λ)

)
φj(a

j

0) =

1∑
l=0

N∑
k=1

Mjk(a
j

0; a
k

l )φk(a
k

l ),

(
λ− ℓjj(λ)

)
φj(a

j

1) =

1∑
l=0

N∑
k=1

Mjk(a
j

1; a
k

l )φk(a
k

l ).

(23)

Compatibility condition (23) is expressed compactly as(
λI− L̃(λ)

)
Φ = MΦ (24)

where L̃(λ) is a (2N×2N) matrix (that can depend on
spectral parameter λ if gating variables are present)

L̃(λ) =

[
L(λ) 0

0 L(λ)

]

M is the (2N×2N) matrix composed as a (2×2) block ma-
trix with (N×N) submatrices Mpq where

M =

[
M00 M01

M10 M11

] Mpq = [Mjk(a
j

p; a
k

q)]

Mjk(a
j

p; a
k

q) =
wjk(a

j
p − ak

q)

|U ′
k(a

k
q)|

,

p, q = 0, 1 and j, k = 1, . . . , N .
Rewriting compatibility condition (24) for the vector of

special nonlocal values Φ as(
λI− L̃(λ)−M

)
Φ = 0 (25)

Nontrivial solutions to equation (25) exists, and hence
eigenfunctions to spectral problem (19) exist, whenever

det
(
λI− L̃(λ)−M) = 0 on the set of λ /∈ σess.
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Consequently, an Evans function E(λ) for the station-
ary bump (U(x),V(x)) is

E(λ) = det
(
λI− L̃(λ)−M

)
(26)

for λ /∈ σess. The zero set of the Evans function represents
the set of all eigenvalues of (L(λ)−N) in this region.
Eigenfunctions. From (22), an eigenfunction corre-

sponding to eigenvalue λ can be expressed as

φ(x) =
(
λI− L(λ)

)−1M(x)Φ

ψ(x) = (λI−D)−1Cφ(x)

Note that (λI−L(λ)) is invertible since λ /∈ σess. The jth
element of φ(x) = [φj(x)] can be expressed as

φj(x) =
1

(λ− ℓjj(λ))

1∑
l=0

N∑
k=1

Mjk(x; a
k

l )φk(a
k

l )

OR
= φk(a

j

r)

∑1

l=0

∑N
k=1

Mjk(x; a
k
l )φk(a

k
l )∑1

l=0

∑N
k=1

Mjk(aj
r; a

k
l )φk(ak

l )

for r = 0, 1 and j = 0, 1, . . . , N using (23).

IV. SPATIAL STRUCTURE OF THE
EIGENFUNCTIONS FOR NEURAL FIELDS

WITH EVEN SYMMETRY

When even symmetry is present in the synaptic weight
functions wjk(x) and the inputs Ij(x) (when present),
and, moreover, the stationary bump in each population k
shares a common center xc then we show that the spatial
structure of operator L+N in general can be decomposed
into two components with either even or odd symmetry
that give rise to eigenfunctions with even or odd spatial
symmetry. As these assumptions underlie the specific
neural fields investigated in this paper in Sec. II and V
the following applies to all of them.

Structure of M for even-symmetric U(x), W(x).
Claim: If wjk(x), Ij(x) and Uj(x) are even-symmetric
about a common center xc for all j, k = 1, . . . , N then

M00 = M11 ≡ Ω and M01 = M10 ≡ Σ

so M reduces to the form

M =

[
M00 M01

M01 M00

]
=

[
Ω Σ

Σ Ω

]
.

To see why this is true, if the bump Uk(x) in each popula-
tion k is even-symmetric about a common center x = xc,
then |U ′

k(a
k
0)| = |U ′

k(a
k
1)| and |aj

0 − ak
0 | = |aj

1 − ak
1 | and

|aj
0 − ak

1 | = |aj
1 − ak

0 | for j, k = 1, ... , N , Consequently, by
the even symmetry of wjk, it follows that for all j, k

wjk(a
j
0 − ak

0)

|U ′
k(a

k
0)|

=
wjk(a

j
1 − ak

1)

|U ′
k(a

k
1)|

,

which means for all j, k

Mjk(a
j

0; a
k

0) = Mjk(a
j

1; a
k

1), ⇒ M00 = M11.

Similarly

wjk(a
j
0 − ak

1)

|U ′
k(a

k
1)|

=
wjk(a

j
1 − ak

0)

|U ′
k(a

k
0)|

,

for all j, k, which means

Mjk(a
j

0; a
k

1) = Mjk(a
j

1; a
k

0) ⇒ M01 = M10.
□

By a similarity transformation for M, we may express

Q−1MQ =

[
M⊕ 0

0 M⊖

]
Q =

[
IN IN

IN −IN

]

M⊕ = Ω+Σ

M⊖ = Ω−Σ

where IN is the (N×N) identity matrix. Moreover, L̃(λ)
is similar to itself under this similarity transformation,

so L̃(λ) = Q−1 L̃(λ)Q and we can conclude that

Q−1

(
L̃(λ)+M

)
Q =

[
L(λ) +M⊕ 0

0 L(λ) +M⊖

]
(27)

Consequently, we can express the Evans function E(λ) as
the product (eigenvalues comprise the zero set of E(λ))

E(λ) = det
(
λI−L(λ)−M⊕

)
· det

(
λI−L(λ)−M⊖

)
(28)

An eigenfunction φ(x) corresponding to an eigenvalue λ
can be expressed as

φ(x) =
(
λI− L(λ)

)−1
Nφ(x) (29)

where

Nφ(x) = M(x)Φ

= M0(x)Φ0 +M1(x)Φ1,
Φ =

[
Φ0

Φ1

]

the 2N -vector Φ is expressed in terms of two N -vectors
Φ0 = [φj(a

j
0)] and Φ1 = [φj(a

j
1)] where j = 1, . . . , N and

M(x) =
[
M0(x) M1(x)

]
is a block matrix formed from two (N×N) submatrices
where

M0(x) = [Mjk(x; a
k

0)] M1(x) = [Mjk(x; a
k

1)]

where j, k = 1, . . . , N .
Based on the similarity transformation (27), nontrivial

solutionsΦ of the compatibility condition have one of the
following two forms where ϕ is an N -vector

Φ⊕ =

[
Φ⊕

0

Φ⊕
1

]
=

[
ϕ

ϕ

]
or Φ⊖ =

[
Φ⊖

0

Φ⊖
1

]
=

[
ϕ

−ϕ

]
.



9

0

0 2 4-2-4

-1

xx
0

0

2 4-2-4

FIG. 3. Graphs of 		jk(x) and 	�jk(x) in the case of Gaussian
weight functions wjk(x) which form the sum ⊕ and difference
⊖ eigenmodes for the linearization about an even symmetric
stationary bump in neural fields with even symmetric weight
functions wjk and inputs Ij .

Note that the matrix function M1(x) is a reflection of
M0(x) across x = xc which is the common center point
of the stationary bump, i.e.,

M1(−(x− xc)) = M0(x− xc)

In the ⊕ case, Nφ(x) is even-symmetric about x = xc

Nφ(x) =
(
M0(x) + M1(x)

)
ϕ

and in the ⊖ case, Nφ(x) is odd-symmetric about x = xc

Nφ(x) =
(
M0(x) − M1(x)

)
ϕ.

If we define diagonal matrixD =
(
λI−L(λ)

)−1
then from

(20) eigenfunctions are given by one of the two forms

φ⊕(x) = D
(
M0(x) + M1(x)

)
ϕ

φ⊖(x) = D
(
M0(x) − M1(x)

)
ϕ.

If we define the matrix functions

				(x) ≡
(
M0(x) + M1(x)

)
=
[

		jk(x)
]

		��(x) ≡
(
M0(x) − M1(x)

)
=
[

	�jk(x)
]

the elements may be expressed as

		jk(x) =
wjk(x− ak

0)

|U ′
k(a

k
0)|

+
wjk(x− ak

1)

|U ′
k(a

k
1)|

	�jk(x) =
wjk(x− ak

0)

|U ′
k(a

k
0)|

− wjk(x− ak
1)

|U ′
k(a

k
1)|

(30)

The component functions 		jk(x) are even-symmetric
and 	�jk(x) are odd-symmetric functions about x = xc,
the center of the bump. Consequently, 				(x) and 		��(x)
are even and odd functions about x = xc, respectively.
Thus the eigenfunctions corresponding to eigenvalues λ
associated with M⊕ and M⊖ modes can be expressed as

φ⊕(x) = D				(x)ϕ, φ⊖(x) = D		��(x)ϕ.

Note that the symbols 		 and 	� are chosen to carica-
ture the general shape of the component functions of the
matrices

(
M0(x) +M1(x)

)
and

(
M0(x) −M1(x)

)
which take on the characteristic form of the figures below

				 		
��

when w is the exponential weight function e−|x|; if w is a
Gaussian the sharp corners become smooth as in Fig. 3.

V. EXISTENCE AND STABILITY OF BUMPS
IN ELEMENTARY NEURAL FIELDS ON (−∞,∞)

The stationary bump solution for each neural field de-
scribed in this section is expressed in terms of the integral

W (x) =

∫ x

0

w(y) dy

of the synaptic weight functions wjk for each model as
denoted by various subscripts. For concrete calculations
and simulations, positive synaptic weight functions are

taken to be either 1√
πσ
we−(x/σ)2 or 1

2σwe
−|x|/σ and in

the AE/AI/AA model w(x) = we(x) − wi(x) where ex-
citatory and inhibitory components we(x) and wi(x) are
positive weight functions.
In all cases a stationary bump solution is a bounded

solution Uj(x) on (−∞,∞) in which there is a bump
in each neural field variable, indexed by j, that is cen-
tered about the origin in the universal coordinate system
and satisfies the threshold conditions Uj(±aj) = θj with
Uj(x) > θj , for x ∈ (−aj , aj). Stationary bumps more
generally could be formed from bumps in each neural
field centered around a different point (as in Sec. III).
Spectral stability of the stationary bump is analyzed

and, in all models, the essential spectrum σess was de-
termined to be negative and not a cause of instability.
Stability of the stationary bump is thereby determined
by the eigenvalues in the point spectrum and eigenvalues
and eigenfunctions are constructed.
A stationary bump is linearly stable if all eigenval-

ues have negative real part except the generic, single 0-
eigenvalue associated with translation invariance of sta-
tionary solutions in neural fields with translation sym-
metry. This is valid for the neural fields in this section in
the absence of any input inhomogeneity and the transla-
tion mode in this case cannot destabilize in a Hopf bifur-
cation except possibly in the AE-I model. When input
inhomogeneities are introduced, the translation symme-
try is broken and the translation eigenmode generically
has nonzero eigenvalues that may become complex and
lead to a Hopf bifurcation of the translation mode. This
results in side-to-side periodic oscillations that we have
termed sloshers due to their back-and-forth sloshing be-
havior in contrast with the expanding-contracting peri-
odic oscillations of the breathing bumps or breathers [39].
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AE, AI and AA Neural Fields
A stationary bump solution to neural field equation (3)
is given by (u(x, t), n(x, t)) = (U(x), N(x)) where

(1 + β)U(x) = W (x+ a)−W (x− a) + I(x)

N(x) = U(x)

where a is determined by the threshold condition

W (2a) + I(a) = θ(1 + β)

provided U(x) obeys the threshold behavior on (−∞,∞).

Perturbations (φ̃(x, t), ψ̃(x, t)) of the stationary bump
(U(x), N(x)) evolve according to

∂φ̃

∂t
+ φ̃ = N φ̃− βψ̃

1

α

∂ψ̃

∂t
+ ψ̃ = φ̃

(31)

Setting (φ̃, ψ̃) = φ(x)eλt yields the spectral problem for
λ and φ(x) = (φ(x), ψ(x))T

−φ+Nφ− βψ = λφ

αφ− αψ = λψ
(32)

Solving for ψ leads to the reduced spectral problem

−φ+Nφ =
(
λ+

αβ

λ+ α

)
φ. (33)

The compatibility equation determining both the eigen-
values and special nonlocal values of the eigenfunctions
at the threshold points is(

MAE − I
)
ϕ =

(
λ+

αβ

λ+ α

)
ϕ, (34)

where

MAE =

[
M(0) M(2a)

M(2a) M(0)

]
, ϕ =

(
φ(+a)

φ(−a)

)
andM(x) = w(x)/|U ′(a)|. The matrixMAE is symmetric
and is diagonalized by the similarity transformation

Q−1 MAE Q = ΛAE ≡
[
M⊕ 0

0 M⊖

]
, Q =

[
1 1

1 −1

]
where M⃝± = M(0)±M(2a). (34) can be written as(

MAE − µ(λ)I
)
ϕ = 0 (35)

where µ(λ) = 1 + λ+ αβ
λ+α . Nontrivial ϕ exist when

det
(
MAE − µ(λ)I

)
= 0

Solving for µ and then λ in terms of µ we obtain

λ⃝± = −Γ±
√
Γ2 −∆ Γ = 1

2

(
1 + α− µ⃝±)

µ⃝± = M⃝± = M(0)±M(2a) ∆ = α
(
1 + β − µ⃝±)

Solving (35) for the vector of special nonlocal values we
obtain the form ϕ⃝± = (φ(−a), φ(a))T = (1,±1)T where
the ± corresponds to the different spatial modes M⃝±.
The spatial eigenfunctions φ⃝±(x) for the sum ⊕ and dif-
ference ⊖ eigenmodes are given by

φ⃝±(x) =

(
φ(x)

ψ(x)

)
=

(
1
α

λ+α

)
M⃝±(x; a),

M⃝±(x; a) = Ω⃝±(x; a)/|U ′(a)|
Ω⃝±(x; a) = w(x− a)± w(x+ a)

At a Hopf bifurcation point the Hopf frequency is

ωH = Im{λ} =
√
α(β − α).

Determining whether the ⊕ or ⊖ eigenmodes destabi-
lizes in a Hopf bifurcation of a stationary bump depends
on the real part of the complex eigenvalues for the two
modes and leads to the following condition. The ⊕ gives
rise to expanding-contracting breathers and the ⊖ mode
gives rise to side-to-side sloshers.

Condition for Hopf bifurcation of ⊕ or ⊖ mode
In the absence of an input (I = 0), difference mode

⊖ has a persistent 0-eigenvalue associated with transla-
tion invariance of the stationary bump and a second real
eigenvalue. A drift bifurcation of the difference mode ⊖
occurs when α = β leading to traveling bump solutions.
In the case α > β, the sum mode ⊕ can only destabilize
in a saddle-node bifurcation. (See Table I.)
In the presence of an input inhomogeneity (I(x) ̸= 0),

the eigenvalues are nonzero generically and both ⊕ and
⊖ eigenmodes may have complex eigenvalues. Below we
state a condition determining which mode destabilizes
first, assuming all eigenvalues are complex.
The ⊕ mode destabilizes first in a Hopf bifurcation if

w(2a) > 0

at the Hopf bifurcation point whereas the ⊖ mode desta-
bilizes first in a Hopf bifurcation when

w(2a) < 0.

The ⊕ gives rise to expanding-contracting breathers and
the ⊖ mode gives rise to side-to-side sloshers.
For α < β, the condition for a Hopf bifurcation of a

stable bump can be expressed in terms of the gradient of
the input I(a). A bump is stable if |I ′(a)| satisfies∣∣I ′(a)∣∣ > DH(a)

=

 DH
⊕ (a) ≡

(
β−α
1+α

)
Ω⊕(a; a) + 2w(2a), w(2a) ≥ 0

DH
⊖ (a) ≡

(
β−α
1+α

)
Ω⊖(a; a), w(2a) < 0

with the Hopf bifurcation occurring at
∣∣I ′(a)∣∣ = DH(a).

See Table I for the case α > β.
We mention that a condition determining whether the

bifurcation is supercritical or subcritical is given by the
relevant coefficient in the normal form for the Hopf bi-
furcation which is calculated for this neural field in [39].
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FIG. 4. Various types of spatially coherent localized oscillations in the AE/AI/AA neural field. Each figure is composed of
a (lower graph) space-time plot of the neural activity variable u(x, t), and (upper graph) plots of the orbit of u(xo, t) in the
(u, n)-phase plane plotted at different spatial locations x near x = 0 to illustrate the nonlinear dynamics through a projection.
(a) a breather resulting from destabilizing the ⊕ eigenmode with the orbit as a limit cycle, (b) a slosher resulting from
destabilizing the ⊖ eigenmode with orbit as a limit cycle; note the orbit has a period-doubled structure moving from the lateral
region to x = 0. (c) intermixed localized super/subthreshold activity driven by the input inhomogeneity I(x), akin to large
amplitude relaxation oscillations and different from a breather. (d) period doubling (secondary bifurcation) occurring on an
even-symmetric breather giving rise to a period-2 orbit that exhibits a breather with a side-to-side or sloshing modulation.
(e) secondary bifurcation to a torus exhibiting a slosher with more variable activity in time. (f) Mixed-mode oscillations that
alternate between superthreshold breathing oscillations and a relaxation oscillation intermixed with periods of subthreshold
activity. This activity occurs just beyond a secondary bifurcation point (purportedly subcritical) with the breathing activity
appearing to correspond to the orbit passing in the vicinity of the unstable limit cycle (breather).



12

(a) (b) (c)

(d) (e)

-5 5

0

300

100

200

0

300

100

200

0 -5 50 -5 50

-5 50 -5 50

(f)

-5 50

FIG. 5. A transition between different spatial patterns in the AA neural field as the input space constant σ (measure of spatial
extent of elevated input) is increased: (a) at σ = 0.98, a stable stationary bump, (b) at σ = 1.5, a stable sloshing bump,
(c) at σ = 1.75, a mixed wave pattern, (d) at σ = 1.9, a mixed wave pattern, (e) at σ = 2.0, a localized periodic traveling
wave, (f) at σ = 3.0, a localized periodic traveling wave. As the input widens further, the region of localized periodic traveling
waves continues to widen. The (supercritical) Hopf bifurcation point occurs approximately at σ = 1.0. Other parameters are
I0 = 1, α = 0.1, β = 1, θ = 0.3, we = 1.5, wi = 2.5, σe = 0.5, σi = 1 and the weight functions are Gaussian. Warmer shades
indicate superthreshold values of the activity u(x, t) whereas cooler shades indicate subthreshold values.
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I II III IV V

FIG. 6. Different forms of the synaptic weight function w(x) in the AE/AI/AA neural field (3). I. purely exciatory (AE), II.
Mexican hat (AA), III. inverted Mexican hat, IV. purely inhibitory (AI), V. bimodal inhibitory (AI).

TABLE I. Each cell of the table describes the conditions for stability and bifurcations of any even-symmetric stationary bumps
that may exist for the AE/AI/AA neural field with the synaptic connectivity given by the synaptic weight function w(x)
depicted in Fig. 6 with the corresponding Roman numerals listed. stable/unstable indicates any bumps that may exist are
stable/unstable throughout the case; no bumps indicates that the neural field models do not support stationary bumps when
I(x) = 0; otherwise, the sufficient condition for stability is provided for any bump with halfwidth a that may exist within
the region. Only Hopf, drift, and fold/saddle-node bifurcations of stable stationary bumps occurring in the models are listed.
SN indicates a fold/saddle-node bifurcation; HOPF indicates a Hopf bifurcation and the associated mode destabilizing in the
bifurcation is indicated by the critical gradient DH

⊕ or DH
⊖ ; DRIFT indicates a drift (pitchfork) bifurcation associated with

translation mode ⊖ which gives rise to traveling bumps. Note that in Case III (inverted Mexican hat) with input I(a) > 0, a
bump can only destabilize via the sum ⊕ mode in a Hopf bifurcation as DH

⊖ (a) < |I ′(a)| is always satisfied (since w(0) < w(2a))
and, if w(2a) > 0, a saddle-node bifurcation occurs prior to a Hopf bifurcation if w(0) < γw(2a) where γ = (2+3α−β)/(β−α).

Stability and bifurcations of stable stationary bumps in the AE/AI/AA neural field

I(x) = 0 I(x) > 0

α > β α < β α > β α < β

I unstable unstable

DRIFT AT:

α = β

stable if
2w(2a) < |I ′(a)|

SN at
2w(2a) = |I′(a)|

stable if DH
⊕ (a) < |I ′(a)|, HOPF at DH

⊕ (a) = |I′(a)|

II stable (SN): w(2a) < 0 (=) stable if DH(a) < |I ′(a)|, HOPF at DH(a) = |I′(a)|

III unstable DH = DH
⊕ if w(2a) > 0, DH = DH

⊖ if w(2a) < 0

IV
no bumps no bumps stable

stable

V stable if DH
⊖ (a) < |I ′(a)|, HOPF at DH

⊖ (a) = |I′(a)|

E-I Neural Field
A stationary bump solution to neural field equation (4)

is given by (ue(x, t), ui(x, t)) = (Ue(x), U i(x)) where

Ue(x) = [Wee(x+ ae)−Wee(x− ae)]

− [Wei(x+ ai)−Wei(x− ai)] + Ie(x)

U i(x) = [Wie(x+ ae)−Wie(x− ae)]

− [Wii(x+ ai)−Wii(x− ai)] + Ii(x)

where ae and ai satisfy the threshold conditions

Wee(2ae)−Wei(ae + ai) +Wei(ae − ai) + Ie(ae) = θe

Wie(ai + ae)−Wie(ai − ae)−Wii(2ai) + Ii(ai) = θi

provided the threshold behavior is obeyed on (−∞,∞).
Perturbations (φ̃e(x, t), φ̃i(x, t)) of the stationary

bump (Ue(x), U i(x)) evolve according to

∂φ̃e

∂t
+ φ̃e = Nee φ̃e −Nei φ̃i

τ
∂φ̃i

∂t
+ φ̃i = Nie φ̃e −Nii φ̃i

(36)

Setting (φ̃e, φ̃i) = φ(x)eλt yields the spectral problem
for λ and φ(x) = (φe(x), φi(x))

T

−φe +Nee φe −Nei φi = λφe

− 1
τ φi +

1
τNie φe − 1

τNii φi = λφi

(37)

The compatibility equation determining the eigenval-
ues and special nonlocal values of the eigenfunctions at
threshold points ae and ai is(

MEI − IEI

)
ϕ = λϕ, (38)
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where IEI = diag (1, 1, τ−1, τ−1), ae± i = ae ± ai

MEI =
Mee(0) Mee(2ae) −Mei(ae−i) −Mei(ae+i)

Mee(2ae) Mee(0) −Mei(ae+i) −Mei(ae−i)
1
τMie(ae−i)

1
τMie(ae+i) − 1

τMii(0) − 1
τMii(2ai)

1
τMie(ae+i)

1
τMie(ae−i) − 1

τMii(2ai) − 1
τMii(0)



Mjk(x) =
wjk(x)

|U ′
k(ak)|

, ϕ =

φe(+ae)
φe(−ae)
φi(+ai)
φi(−ai)


The following similarity transform yields

Q−1MEIQ = ΛEI ≡
[
Λ⊕

EI 0

0 Λ⊖
EI

]
, Q =


1 0 1 0

1 0 −1 0

0 1 0 1

0 1 0 −1



Λ⃝±
EI =

[
M⃝±

ee(ae; ae) −M⃝±
ei(ae; ai)

1
τM

⃝±
ie(ai; ae) − 1

τM
⃝±
ii(ai; ai)

]

where M⃝±
jk(x; ak) = Mjk(x− ak)±Mjk(x+ ak)

M⃝±
ee(ae; ae) = Mee(0)±Mee(2ae)

M⃝±
ei(ae; ai) = Mei(ae − ai)±Mei(ae + ai)

M⃝±
ie(ai; ae) = Mie(ae − ai)±Mie(ae + ai)

M⃝±
ii(ai; ai) = Mii(0)±Mii(2ai)

Compatibility equation (38) can be rewritten as(
MEI −D(λ)

)
ϕ = 0 (39)

where D(λ) = diag (1+λ, 1+λ, 1τ +λ, 1τ +λ). Nontrivial
solutions ϕ to (39) exist and yield eigenfunctions when

det
(
MEI −D(λ)

)
= det

(
Λ⊕

EI − D̃(λ)
)
· det

(
Λ⊖

EI − D̃(λ)
)

= 0

where D̃ = diag (1 + λ, 1τ + λ).
Solving for the eigenvalues λ we obtain

λ⃝± =
[
M⃝±

ee−1
2 −M⃝±

ii+1

2τ

]
±
√[

M⃝±
ee−1
2 +

M⃝±
ii+1

2τ

]2
− M⃝±

eiM
⃝±
ie

τ

where M⃝±
jk = M⃝±

jk(aj ; ak). From (39) the vector of
special nonlocal values for the eigenfunction is ϕ =
(φe(ae), φe(−ae), φi(ai), φi(−ai))T = (1,±1, ν⃝±,±ν⃝±)T
where

ν⃝± =
λ⃝± + 1−M⃝±

ee(ae; ae)

−M⃝±
ei(ae; ai)

=

[M⃝±
ee−1
2 +

M⃝±
ii+1

2τ

]
±

√[
M⃝±

ee−1
2 +

M⃝±
ii+1

2τ

]2
−

M⃝±
eiM

⃝±
ie

τ


−M⃝±

ei

The spatial eigenfunctions φ(x) are given by

φ⃝±(x) =

(
φe

φi

)
=

(
1

λ⃝±+1

[
M⃝±

ee(x; ae)− ν⃝±M⃝±
ei(x; ai)

]
1

τλ⃝±+1

[
M⃝±

ie(x; ae)− ν⃝±M⃝±
ii(x; ai)

])

M⃝±
jk(x; ak) = Ω⃝±

jk(x; ak)/|U
′
k(ak)|

Ω⃝±
jk(x; ak) = wjk(x− ak)± wjk(x+ ak)

At a Hopf bifurcation point the Hopf frequency is

ωH = Im{λ⃝± } =

√
−(M⃝±

ee − 1)(M⃝±
ii + 1) +M⃝±

eiM
⃝±
ie

τ

where (M⃝±
ee − 1) = (M⃝±

ii + 1)/τ .
Determining which of the ⊕ or ⊖ eigenmode destabi-

lizes in a Hopf bifurcation of a stationary bump depends
on the real part of the eigenvalues for the two modes and
leads to the following condition.

Condition for Hopf bifurcation of ⊕ or ⊖ mode
In the absence of any input (Ie = Ii = 0), the differ-
ence mode ⊖ has one persistent 0-eigenvalue reflecting
the translation invariance of the stationary bump and a
second real eigenvalue. In this case, only the ⊕ mode can
destabilize in a Hopf bifurcation. In the presence of an
input inhomogeneity where Ie(x) ̸= 0 and/or Ii(x) ̸= 0,
the eigenvalues are nonzero generically, and both ⊕ and
⊖ eigenmodes may have complex eigenvalues.
Below we describe a condition for determining which

mode ⊕ or ⊖ destabilizes first, assuming all eigenmodes
are complex, by identifying a dominate eigenvalue with
the larger real part of two pairs of complex eigenvalues.
The ⊕ mode destabilizes first in a Hopf bifurcation if

wee(2ae)

|U ′
e(ae)|

>
wii(2ai)

τ |U ′
i(ai)|

at the bifurcation point (assuming complex) whereas the
⊖ mode destabilizes first in a Hopf bifurcation when

wii(2ai)

τ |U ′
i(ai)|

>
wee(2ae)

|U ′
e(ae)|

.

The sum ⊕ mode gives rise to expanding-contracting
breathers and the ⊖ mode leads to side-to-side sloshers.

Drift and Hopf bifurcation for I(x) = 0
In the case of no input inhomogeneity (I(x) = 0), a drift
bifurcation of a stationary bump can occur giving rise to
traveling bump solutions. A drift bifurcation is a pitch-
fork bifurcation occurring on the translation mode (⊖)
in the presence of the persistent 0-eigenvalue associated
with translation invariance of the neural field. Although
drift bifurcations of a bump could occur through different
parameter values, we have shown in [51] that stationary
bumps always destabilize in a drift bifurcation at a crit-
ical value τD

crit of the relative time constant τ given by

τD
crit =

1 +M⊖
ii(ai; ai)

−1 +M⊖
ee(ae; ae)

.
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FIG. 7. Bumps and breathers in a E-I neural field in the absence of any input (Ie(x) = Ii(x) = 0), adapted from [51]. (a)
In a parameter region in the E-I neural field (w̄ii is the I-to-I synaptic strength) stationary bumps can destabilize either in a
Hopf bifurcation along curve H⊕

− , giving rise to stable stationary breathers, or a drift bifurcation along curve D⊖
− , giving rise to

stable traveling bump solutions. (b) Different regions indicate the stable attractors that occur in numerical simulations. The
stable traveling bumps in the blue region destabilize in a Hopf bifurcation along curves HTW

1,2 , giving rise to traveling breather
solutions. (c) Space-time plots of the various stationary and traveling bump and breather solutions (excitatory variable ue(x, t)
only). (d) To describe the stable attracting solutions around X , a diagram for a hypothetical codim 2 bifurcation with a mode
interaction occurring between the difference λ⊖-eigenmode (drift instability) and the sum λ⊕-eigenmode (Hopf instability). H⊕

−

is a curve of Hopf bifurcations of stationary bumps, D⊖
− is a curve of drift bifurcations of stationary bumps, HTW is a curve

of Hopf bifurcations of traveling bumps, and DSB is a curve of drift bifurcations of stationary breathers. H⊕
+ , D⊖

− and HTW

are calculated from analytical results. Curve DSB is a proposed curve of drift bifurcations of stationary breathers based upon
numerical simulations [51]. Curve DSB was recently verified and constructed via numerical continuation [52].

When the ⊕ eigenmode has complex eigenvalues, it
destabilizes in a Hopf bifurcation at a critical value of τ

τH
crit =

1 +M⊕
ii(ai; ai)

−1 +M⊕
ee(ae; ae)

.

Moreover it is possible to have a mode interaction

(whereby the eigenmodes interact via nonlinear terms)
between a drift bifurcation and a Hopf bifurcation lead-
ing to a codimension 2 drift-Hopf bifurcation that serves
as an organizing center for both stationary and traveling
bumps and breathers in the E-I neural field as depicted
in Fig. 7 where X is the drift-Hopf bifurcation point [51].
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AE-I Neural Field
A stationary bump solution to neural field equation (5)

is (ue(x, t), ui(x, t), ne(x, t)) = (Ue(x), U i(x), Ne(x))
where

(1 + β)Ue(x) = [Wee(x+ ae)−Wee(x− ae)]

− [Wei(x+ ai)−Wei(x− ai)] + Ie(x)

U i(x) = [Wie(x+ ae)−Wie(x− ae)]

− [Wii(x+ ai)−Wii(x− ai)] + Ii(x)

Ne(x) = Ue(x)

and where ae and ai satisfy the threshold conditions

Wee(2ae)−Wei(ae + ai) +Wei(ae − ai) + Ie(ae) = θ̃e

Wie(ai + ae)−Wie(ai − ae)−Wii(2ai) + Ii(ai) = θi

where θ̃e = θe(1 + β), provided the threshold behavior is
obeyed on (−∞,∞).

Perturbations (φ̃e(x, t), φ̃i(x, t), ψ̃e(x, t)) of the sta-
tionary bump (Ue(x), U i(x), Ne(x)) evolve according to

∂φ̃e

∂t
+ φ̃e = Nee φ̃e −Nei φ̃i − βψ̃e

τ
∂φ̃i

∂t
+ φ̃i = Nie φ̃e −Nii φ̃i

1

α

∂ψ̃e

∂t
+ ψ̃e = φ̃e

(40)

Setting (φ̃e, φ̃i, ψ̃e) = φ(x)eλt results in the spectral
problem for λ and φ(x) = (φe(x), φi(x), ψe(x))

T

−φe +Nee φe −Nei φi − βψe = λφe

− 1
τ φi +

1
τNie φe − 1

τNii φi = λφi

αφe − αψe = λψe

(41)

The compatibility equation determining the eigenval-
ues and special nonlocal values of the eigenfunctions at
threshold points ae and ai where ψe(x) =

(
α

λ+α

)
φe(x) is

(
MEI − IEI

)
ϕ =


λ+ αβ

λ+α 0 0 0

0 λ+ αβ
λ+α 0 0

0 0 λ 0

0 0 0 λ

 ϕ, (42)

where IEI = diag (1, 1, τ−1, τ−1), ae± i = ae ± ai

MEI =
Mee(0) Mee(2ae) −Mei(ae−i) −Mei(ae+i)

Mee(2ae) Mee(0) −Mei(ae+i) −Mei(ae−i)
1
τMie(ae−i)

1
τMie(ae+i) − 1

τMii(0) − 1
τMii(2ai)

1
τMie(ae+i)

1
τMie(ae−i) − 1

τMii(2ai) − 1
τMii(0)



Mjk(x) =
wjk(x)

|U ′
k(ak)|

, ϕ =

φe(+ae)
φe(−ae)
φi(+ai)
φi(−ai)



The following similarity transform yields

Q−1MEIQ = ΛEI ≡
[
Λ⊕

EI 0

0 Λ⊖
EI

]
,Q =


1 0 1 0

1 0 −1 0

0 1 0 1

0 1 0 −1


where

Λ⃝±
EI =

[
M⃝±

ee(ae; ae) −M⃝±
ei(ae; ai)

1
τM

⃝±
ie(ai; ae) − 1

τM
⃝±
ii(ai; ai)

]

where M⃝±
jk(x; ak) = Mjk(x− ak)±Mjk(x+ ak).

Compatibility equation (42) can be rewritten as(
MEI −D(λ)

)
ϕ = 0 (43)

where D(λ) = diag (1+λ+ αβ
λ+α , 1+λ+

αβ
λ+α ,

1
τ +λ,

1
τ +λ).

Nontrivial solutions ϕ to (43) exist and yield eigenfunc-
tions when

det
(
MEI −D(λ)

)
= det

(
Λ⊕

EI − D̃(λ)
)
· det

(
Λ⊖

EI − D̃(λ)
)

= 0

where D̃(λ) = diag (1 + λ+ αβ
λ+α ,

1
τ + λ).

Two triads of eigenvalues satisfy the following pair (±)
of cubic equations

τλ3 + Γ⃝±λ2 +∆⃝±λ+ E⃝± = 0

where the coefficients are given by

Γ⃝± = τ
[
α+ 1−M⃝±

ee(ae; ae)
]
+
[
1 +M⃝±

ii(ai; ai)
]

∆⃝± =
[
α+ 1−M⃝±

ee(ae; ae)
][
τα+ 1 +M⃝±

ii(ai; ai)
]

+M⃝±
ei(ae; ai)M

⃝±
ie(ai; ae) + τα(β − α)

E⃝± = α
[
β + 1−M⃝±

ee(ae; ae)
][
1 +M⃝±

ii(ai; ai)
]

+ α
[
M⃝±

ei(ae; ai)M
⃝±
ie(ai; ae)

]
.

Solving (43) for the vector of special nonlocal values ϕ =
(φe(ae), φe(−ae), φi(ai), φi(−ai))T = (1,±1, ν⃝±,±ν⃝±)T

ν⃝± =
λ+ α

λ+α + 1−M⃝±
ee(ae; ae)

−M⃝±
ei(ae; ai)

.

The spatial eigenfunctions φ(x) are given by

φ(x) =

φe

φi

ψe

 =

 1
µ(λ⃝±)

[
M⃝±

ee(x; ae)− ν⃝±M⃝±
ei(x; ai)

]
1

τλ⃝±+1

[
M⃝±

ie(x; ae)− ν⃝±M⃝±
ii(x; ai)

]
α

λ⃝±+α
φe(x)


where

µ(λ) = λ+ 1 +
αβ

λ+ α

M⃝±
jk(x; ak) = Ω⃝±

jk(x; ak)/|U
′
k(ak)|

Ω⃝±
jk(x; ak) = wjk(x− ak)± wjk(x+ ak)

The ⊕ mode gives rise to expanding-contracting
breathers and the ⊖ mode leads to side-to-side sloshers.
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FIG. 8. Rossler band-like chaotic behavior observed in breathers in the AE-I neural field. In each figure, one orbit or trajectory
of the AE-I neural field is plotted in the (ue, ne, ui) phase space for one spatial point x = 0 (other spatial locations are similar).
The ui axis (not shown) is orthogonal to the figure. (a) at β = 1.76, the fine light blue orbit starts near an unstable period-1
breather (white ring) and approaches a stable period-2 orbit breather (dark blue). (b) a stable period-4 orbit breather at
β = 1.764, (c) long term behavior at β = 1.76437. (d) long term behavior at β = 1.764585. Included in (b) and (d) are graphs
of ue(0, t) and space-time plots of ue(x, t) (left) and ui(x, t) (right) for comparison.

Interacting Pair of AE/AI/AA Neural Fields

Case I: Symmetric case
A stationary bump solution to neural field equation (6)

with the same widths a in each population can be
expressed as (u1, u2, n1, n2) = (U(x), V (x), N(x), M(x))
where

(1 + β)U(x) = [Wloc(x+ a)−Wloc(x− a)]

+ [Wlay(x+ a)−Wlay(x− a)] + I(x)

V (x) = U(x)

N(x) = U(x)

M(x) = U(x)

where a satisfies the threshold condition

Wloc(2a) +Wlay(2a) + I(a) = θ(1 + β)

provided the threshold behavior is obeyed on (−∞,∞).
We note that it is possible to have a solution with a
different size stationary bump in each population or a
stationary bump in only one neural field only.

Perturbations (φ̃1, φ̃2, ψ̃1, ψ̃2)(x, t) of the stationary
bump (U(x), V (x), N(x), M(x)) evolve according to

∂φ̃ 1

∂t
+ φ̃ 1 = Nloc φ̃ 1 +Nlay φ̃ 2 − βψ̃ 1

∂φ̃ 2

∂t
+ φ̃ 2 = Nloc φ̃ 2 +Nlay φ̃ 1 − βψ̃ 2

1

α

∂ψ̃ 1

∂t
+ ψ̃ 1 = φ̃ 1

1

α

∂ψ̃ 2

∂t
+ ψ̃ 2 = φ̃ 2

(44)

Setting (φ̃1, φ̃2, ψ̃1, ψ̃2) = φ(x)eλt results in the spectral
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problem for λ and φ(x) = (φ1(x), φ2(x), ψ1(x), ψ2(x))
T

−φ 1 +Nloc φ 1 +Nlay φ2 − βψ 1 = λφ 1

−φ 2 +Nloc φ 2 +Nlay φ 1 − βψ 2 = λφ 2

αφ1 − αψ 1 = λψ 1

αφ2 − αψ 2 = λψ 2.

(45)

Solving for

ψ1(x) =
(

α
λ+α

)
φ1(x)

ψ2(x) =
(

α
λ+α

)
φ2(x)

the compatibility equation determining both the eigen-
values and special nonlocal values ϕ of the eigenfunctions
at the common threshold points x = ±a is given by

(
MSYM − I

)
ϕ =

(
λ+

αβ

λ+ α

)
ϕ, (46)

where

MSYM =


Mloc(0) Mloc(2a) Mlay(0) Mlay(2a)

Mloc(2a) Mloc(0) Mlay(2a) Mlay(0)

Mlay(0) Mlay(2a) Mloc(0) Mloc(2a)

Mlay(2a) Mlay(0) Mloc(2a) Mloc(0)



Mj(x) =
wj(x)

|U ′(a)|
, ϕ =

φ1(+a)
φ1(−a)
φ2(+a)
φ2(−a)

.
The following similarity transform yields

Q̃−1MSYMQ̃ = ΛSYM

where

ΛSYM =


M⊕

+ 0 0 0

0 M⊕
− 0 0

0 0 M⊖
+ 0

0 0 0 M⊖
−

 , Q̃ =


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


where

M⊕
+ = M⊕

loc(a; a) +M⊕
lay(a; a)

M⊕
− = M⊕

loc(a; a)−M⊕
lay(a; a)

M⊖
+ = M⊖

loc(a; a) +M⊖
lay(a; a)

M⊖
− = M⊖

loc(a; a)−M⊖
lay(a; a)

and M⃝±
l (a; a) = Ml(0)±Ml(2a) where l ∈ {loc, lay}.

Compatibility equation (46) can be rewritten as(
MSYM − µ(λ)I

)
ϕ = 0 (47)

where µ(λ) = (1+λ+ αβ
λ+α ). Nontrivial solutions ϕ to (47)

exist yielding eigenfunctions if det
(
MSYM − µ(λ)I

)
= 0.

Solving for µ and then λ in terms of µ we obtain

λ⃝±± = −Γ±
√

Γ2 −∆ Γ = 1
2

(
1 + α− µ⃝±

±

)
µ⃝±

± = M⃝±
loc(a; a)±M⃝±

lay(a; a) ∆ = α
(
1 + β − µ⃝±

±

)
There are four spatial eigenmodes corresponding to the

four permutations of µ⃝±
± expressed succinctly as

φ⃝±
±(x) =


φ1

φ2

ψ1

ψ2

 =


1

±1
α

λ⃝±
±+α

±α

λ⃝±
±+α


(
M⃝±

loc(x; a)±M⃝±
lay(x; a)

)
,

M⃝±
l (x; a) = Ω⃝±

l (x; a)/|U
′(a)|

Ω⃝±
l (x; a) = wl(x− a)± wl(x+ a)

Graphs of M⃝±
loc(x; a) ± M⃝±

lay(x; a) in Fig. 9 reveal the

spatial structure of the four different eigenmodes µ⃝±
± .

At a Hopf bifurcation point, the Hopf frequency is

ωH = Im{λ⃝±±} =
√
α(β − α).

Condition for Hopf bifurcation of the µ⃝±
± mode

In the absence of any input (I = 0), the difference
mode µ⊖

+ has one persistent 0-eigenvalue, reflecting the
translation invariance of the stationary bump, and a sec-
ond real eigenvalue. Only the other three eigenmodes
can undergo Hopf bifurcation. In the presence of an in-
put inhomogeneity where I(x) ̸= 0, the eigenvalues are
nonzero generically, and it is possible for all four eigen-
modes to have complex eigenvalues and destabilize in a
Hopf bifurcation.
Below we describe a condition for determining which

mode µ⃝±
± destabilizes first, assuming all eigenmodes are

complex, by identifying a dominate eigenvalue that has
the larger real part of two pairs of complex eigenvalues.
The opposite case occurs when the inequality is switched.

In-phase mode µ⃝±
+ dominates anti-phase mode µ⃝±

− if

wlay(0)± wlay(2a) > 0.

Sum mode µ⊕
± dominates difference mode µ⊖

± when

wloc(2a)± wlay(2a) > 0.

Sum mode µ⊕
± dominates difference mode µ⊖

∓ when

wloc(2a)± wlay(0) > 0.

extending the case of wloc(2a) in the AA neural field.
Note that the case −wlay(x) > +wlay(x) occurs only
when wlay(x) < 0.
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FIG. 9. The structure of the eigenmodes ((φ1(x), φ2(x)) only)

associated with µ⃝±
± depends on terms 		jk(x) in the sum (⊕)

mode and 	�jk(x) in the difference (⊖) mode. (a) Sum mode

µ⊕
+ leads to in-phase breathers, (b) sum mode µ⊕

− leads to
anti-phase breathers, (c) difference mode µ⊖

+ leads to in-phase
sloshers, (d) difference mode µ⊖

− leads to anti-phase sloshers.

Case II: Asymmetric case

A stationary bump solution to neural field equation (7)
with different widths a1 and a2 in each population is ex-
pressed as (u1, u2, n1, n2) = (U1(x), U2(x), N1(x), N2(x))

where

(1 + β)U1(x) = [W loc

11 (x+ a1)−W loc

11 (x− a1)]

+ [W lay

12 (x+ a2)−W lay

12 (x− a2)] + I1(x)]

(1 + β)U2(x) = [W loc

22 (x+ a2)−W loc

22 (x− a2)]

+ [W lay

21 (x+ a1)−W lay

21 (x− a1)] + I2(x)

N1(x) = U1(x)

N2(x) = U2(x)

where a1 and a2 satisfy the threshold condition

W loc

11 (2a1) +W lay

12 (a1+a2)−W lay

12 (a1−a2) + I1(a1) = θ̃1

W loc

22 (2a2) +W lay

21 (a2+a1)−W lay

21 (a2−a1) + I2(a2) = θ̃2

where θ̃1 = θ1(1 + β) and θ̃2 = θ2(1 + β) provided the
threshold behavior is obeyed on (−∞,∞).

Perturbations (φ̃1, φ̃2, ψ̃1, ψ̃2)(x, t) of the stationary
bump (U1(x), U2(x), N1(x), N2(x)) evolve according to

∂φ̃ 1

∂t
+ φ̃ 1 = N loc

11 φ̃ 1 +N lay

12 φ̃ 2 − βψ̃ 1

∂φ̃ 2

∂t
+ φ̃ 2 = N loc

22 φ̃ 2 +N lay

21 φ̃ 1 − βψ̃ 2

1

α

∂ψ̃ 1

∂t
+ ψ̃ 1 = φ̃ 1

1

α

∂ψ̃ 2

∂t
+ ψ̃ 2 = φ̃ 2

(48)

Setting (φ̃1, φ̃2, ψ̃1, ψ̃2) = φ(x)eλt yields the spectral
problem for λ and φ(x) = (φ1(x), φ2(x), ψ1(x), ψ2(x))

T

−φ1 +N loc

11 φ1 +N lay

12 φ2 − βψ1 = λφ1

−φ2 +N loc

22 φ2 +N lay

21 φ1 − βψ2 = λφ2

αφ1 − αψ1 = λψ1

αφ2 − αψ2 = λψ2

(49)

Similarly, the compatibility equation determining the
eigenvalues and special nonlocal values of the eigenfunc-
tions at threshold points ±a1 and ±a2 is(

MASYM − I
)
ϕ =

(
λ+

αβ

λ+ α

)
ϕ, (50)

where b = a1 − a2 and c = a1 + a2

MASYM =


Mloc

11 (0) Mloc
11 (2a1) Mlay

12 (b) Mlay
12 (c)

Mloc
11 (2a1) Mloc

11 (0) Mlay
12 (c) Mlay

12 (b)

Mlay
21 (b) Mlay

21 (c) Mloc
22 (0) Mloc

22 (2a2)

Mlay
21 (c) Mlay

21 (b) Mloc
22 (2a2) Mloc

22 (0)


and

Ml
jk(x) =

wl
jk(x)

|U ′
k(ak)|

, ϕ =

φ1(+a1)
φ1(−a1)
φ2(+a2)
φ2(−a2)

.
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FIG. 10. Graphs of in-phase and anti-phase breathers and sloshers in an interacting pair of symmetric AE/AI/AA neural fields

due to destabilization of the µ⃝±
± eigenmodes (depicted in Fig. 9) in a Hopf bifurcation. Destabilization of (a) sum mode µ⊕

+

leads to in-phase breathers, (b) sum mode µ⊕
− leads to anti-phase breathers, (c) difference mode µ⊖

+ leads to in-phase sloshers,
and (d) difference mode µ⊖

− leads to anti-phase sloshers. Curves indicate the threshold contours of activity variables u1 and u2.

The following similarity transform yields

Q−1MASYMQ =

[
Λ⊕ 0

0 Λ⊖

]
, Q =


1 0 1 0

1 0 −1 0

0 1 0 1

0 1 0 −1



Λ⃝± =

[
M⃝±

11(a1; a1) M⃝±
12(a1; a2)

M⃝±
21(a2; a1) M⃝±

22(a2; a2)

]

where for j, k = 1, 2 (k ̸= j)

M⃝±
jj(aj ; aj) = Mloc

jj (0)±Mloc

jj (2aj)

M⃝±
jk(aj ; ak) = Mlay

jk (aj − ak)±Mlay

jk (aj + ak).

Compatibility equation (50) can be rewritten as(
MASYM − µ(λ)I

)
ϕ = 0 (51)

where µ(λ) = 1 + λ + αβ
λ+α . For nontrivial values ϕ to

exist, we require det(MASYM − µ(λ)I) = 0. Solving for
such µ and then solving for λ in terms of µ we obtain

λ⃝±± = −Γ±
√
Γ2 −∆ Γ = 1

2

(
1 + α− µ⃝±

±

)
∆ = α

(
1 + β − µ⃝±

±

)
µ⃝±

± =
[
M⃝±

11+M⃝±
22

2

]
±
√[

M⃝±
11−M⃝±

22

2

]2
+ M⃝±

12M
⃝±
21

where M⃝±
jk = M⃝±

jk(aj ; ak). This defines four pairs of
eigenvalues corresponding to the four spatial eigenmodes

associated with µ⃝±
± . We note here that the condition for

µ⃝±
± to be complex-valued is given by

M⃝±
12(a1;a2)M⃝±

21(a2;a1) < −
[
M⃝±

11(a1;a1)−M⃝±
22(a2;a2)

2

]2
which requires M⃝±

12(a1; a2) or M⃝±
21(a2; a1) be negative.

Solving (51) yields the vector of nonlocal values ϕ =

(φ1(−a1), φ1(a1), φ2(a2), φ2(−a2)) = (1,±1, ν⃝
±

± ,±ν⃝±± )

ν⃝±± =
µ⃝±

± −M⃝±
11(a1; a1)

M⃝±
12(a1; a2)

= 1

M⃝±
12

[ [
M⃝±

11−M⃝±
22

2

]
±
√[

M⃝±
11−M⃝±

22

2

]2
+ M⃝±

12M
⃝±
21

]
The spatial eigenfunctions φ(x) are given by

φ⃝±
±(x) =


φ1(x)

φ2(x)

ψ1(x)

ψ2(x)

 =


M⃝±

11(x; a1) + ν⃝
±

±M⃝±
12(x; a2)

ν⃝
±

±M⃝±
22(x; a2) +M⃝±

21(x; a1)
α

λ⃝±+α
φ1(x)

α
λ⃝±+α

φ2(x)

,
M⃝±

jk(x; ak) = Ω⃝±
jk(x; ak)/|U

′
k(ak)|

Ω⃝±
jk(x; ak) = wl

jk(x− ak)± wl
jk(x+ ak)

At a Hopf bifurcation point the Hopf frequency is

ωH = Im{λ⃝±±} =
√
α(β − α).
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Interacting Pair of EI Neural Fields
A stationary bump solution to neural field (8) can be

expressed as (ue, ui, ve, vi) = (Ue(x), U i(x), V e(x), V i(x))
where the solution is identical in each neural field layer
and expressed as

Ue(x) = [W loc

ee (x+ ae)−W loc

ee (x− ae)]

− [W loc

ei (x+ ai)−W loc

ei (x− ai)]

+ [W lay

ee (x+ ae)−W lay

ee (x− ae)] + Ie(x)

U i(x) = [W loc

ie (x+ ae)−W loc

ie (x− ae)]

− [W loc

ii (x+ ai)−W loc

ii (x− ai)]

+ [W lay

ie (x+ ae)−W lay

ie (x− ae)] + Ii(x)

Ve(x) = Ue(x)

Vi(x) = U i(x)

where ae and ai satisfy the threshold conditions

W loc

ee (2ae)−W loc

ei (ae + ai) +W loc

ei (ae − ai)

+W lay

ee (2ae) + Ie(ae) = θe

W loc

ie (ai + ae)−W loc

ie (ai − ae)−W loc

ii (2ai)

+W lay

ie (ai + ae)−W lay

ie (ai − ae) + Ii(ai) = θi

Perturbations (φ̃e, φ̃i, ψ̃e, ψ̃i)(x, t) of the stationary
bump (Ue(x), U i(x), V e(x), V i(x)) evolve according to

∂φ̃e

∂t
+ φ̃e = N loc

ee φ̃e −N loc

ei φ̃i +N lay

ee ψ̃e

τ
∂φ̃i

∂t
+ φ̃i = N loc

ie φ̃e −N loc

ii φ̃i +N lay

ie ψ̃e

∂ψ̃e

∂t
+ ψ̃e = N loc

ee ψ̃e −N loc

ei ψ̃i +N lay

ee φ̃e

τ
∂ψ̃i

∂t
+ ψ̃i = N loc

ie ψ̃e −N loc

ii ψ̃i +N lay

ie φ̃e

(52)

Setting (φ̃e, φ̃i, ψ̃e, ψ̃i) = φ(x)eλt yields the spectral
problem for λ and φ(x) = (φe(x), φi(x), ψe(x), ψi(x))

T

−φe +N loc

ee φe −N loc

ei φi +N lay

ee ψe = λφe

− 1
τ φi +

1
τN

loc

ie φe − 1
τN

loc

ii φi +
1
τN

lay

ie ψe = λφi

−ψe +N loc

ee ψe −N loc

ei ψi +N lay

ee φe = λψe

− 1
τ ψi +

1
τN

loc

ie ψe − 1
τN

loc

ii ψi +
1
τN

lay

ie φe = λψi

(53)

The compatibility equation determining both the eigen-
values and special nonlocal values of the eigenfunctions
at threshold points x = ±ae and ±ai is(

Mdual − Idual

)
Φ = λΦ, (54)

where Mdual is an (8×8) matrix represented in block form

Mdual =

[
MEI Mlay

Mlay MEI

]
, Φ =

(
ϕ

ψ

)

and Φ is an (8×1) vector in block form where

ϕ =

φe(+ae)
φe(−ae)
φi(+ai)
φi(−ai)

, ψ =

ψe(+ae)
ψe(−ae)
ψi(+ai)
ψi(−ai)


Idual = diag (1, 1, τ−1, τ−1, 1, 1, τ−1 τ−1)

MEI =
Mee(0) Mee(2ae) −Mei(ae−i) −Mei(ae+i)

Mee(2ae) Mee(0) −Mei(ae+i) −Mei(ae−i)
1
τMie(ae−i)

1
τMie(ae+i) − 1

τMii(0) − 1
τMii(2ai)

1
τMie(ae+i)

1
τMie(ae−i) − 1

τMii(2ai) − 1
τMii(0)



Mlay =


Mlay

ee (0) Mlay
ee (2ae) 0 0

Mlay
ee (2ae) Mlay

ee (0) 0 0
1
τM

lay

ie (ai − ae)
1
τM

lay

ie (ai + ae) 0 0
1
τM

lay

ie (ai + ae)
1
τM

lay

ie (ai − ae) 0 0


where Ml

jk(x) = wl
jk(x)/|U

′(ak)| and ae± i = ae ± ai.
Mdual is block diagonalized by a similarity transformation

Q̃−1MdualQ̃ = Λdual Q̃ =

[
Q Q

Q −Q

]
where

Λdual =


Λ⊕

+ 0 0 0

0 Λ⊖
+ 0 0

0 0 Λ⊕
− 0

0 0 0 Λ⊖
−

 ,Q =


1 0 1 0

1 0 −1 0

0 1 0 1

0 1 0 −1



Λ⃝±
± =

[
M⃝±

ee(ae; ae)±M⃝± lay
ee (ae; ae) −M⃝±

ei(ae; ai)

1
τM

⃝±
ie(ai; ae)± 1

τM
⃝± lay

ie (ai; ae) − 1
τM

⃝±
ii(ai; ai)

]

M⃝±
jj(aj ; aj) = Mjj(0)±Mjj(2aj)

M⃝±
jk(aj ; ak) = Mjk(aj − ak)±Mjk(aj + ak)

M⃝± lay

jk (aj ; ak) = Mlay

jk (aj − ak)±Mlay

jk (aj + ak)

Nonzero solutions of (54) exist if det(Mdual−Idual−λI
)
=

0, generating four pairs of eigenvalues λ corresponding to

the four different spatial eigenmodes associated with Λ⃝±
±

λ⃝
±
± =

[M⃝±
±,ee − 1

2 − M⃝±
ii +1

2τ

]
±
√[M⃝±

±,ee − 1

2 +
M⃝±

ii +1

2τ

]2
− M⃝±

±,ieM
⃝±
ei

τ

where

M⃝±
±,jk(aj ; ak) = M⃝±

jk(aj ; ak)±M⃝± lay

jk (aj ; ak).
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Each pair of eigenvalues is denoted by ± preceding the
root. The associated vector Φ of special nonlocal values

is Φ⃝±
± = (ϕ,±ϕ⃝±)T where ϕ⃝± = (1, (±1), ν⃝

±
± , (±1)ν⃝

±
± )T

ν⃝±± =
λ⃝

±
± + 1−M⃝±

±,ee(ae; ae)

−M⃝±
ei(ae; ai)

.

generating the four spatial eigenmodes φ⃝±
± (x) where

φ⃝±
± (x) =


1

λ⃝±
±+1

[
M⃝±

±,ee(x; ae)− ν⃝
±

±M⃝±
ei(x; ai)

]
1

τλ⃝±
±+1

[
M⃝±

±,ie(x; ae)− ν⃝
±

±M⃝±
ii(x; ai)

]
± 1

λ⃝±
±+1

[
M⃝±

±,ee(x; ae)− ν⃝
±

±M⃝±
ei(x; ai)

]
± 1

τλ⃝±
±+1

[
M⃝±

±,ie(x; ae)− ν⃝
±

±M⃝±
ii(x; ai)

]


M⃝±

±,jk(x; ak) =
[
Ω⃝±

jk(x; ak)± Ω⃝± lay

jk (x; ak)
]
/|U ′

k(ak)|

M⃝±
jk(x; ak) =

[
Ω⃝±

jk(x; ak)
]
/|U ′

k(ak)|

Ω⃝± l
jk (x; ak) = wl

jk(x− ak)± wl
jk(x+ ak)

Although the eigenfunctions are complex-valued, we
can see the whether the components of the eigenfunctions
associated with the two neural field layers are aligned (+)
and in-phase or opposite (−) and anti-phase.

At a Hopf bifurcation point the Hopf frequency is

ωH = Im{λ⃝±± } =

√
(1−M⃝±

±,ee)(M
⃝±
ii + 1) +M⃝±

±,ieM
⃝±
ei

τ

where (M⃝±
±,ee−1) = (M⃝±

ii+1)/τ at the bifurcation point.

Condition for Hopf bifurcation of the Λ⃝±
± mode

In the absence of any input (Ie = Ii = 0), the difference
(translation) mode µ⊖

+ has one persistent 0-eigenvalue,
reflecting the translation invariance of the stationary
bump, and a second real eigenvalue. Only the other three
eigenmodes can undergo Hopf bifurcation. In the pres-
ence of an input inhomogeneity where Ie(x) ̸= 0 and/or
Ii(x) ̸= 0, the eigenvalues are nonzero generically, and it
is possible for all four eigenmodes to have complex eigen-
values and destabilize in a Hopf bifurcation.

Below we describe a condition for determining which
mode destabilizes first, assuming all eigenvalues are com-
plex, by identifying a dominate eigenvalue that has the
larger real part of two pairs of complex eigenvalues.

Assuming that a stationary bump is stable, that all

eigenvalues λ⃝
±
+ and λ⃝

±
− are complex, and only one eigen-

mode destabilizes in a Hopf bifurcation, the condition

determining whether the in-phase Λ⃝±
+ or anti-phase Λ⃝±

−
eigenmodes destabilize is determined by the pair of eigen-
values whose real part is closer to 0 is as follows; the
opposite dominance occurs with the inequality flipped.

In-phase mode Λ⃝±
+ dominates anti-phase mode Λ⃝±

− if

Mlay

ee (0)±Mlay

ee (2ae) > 0.

Sum mode Λ⊕
± dominates difference mode Λ⊖

± when

Mee(2ae)±Mlay

ee (2ae) >
Mii(2ai)

τ
,

Sum mode Λ⊕
± dominates difference mode Λ⊖

∓ when

Mee(2ae)±Mlay

ee (0) >
Mii(2ai)

τ
,

These conditions extend the single E-I neural field case
and also parallel the structure of the conditions in the
case of the interacting pair of symmetric AA neural fields.
For physiological reasons we assumed wlay

ee (x) ≥ 0,
to represent excitatory long-range synaptic connections
[40, 41]. Allowing wlay

ee (x) < 0 or including inhibitory
interlayer connections would introduce additional means
to destabilize different modes.

U (x)

θ

FIG. 11. Multibump solution profile Umulti(x) with threshold
points x = ±a0 and ±a1 in a single neural field u(x, t).

VI. MULTIBUMP SOLUTIONS

Multibump solutions exist in a variety of different
forms [12, 15, 16, 19] but we describe one example ex-
hibiting a Hopf bifurcation in the AE/AI/AA neural field
and demonstrate the extension to multibump solutions.

AE, AI and AA Neural Fields
A stationary two-bump solution is a bounded solution
Umulti(x) on (−∞,∞) in which there is an even-symmetric
pair of bumps centered about the origin (as depicted in
Fig. 11), satisfying threshold conditions

Umulti(x) > θ, x ∈ (−a1,−a0) ∪ (a0, a1),

Umulti(x) = θ, x = ±a0,±a1

Umulti(x) < θ, otherwise

Umulti(x) → 0, as x −→ ±∞.
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Such a stationary two-bump solution to neural field (3)
is given by (u(x, t), n(x, t)) = (Umulti(x), Nmulti(x)) where

(1 + β)Umulti(x) = [W (x+ a1)−W (x+ a0)]

+ [W (x− a0)−W (x− a1)] + I(x)

Nmulti(x) = Umulti(x)

where a0 and a1 satisfy the threshold conditions

W (a0 + a1)−W (2a0)−W (a0 − a1) + I(a0) = θ(1 + β)

W (2a1)−W (a0 + a1) +W (a1 − a0) + I(a1) = θ(1 + β)

provided Umulti(x) properly obeys the threshold behavior.

Perturbations (φ̃(x, t), ψ̃(x, t)) of the stationary two-
bump (Umulti(x), Nmulti(x)) evolve according to

∂φ̃

∂t
+ φ̃ = N multiφ̃− βψ̃

1

α

∂ψ̃

∂t
+ ψ̃ = φ̃

(55)

Setting (φ̃, ψ̃) = φ(x)eλt yields the spectral problem for
λ and φ(x) = (φ(x), ψ(x))T

−φ+N multiφ− βψ = λφ

αφ− αψ = λψ
(56)

where, for a two-bump solution, the integral operator

N multiφ =

1∑
l=0

[
M(x;−al)φ(−al) +M(x; al)φ(al)

]
and M(x;±al) = w(x∓ al)/|Umulti ′(±al)|.

Solving for ψ leads to the reduced spectral problem

−φ+N multiφ =
(
λ+

αβ

λ+ α

)
φ. (57)

The compatibility equation for eigenvalues and special
nonlocal values of the eigenfunctions at x = ±a0,±a1 is

(
Mmulti − I

)
ϕ =

(
λ+

αβ

λ+ α

)
ϕ, (58)

where b = a0 − a1 and c = a0 + a1

Mmulti =


M0(0) M0(2a0) M1(b) M1(c)

M0(2a0) M0(0) M1(c) M1(b)

M0(b) M0(c) M1(0) M1(2a1)

M0(c) M0(b) M1(2a1) M1(0)


and

Mk(x) =
w(x)

|Umulti ′(ak)|
, ϕ =

φ(+a0)
φ(−a0)
φ(+a1)
φ(−a1)

.

The following similarity transform yields

Q−1MmultiQ =

[
Λ⊕ 0

0 Λ⊖

]
, Q =


1 0 1 0

1 0 −1 0

0 1 0 1

0 1 0 −1



Λ⃝± =

[
M⃝±

0 (a0; a0) M⃝±
1 (a0; a1)

M⃝±
0 (a1; a0) M⃝±

1 (a1; a1)

]

where M⃝±
k (aj ; ak) = Mk(aj − ak) ± Mk(aj + ak) for

j, k = 0, 1. Compatibility equation (58) then becomes(
Mmulti − µ(λ)I

)
ϕ = 0 (59)

where µ(λ) = 1 + λ + αβ
λ+α . For nontrivial values ϕ to

exist, we require det(Mmulti−µ(λ)I) = 0. Solving for such
µ and then solving for λ in terms of µ we obtain

λ⃝±± = −Γ±
√

Γ2 −∆ Γ = 1
2

(
1 + α− µ⃝±

±

)
∆ = α

(
1 + β − µ⃝±

±

)
µ⃝±

± =
[
M⃝±

00+M⃝±
11

2

]
±
√[

M⃝±
00−M⃝±

11

2

]2
+ M⃝±

01M
⃝±
10

where M⃝±
jk = M⃝±

k (aj ; ak) for j, k = 0, 1. This defines
four pairs of eigenvalues corresponding to the four spatial

eigenmodes associated with µ⃝±
± . We note here that the

condition for µ⃝±
± to be complex-valued is given by

M⃝±
1 (a0;a1)M⃝±

0 (a1;a0) < −
[
M⃝±

0 (a0;a0)−M⃝±
1 (a1;a1)

2

]2
which requires M⃝±

1 (a0; a1) or M⃝±
0 (a1; a0) be negative.

Solving (59) for the vector of special nonlocal values ϕ =

(φ0(a0), φ0(−a0), φ1(a1), φ1(−a1)) = (1,±1, ν⃝
±

± ,±ν⃝±± )
yields

ν⃝±± =
µ⃝±

± −M⃝±
0 (a0; a0)

M⃝±
1 (a0; a1)

= 1

M⃝±
01

[ [
M⃝±

00−M⃝±
11

2

]
±
√[

M⃝±
00−M⃝±

11

2

]2
+ M⃝±

01M
⃝±
10

]
The spatial eigenfunctions φ(x) are given by

φ⃝±(x) =

(
φ

ψ

)
=

(
1
α

λ+α

)(
M⃝±

0 (x; a0) + ν⃝±±M⃝±
1 (x; a1)

)
M⃝±

k (x; ak) = Ω⃝±(x; ak)/|Umulti ′(ak)|
Ω⃝±(x; ak) = w(x− ak)± w(x+ ak)

At a Hopf bifurcation point the Hopf frequency is

ωH = Im{λ⃝±±} =
√
α(β − α).

The eigenfunctions, in the case that ν⃝
±

± = ±1, resemble
the pattern illustrated in Fig. 9 for bumps in two dif-
ferent interacting layers, except in this case it would be
based around the two-bump solution in a single layer.
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FIG. 12. Multibump solution in the AA neural field. As the negative feedback strength β is increased, a stationary two-bump
solution (stable) undergoes a subcritical Hopf bifurcation at β ≈ 0.151 with a sharp transition to a stable two-bump slosher as a
result of destabilization of the in-phase difference eigenmode µ⊖

+ . A small region of bistability was detected near the bifurcation
point. (a) at β = 0.1, a stable stationary two-bump solution, (b) at β = 0.17, a stable two-bump slosher, (c) at β = 0.25, a
stable two-bump slosher, (d), at β = 0.5, a localized periodic traveling wave. Note that the bump locations move side-to-side
in-phase but the bump amplitudes oscillate out of phase. Other parameters are I0 = 1.5, σ = 3.5, θ = 0.3, α = 0.1, we = 1, wi =
4, σe = 1, σi = 2 and the weight functions are Gaussian. Warm/light colors represent superthreshold values of u(x, t) whereas
cool/dark colors are subthreshold.

VII. DISCUSSION

In this paper we have discussed a family of elemen-
tary neural fields whose activity is mediated by synap-
tic excitation and inhibition and modulated by a linear
adaptation or a negative feedback gating variable and an
input homogeneity on one-dimensional domain (−∞,∞).
(The two-dimensional case is treated separately as there
are many significant differences in the model equations,
structure of solutions and their bifurcation.) For each
neural field model, the linear stability and Hopf bifurca-
tion of stationary bump solutions was analyzed and pre-
sented in a notation that facilitates direct comparison of
the structure and the dependency on the model parame-
ters across this family of neural fields on one-dimensional
domains. We also obtain conditions that clarify which
eigenmode destabilizes in the bifurcation and how its spa-
tial structure relates to the network parameters.

To facilitate the existence and stability analysis of sta-
tionary bumps across this family of neural fields, a gen-
eral vectorized neural field model to analyze any con-
figuration of N interacting neural fields with M linear
gating variables was established to analyze the general
case. Included in its analysis was the construction of
the eigenfunctions associated with different eigenmodes
of the linearization to investigate their spatial structure
and the role it plays in bifurcations when these modes
destabilize.

Using the vectorized neural field framework and mak-
ing further symmetry assumptions on the synaptic weight

functions, input inhomogeneities, and stationary bump
solutions, we were able to show that for any neural of
field of this form with even-symmetric weight functions
and input inhomogeneities, the linearization about an
even-symmetric stationary bump yields two broad classes
of eigenfunctions that either exhibit even or odd spatial
symmetry.

Hopf bifurcation of these classes of even and odd eigen-
modes was investigated across the family of neural fields
demonstrating that Hopf instability of these two broad
classes of eigenmodes can lead to different patterns of
expanding-and-contracting breather-type solutions and
side-to-side slosher-type solutions, respectively, which
may additionally have in-phase and anti-phase structure
in the oscillation depending on the relative signs of the
eigenfunctions in different neural fields. Secondary bifur-
cations were also shown to exist leading to novel forms
of activity patterns, including a secondary bifurcation
from a limit cycle (slosher) to a torus leading to a slosher
with a variable amplitude pattern, a period-doubling bi-
furcation of an expanding-contracting breather leading
to a breather whose activity is modulated in a side-to-
side sloshing fashion, and a period doubling cascade on
a limit cycle (breather) leading to Rossler band-like non-
linear dynamics in a projection of the solution in phase
space. A novel pattern of a spatially-localized traveling
periodic wave solution was found to emerge in the AA
neural field during a transition in two cases from either a
stationary slosher or multibump slosher as a parameter
is varied and the superthreshold activity pattern widens.
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In the case of interacting pairs of symmetrically-
coupled neural fields that support bumps, it was shown
that both in-phase and anti-phase breather-type and
slosher-type solutions occur, where in-phase and anti-
phase are in reference to the spatiotemporal dynamics in
the different layers with respect to a universal coordinate
system. In the case of in-phase breathers and sloshers,
the activity bump in the two layers are synchronous in
time and identical in space. In the anti-phase breather
case the oscillations in each population are out of phase
by half a period in time so one breather expands while
the other contracts, sharing a common center at all times.
In the anti-phase slosher case the activity bumps in each
population displace in opposite directions and oscillate
side-to-side half a period out of phase in time. Depend-
ing on the number of neural fields in a model, one can
imagine mixtures of in-phase and anti-phase elements de-
pending on the synaptic interactions mediating the activ-
ity in the populations.

Evidence of a Hopf-Hopf bifurcation with a nonlinear
mode interaction was sought between the breather and
slosher eigenmodes in the presence of an input homogene-
ity as the analogue to the drift-Hopf bifurcation found in
the input-free case [51] which produces a tongue of trav-
eling breather solutions that issues from the codimen-
sion 2 bifurcation point between a region of traveling
bumps and a region of stationary breathers connected
to the drift and Hopf bifurcations, respectively. Such a
mode interaction was not explicitly identified in numer-
ical simulations of the AE/AI/AA neural field after a
considerable search over a variety of regions of parame-
ter space where the two types of Hopf bifurcation curves
are known to intersect and both bifurcations are super-
critical. The Hopf bifurcations in the AE/AI/AA neural
field were determined to be supercritical (where stability
of the stationary bump is transferred to the periodic so-
lution) using both numerical simulations and the relevant
coefficient at third order of the normal form or amplitude
equation calculated in [39] which controls the direction of
the bifurcation. The E-I neural field was also investigated
to a lesser extent to identify such a mode interaction also
without success.

Finally, the analysis was extended to the case of multi-
bump solutions. Hopf bifurcation of the multibump so-
lutions was investigated and shown to give rise to Hopf
bifurcations leading to stable sloshing multibumps. We
mention that such sloshing multibump activity patterns
have been observed in spiking networks with both peri-
odic and without periodic boundary conditions in [71].
Hopf bifurcations of stationary multibumps also exist
in the E-I neural field, though there are more thresh-
old points to track with two neuronal populations. The
multibump slosher was also found to transition to the
novel pattern of a localized traveling periodic wave solu-
tion as a parameter is varied.

While this work serves to highlight a family of ele-
mentary neural fields, the main implication is to under-
stand and categorize how network interactions and sym-

metry lead to the underlying spatiotemporal structure of
spatially-coherent time-periodic oscillations arising from
Hopf bifurcation which may occur more universally in
a wide range of more complex and biologically relevant
neural field models, given the universality of bifurcations
in nonlinear dynamical systems. It is also important
to understand how modeling choices could also lead to
symmetry breaking or preclude certain types of bifur-
cations. Although the Heaviside nonlinearity serves as
an analytically tractable edge case, it could be used to
predict where bifurcations occur, and one could subse-
quently use numerical continuation [52] to explore related
regions in parameter space in models with smooth non-
linearity f where such bifurcations may be more robust.
Finally the comprehensive set of existence and stability
results categorized and consolidated in this paper may
serve to support a wide variety of applications of bumps
and breathers in these or related neural field models.

It may be possible to observe stationary and oscillatory
bumps either in in vitro or in vivo experimental prepa-
rations using optogenetics and voltage sensitive dyes.
Optogenetics could be used to generate the input inho-
mogeneity by continually stimulating neurons in a local
patch of tissue and observing the activity across a layer of
the cortex with populations of neurons that form approxi-
mately homogeneous and isotropic (distance-dependent)
short-range synaptic connections. Different pharmaco-
logical conditions in in vitro slice preparations could be
used to modify the properties of the network to ob-
serve the changes in the spatiotemporal behavior. Two
densely interconnected areas with reciprocal and topo-
graphic connections, e.g., somatosensory cortices S1 and
S2 [72], could be investigated by stimulating local patches
of tissue in one or both regions and monitoring the activ-
ity in both. While it would be difficult to predict when
such solutions should occur, our work suggests that one
could expect at least two characteristic forms of local-
ized spatiotemporal activity patterns as a steady-state
response to a persistent localized input inhomogeneity
in the form of a stationary activity bump of steady per-
sistent activity or stationary activity bump exhibiting
spatiotemporal oscillations in the activity. We have also
found the localized oscillations can emit an outward prop-
agating circular wave, ring waves, and target patterns in
response to an input in the AE neural field [18] and in
some cases with inhibition when the network supports
such waves in the absence of an input, indicating other
types of responses one might observe that are not local-
ized in space. Such waves perhaps may be observed, for
example, in disinhibited cortical slice preparations that
support wave propagation.
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