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Abstract

Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchro-
nously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations,
there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity
towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of
rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition
tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other
neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp
orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results
predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which
could have important implications for these neurons’ sensory processing capabilities. Furthermore, although our experimental
recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain
region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma
oscillations.

Introduction

In the primary visual cortex, the firing of excitatory neurons is mod-
ulated by stimulus features, such as orientation. Neurons sharing
similar preferred orientations (i.e. the orientation that elicits the
strongest response in a given neuron) are distributed spatially to
form an orientation map (Gilbert & Wiesel, 1983; Blasdel, 1992;
Bosking et al., 1997;). Even within spatially contiguous domains
where excitatory neurons have similar orientation preferences, how-
ever, other firing properties, such as orientation tuning curve width
(Bonds, 1989; Sato et al., 1996; Ringach er al., 2002; Li et al.,
2008; Nauhaus et al., 2008; Nowak et al., 2008; Yu et al., 2008;
Nikoli¢, 2009) and oscillation strength (Nikoli¢, 2009), can be
highly variable across cells.
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In previous work (Yu ef al., 2008) that examined synchronisation
among the excitatory neurons of cat area 17, the results of a connec-
tivity analysis on unit recordings revealed that a subset of neurons,
termed hubs, tended to synchronise particularly strongly and promis-
cuously with other area 17 neurons. Indeed, even neurons with dif-
fering orientation preferences tended to synchronise if they were
hubs. Notably, neurons exhibiting sharp orientation tuning curves
showed a strong likelihood of being hubs. To avoid confusion with
other uses of ‘hubs’ in the literature, we henceforth refer to these
promiscuous synchronisers as synchronisation hubs (SHs) and other
neurons as not synchronisation hubs (nSHs).

We reasoned that the existence and characteristics of SHs could
provide clues about the nature of the connectivity properties within
area 17. Therefore, we set out to explain the mechanisms underlying
the emergence of SHs during gamma oscillations that are commonly
observed in cat area 17 (Gray & Singer, 1989; Gray et al., 1989;
Samonds & Bonds, 2005). To achieve this goal, we recorded neuronal
activities extracellularly from cat area 17 using microelectrode arrays
and systematically analysed visual responses in terms of orientation
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selectivity, oscillation within the beta/gamma range and synchronisa-
tion among spatially distributed units. Furthermore, we developed
and simulated a computational model to test a potential mechanism
that could produce SHs with the properties that we observed experi-
mentally. Our simulations support the idea that strong, broadly tuned
rhythmic inhibition to SHs underlies the features exhibited in our
recordings. We propose that this inhibition causes SHs to exhibit
enhanced oscillations and synchrony and to maintain oscillations
and synchronisation with other neurons, despite sharp drops in firing
rates when stimulus optimality is decreased.

Materials and methods
Experiments
Preparation

In three cats, anesthesia was induced with ketamine and, following a
tracheotomy, was maintained with a mixture of 70% N,O and 30%
O, and with halothane (0.6%). To prevent eye movements, the cat
was paralyzed with intravenous pancuronium bromide [Pancuroni-
um, Organon, 0.15 mg/(kg-h)]. All experiments were conducted in
accordance with the Society for Neuroscience, German law, and the
European Communities Council Directive of 24 November 1986
(86/609/EEC) regarding the care and use of animals for experimental
procedures, approved by the local government’s ethical committee
(Regierungsprasidium Darmstadt), and overseen by a veterinarian.

Recordings

Multi-unit activity (MUA) was recorded from area 17 in cat using
a silicon-based 16-channel probe (organised in a 4 x 4 spatial
matrix) supplied by the Center for Neural Communication Technol-
ogy at the University of Michigan. Each probe consisted of four 3-
mm long shanks that were separated by 0.2 mm and each contained
four electrode contacts (surface area of the contact, 1250 pm?;
impedance, 0.30-0.5 MQ2 at 1000 Hz; intercontact distance,
0.2 mm). The probes were inserted such that the last row of con-
tacts was submerged about 0.2 mm into the cortex. Therefore, the
probes recorded primarily the activity of superficial layers. Signals
were amplified 1000 times, filtered between 500 Hz and 3.5 kHz,
and digitised with a 32-kHz sampling frequency. Each probe was
inserted into the cortex approximately perpendicular to the surface,
which allowed recording simultaneously from neurons at different
depths and with different orientation preferences. The borders of
receptive fields for each unit were mapped manually, i.e. bar stim-
uli were moved by hand and the borders were determined by loca-
tions in the visual field at which a noticeable change in the firing
rate could be detected by both listening to the activity of that unit
fed into a speaker and monitoring the same signal on an oscillo-
scope. Within each probe, all of the receptive fields were overlap-
ping and were therefore all stimulated simultaneously by a single
stimulus.

Stimulation

Stimuli were presented monocularly on a 21-inch computer monitor
(Hitachi CM813ET) with a 100-Hz refresh rate. To obtain binocular
fusion, the optical axes of the two eyes were first determined by
mapping the borders of binocular receptive fields from responses to
moving single bars, and then the optical axes were aligned on the
computer screen with adjustable prisms placed in front of one eye.
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The software for visual stimulation was a commercially available
stimulation tool, ActiveSTIM (\www.ActiveSTIM.com). All recep-
tive fields were determined by manually mapping with high-contrast
white bars on a black background. Because of the spatial proximity
of the electrode contacts, the receptive fields recorded from one
probe always overlapped, producing clusters that spanned up to 10°
of visual angle. The stimuli were always positioned such that their
centers matched the center of the receptive field cluster. All visual
stimuli consisted of high contrast (C = 0.94) sinusoidal gratings of
12° visual angle in diameter, chosen to cover the cluster of the
receptive field. Gratings drifted orthogonally relative to their orienta-
tions in 12 different directions (0, 30, 60, ..., 330°). The spatial fre-
quency, size, and moving speed of the gratings were 2.4°/cycle, 12°,
and 2°/s, respectively. The choice of these values was driven by the
typical response properties of neurons in cat area 17, thus maximis-
ing the average degree of activation across the entire population of
recorded neurons. Judging by poststimulus time histograms and tun-
ing curves, the stimuli clearly produced responses in each unit in at
least one drifting direction. A total of 20 trials were conducted and,
during each trial, all 12 stimulus directions were presented for 3-5 s
each with an interstimulus interval of about 2 s. The order of condi-
tion presentations was block-randomised. Single-unit activity (SUA)
was extracted by applying an offline spike-sorting procedure based
on principal component analysis of spike wave forms. Tuning
curves for direction selectivity, rastergrams, crosscorrelograms, and
autocorrelograms were computed from both SUA and MUA
(see Data analysis).

Data analysis
Orientation tuning curves

Tuning curves for recorded MUA and SUA were generated based
on the firing rate responses to sinusoidal gratings drifting in 12
different directions by calculating the average firing rate over the
sustained response for each direction (from 1.0 s after stimulus
onset to immediately before the stimulus offset) and averaging over
all trials. Firing rates were measured in units of spikes/s to distin-
guish them from the frequencies of oscillatory signals or the fre-
quencies at which spike trains were modulated, which were
measured in units of Hz.

Orientation selectivity

Orientation selectivity was quantified for each recorded unit with a
previously established method (Leventhal ef al., 1995). The
responses to various (k =1, 2,... 12) stimulus orientations 0, (°)
were represented as vectors, with the response amplitude 7, (spikes/
s) as the magnitude and twice the stimulus orientation as the angle.
Such response vectors for all orientations were first added and then
divided by the sum of their magnitudes to obtain the vector R, i.e.

} : 20
r'ie
R= K

Dk Tk

The magnitude |R| of the resulting vector was named the orientation
bias and served as a measure of the orientation selectivity. Orienta-
tion bias takes values between 0 and 1 with an orientation bias
value close to 1 indicating strong orientation selectivity and 0 indi-
cating null selectivity. Note that the orientation bias is related to the
circular variance (Ringach er al., 2002) by the relation: (circular
variance) = 1 — (orientation bias).
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Oscillation strength

To quantify the oscillation strength of the recorded neuronal
responses, we computed the oscillation score, as described previ-
ously (Muresan et al., 2008). In brief, this measure is based on ana-
lysing the power spectrum of autocorrelation histograms (ACHs)
computed with 1-ms resolution (see below). The oscillation score is
defined as the ratio between the peak magnitude in the frequency
band of interest and the mean magnitude of the spectrum. In our
case, the band of interest covered the upper beta/lower gamma band
(25-35 Hz); for brevity, we refer to this as a gamma band in the
remainder of the article. The oscillation score has been demonstrated
to be a good measure of oscillation strength for neuronal activity
(Muresan et al., 2008) based on its simplicity and robustness under
various conditions (e.g. low spike count). The MATLAB code for
implementing the oscillation score calculation can be found in
Muresan et al. (2008). To quantify the oscillation strength of simu-
lated neuronal responses, the ratio between the height of the first
satellite peak in the fitting function and the mean of the ACH was
used to quantify the strength of the oscillatory response; this method
was used for simulation results because the strength of the oscilla-
tions in the output of the neurons was controlled and predicted by
the strength of the rhythmic inputs. In general, both of the above
methods for computing the oscillation strength gave highly consis-
tent results.

Synchrony strength

The spike trains of individual units were first converted into binary
variables X = {x;, xp,---} and Y = {y, y,,---} (where each compo-
nent is 1 if a spike occurred and O if there was no spike, with 3-ms
binning). We next computed the Pearson correlation coefficient

. Z (i =) =5) _ Z (xiyi) — Xy

- 0.0y - 0.0y
where (-) is the expectation, X and y are means, and G, and G, are
SDs of X and Y, respectively. For binary time series,
gy = y/X(1 — X). The Pearson correlation coefficient scales the num-
ber of coincidences above baseline by the product of the SDs for
two time series. To exclude the potential influence of rate covaria-
tion locked to stimulus onset, a corrected measure of the correlation
was obtained by subtracting the Pearson correlation coefficient of
trial-shuffled activities from the original correlation coefficient. The
synchrony strength for a given unit was then defined as the mean of
the corrected correlations between that unit and all other units
recorded by the same probe. The results were based on visual
responses in all conditions (cf. Fig. 3) or the optimal condition only
(cf. Fig. S1). In all cases, only the sustained responses (from 1.0 s
after stimulus onset to immediately before the stimulus offset) were
included for analysis.

To exclude contributions of slow rate covariations that were not
locked to the stimulus onset, the synchrony strength was also quan-
tified by scaled correlation, a recently introduced method (Nikoli¢
et al., 2012) that provides a measure of correlation for specifically
chosen temporal scales. In this case, scaled correlation was com-
puted for a scale suitable for correlation in the beta/gamma fre-
quency range (scale s =35 ms for Cat 1 and 25 ms for Cat 2,
which correspond to the peak oscillation frequencies estimated by
computing autocorrelations) for all neuronal pairs, with 1-ms bin-
ning. Pairwise correlation was then quantified by the summation of

the three center entries (i.e. time lags of —1, 0 and 1 ms). In this
case, the synchrony strength for a given unit was defined as the
mean of the scaled correlations between that unit and all other units
recorded by the same probe.

Autocorrelograms/crosscorrelograms

The ACHs and crosscorrelation histograms (CCHs) are graphical
representations of the set of all spike time differences between two
spike trains and are useful for highlighting synchrony and oscillatory
modulation of the firing output of neurons. The difference between
the two is that CCHs are computed from spike trains in two differ-
ent units, whereas ACHs are computed only from one spike train
against itself. ACHs/CCHs were computed by (i) calculating the
pairwise difference ) — 2 between each of the spike times in two
spike trains (i.e. for all m and n, where #},23,8,-- -t} are the spike
times in one spike train and t%,t%,tg, -+, 12, are the spike times in
the other spike train), and (ii) plotting a normalised histogram of
these time differences (lags), in 1-ms bins, over the interval [—80,
80 ms].

As with the orientation tuning curve, all figures for the experi-
mental recordings were generated using the sustained response. For
simulations, it was not necessary to cut out an initial data segment
because our model was designed to describe sustained responses
only and hence did not exhibit a pronounced initial transient
response to the stimulus. In all figures, the CCHs and ACHs were
normalised, with the vertical axis representing the ratio (count in
each 1-ms bin) : (baseline count in each 1-ms bin). For experimental
recordings, the baseline count was estimated by taking the average
count per bin in the ACH/CCH over the lag intervals [—300,
—150 ms] and [150, 300 ms], which were intervals at which the
oscillatory patterning first became discernibly attenuated such that
the ACH/CCH was relatively flat. In simulations, the baseline count
was computed (i) as described in the experimental case, or (ii) by
generating an ACH/CCH using one or two neurons driven with
excitatory inputs generated by a homogeneous Poisson process (i.e.
without the oscillatory component) to fire at the same rate as the
neurons of interest.

Coincidence measure

We defined the coincidence measure between two units to be repre-
sented by the size of the CCH center peak (around 0 lag) relative to
the baseline count within a corresponding time window using the
following pairwise measure: (size of the center peak)/(baseline
count) — 1. Equivalently, this measure is defined as (the number of
coincidences above baseline count)/(baseline count). When multi-
plied by 100, the coincidence measure represents the increase in the
number of coincidences relative to the baseline count (given as a
percentage). We calculated this measure for three different time
windows (N =1, 3, 5 ms) about 0 lag and all gave qualitatively
similar results. In Figs 2, 4, 8 and 9 in this article, the coincidence
measure was computed using only a time window spanning 3 ms
about 0 lag. Note that, in contrast to the synchrony strength, the
coincidence measure was based on spike times rather than binary
time series computed from spike trains. However, for comparison
with the synchrony strength, the expression for the coincidence
measure computed for binary time series would be given by

Z (xiyi) —Xy
; X

)
y

© 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd

European Journal of Neuroscience, 38, 2864-2883



Simulations
Neuron model

Each neuron was represented by a single-compartment model gov-
erned by either conductance-based or integrate-and-fire dynamics. In
the integrate-and-fire model, the membrane potential V obeyed the
differential equation (Dayan & Abbott, 2005)
Cp, % = —g.(V—EL) +I"(1)

with a spike occurring when V is increased through the threshold
Vin = —55 mV, at which point V was reset t0 Vi = —75 mV.
The term [*(r) represents the collection of all synaptic current
inputs to the neuron, and C,, =1 pF, g; =0.02 mS/cm® and
E; = —70 mV. Numerical integration was performed using either an
Euler or an improved Euler method, with the threshold crossing
computed more precisely using linear interpolation between the two
consecutive time points straddling the threshold. Conductance-based
models yielded similar results (not shown); however, as the inte-
grate-and-fire model is substantially less numerically intensive to
simulate, it was selected as the practical choice for extensively
exploring various features of the model.

We considered collections of either four or six model neurons
with identical intrinsic dynamics. These were assumed to represent
excitatory neurons in cat area 17. Direct synaptic connections
between these neurons were not included in the model. In the
absence of any input, each model neuron remained at rest (the leak
reversal potential E; for the integrate-and-fire model) and, otherwise,
the firing output of each neuron was predominantly shaped by the
synaptic input it received. To simulate excitatory cell firing during
gamma oscillations, we prescribed three types of synaptic currents
to each neuron, each generated stochastically according to a Poisson
process: (i) 17°°(r), rhythmic inhibitory (GABA,-mediated) input
that oscillates in the gamma frequency range, (i) I"°™(z), excitatory
(AMPA-mediated) synaptic input generated by a homogeneous Pois-
son process, and (iii) I7°"(f), gamma-modulated excitatory (AMPA-
mediated) synaptic input generated by a non-homogeneous Poisson
process. We describe in detail below how each component was
computed, with the total synaptic current I*V"(¢) calculated as

PP () = I9(6) 4+ (o) + (1)

Simulations that were performed over intervals of 10-60 s of time
and over hundreds of independent trials generated sufficient single
neuron data to produce smooth auto/crosscorrelograms (see Data
analysis). (For code see ModelDB accession no. 150241).

Rhythmic inhibitory input and the gamma cycle

To introduce an inhibitory input that exhibited a gamma oscillation,
on each trial j, we defined a sequence of gamma cycle start times
T;, calculated iteratively as Tj,., = T}, + 87T}, where T;, denotes
the start of the nth cycle on trial j. The quantity 87}, denotes the
length of the nth cycle on trial j, and it was assumed to vary sto-
chastically across cycles (described separately in detail below). The
profile of the cumulative or summated inhibitory synaptic conduc-
tance s{(?) during the nth cycle (7, <t < Tj,,;) on trial j was pre-
scribed by an alpha function

si(t) ="n [007(t - Y}sn)z eXp(_(t - 7‘]’1)/4)}

The factor v, = (Tj 1~ T;)/T;, where o; and T; = o) ' (1000ms/s)
denote the average frequency and average cycle length of the oscil-
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lation on trial j, respectively, modulated the conductance amplitude
on each cycle, slightly increasing the amplitude for cycle lengths
longer than average, and slightly decreasing the amplitude for cycles
shorter than average. As the GABAergic basket cells that are believed
to mediate gamma oscillations in vivo (Tamas et al., 2000; Freund,
2003; Gloveli et al., 2005; Middleton et al., 2008; Whittington
et al., 2010) each contact a large number of excitatory neurons and
often form multiple boutons on the soma or perisomatic region of
each neuron, they exert strong and rapid synaptic control over the
firing output of excitatory neurons (Martin et al., 1983; Somogyi
et al., 1983; Kisvarday & Eysel, 1993). The alpha function profile
was tuned to be representative of the superposition of a barrage of
synaptic inputs from a collection of these inhibitory neurons firing
approximately synchronously, with firing times distributed over the
early part of each gamma cycle. This timing profile is consistent
with the assumption that the inhibitory synaptic inputs based on
GABA s-mediated currents have similar decay time constants, com-
mensurate with the mean cycle length within the oscillation.
The total inhibitory synaptic current was calculated as
() = —gisi(t)(V(1) — E),

1

using the inhibitory reversal potential E;>" = —75 mV and a maxi-

mal effective conductance or effective conductance strength g; that
was varied across simulations (values are listed in Table 1). As time
progressed within each cycle, the summated conductance profile s{f)
decayed, reaching less than 5% of its maximum during the final
5-15 ms of the cycle. In simulations of four or six model neurons
receiving perfectly in-phase rhythmic inhibition, the synaptic inhibi-
tory currents I?(z) to all cells had the same profile s,(f), whereas
the effective conductance strength g; was allowed to vary from neu-
ron to neuron. Importantly, this input generation method allowed the
cycle length of the gamma oscillation to vary stochastically while
maintaining oscillations in the rhythmic inhibitory input that are
perfectly in phase across neurons.

Excitatory input I:"m (t) (homogeneous Poisson generated)

One component of the excitatory synaptic input current was
assumed to be generated from a homogeneous Poisson process.
More precisely, excitatory postsynaptic currents were activated at
spike times selected from an exponential distribution with rate 7,om-
The rate ryom was allowed to vary from neuron to neuron and was
viewed as being representative of the collective inputs from many
different excitatory neurons firing independently. A corresponding
excitatory conductance was produced by convolving the train of
spike times (i.e. a sum of d-functions ordered in time according to
the index spk = 1 ... N) with an alpha function that was representa-
tive of an AMPA-receptor mediated excitatory synapse. This convo-
lution yielded a conductance profile S, ,(?), arising from a spike
occurring at t = Tgy, given by

t— Topk)exp(—(f — Typk) /2), 1> Tk,
sf.,,gpkm:{(()’ tékispkp( (1 — ) /2) o

The excitatory postsynaptic current Iggg}((t) resulting from the
spike at ¢ = Tq, was computed as

Li(t) = —gesespi (1) (V1) — ), )

where V() was the membrane potential of the postsynaptic cell. The
accumulated excitatory postsynaptic current arising from the spike
train was given by
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TABLE 1. Model parameters for Figs 8—11

Label 8i Thom Tnon

Parameters for Fig. 8*

A-D 1 0.01 0.14 0.035
2 0.025 0.14 0.070
3 0.05 0.14 0.133
4 0.1 0.14 0.210

E nSH 0.04 0.214 -
SH 0.08 0.270 -

F nSH 0.04 0.075 0.098
SH 0.08 0.15 0.173

Parameters for Fig. 9t

A 1 - nSH 0.045 0.148 0.096
2 - SH 0.09 0.148 0.185
3-SH 0.09 0.148 0.185
4 - nSH 0.045 0.148 0.096

B 1 - nSH 0.045 0.148 0.096
2 - SH 0.09 0.148 0.185
3 -SH 0.045 0.096 0.096
4 - nSH 0.02 0.096 0.051

Parameters for Fig. 10* All 0.08 0.148 0.163

Parameters for Fig. 11°

Solid gray 0 0.04 0.148 0.089
1 0.03 0.130 0.067
2 0.02 0.109 0.044
3 0.01 0.089 0.022

Solid black 0 0.08 0.148 0.178
1 0.06 0.130 0.133
2 0.04 0.109 0.089
3 0.02 0.089 0.044

Dashed black 0 0.08 0.148 0.178
1 0.07 0.130 0.133
2 0.06 0.109 0.089
3 0.05 0.089 0.044

*Common parameters for Fig. 8: o = 30 Hz, Aoyiu = 3 Hz, Awcyee = 4.
fCommon parameters for Fig. 9: ® = 30 Hz, Ay, = 3 Hz, Aweyere = 6.
fCommon parameters for Fig. 10: ® = 30 Hz, A®yia = 4 Hz, Aoy = 4.
Columns 1 and 2 correspond to jitters (5\/]!‘" and 5vj%" where (A)
Aveyere = 0.25 1/ms, (B) Aveyere = 0.5 1/ms, (C) Aveyee = 1.0 1/ms. SCom-
mon parameters for Fig. 11: o = 33 Hz, Aoy = 3 Hz, Aoy = 6.

om N om
I: (t) = Zspkzl I(le].spk([) (3)

All excitatory synaptic inputs to all neurons were computed with
conductance strength g, = 0.01 mS/cm®> and reversal potential
EY =0 mV.

Excitatory input I)°"(t) (gamma modulated)

We assumed that some of the excitatory synaptic inputs to each excit-
atory neuron would be generated by other excitatory neurons subject
to the same gamma-modulated inhibition to which it was exposed.
Therefore, in our simulations, each neuron received a second excit-
atory synaptic current component. I°"(z) that was generated from a
non-homogeneous Poisson process, modulated in the gamma fre-
quency range. To create the non-homogeneous process, we initially
generated spikes from a homogeneous Poisson process with rate r,o,;
spikes were subsequently deleted based on their timing relative to the
ongoing inhibitory gamma oscillation, under the assumption that
spikes were less (more) likely to occur in the early (late) phase of the
gamma cycle, defined as the phase where inhibition was strongest

(weakest). Specifically, during the nth gamma cycle [T, Tjne1l, a
spike at time 7 (in ms) was pruned if a number picked from a uniform
distribution on [0,1] was below the curve given by

H(t) = 0.65 4+ 0.35[c0s(0.55 + 27(t — Tj,) /(Tjns1 — Tjn)))

For each spike time 7 = Ty, the resulting excitatory postsynaptic
current I;‘;gk(t) was generated analogously using Eqns (1) and (2),
as described above. The total gamma-modulated excitatory compo-
nent /2°"(¢) was computed similarly to Eqn (3).

Setting the firing rate of the model neuron

The cells were assumed to fire sparsely, skipping most of the cycles
of the gamma oscillation (Nikoli¢, 2009). The average firing rate was
controlled by three parameters that we varied across conditions: (i)
the strength of the rhythmic inhibition g;, (ii) the Poisson rate rqy, for
the homogeneous Poisson process associated with excitatory input,
and (iii) the max rate r,,, for the non-homogeneous Poisson process
associated with gamma-modulated excitatory input. When a certain
firing rate was desired, we first set the level of g; and next tuned the
parameters 7,0, and 7,0, to produce the desired output firing rate. To
be consistent with our experimental recordings, the average firing rate
of any neuron that was considered to be optimally stimulated was set
to 10 spikes/s. As the maximal firing rates of both sharply-tuned and
broadly-tuned neurons are roughly the same, we assumed that stron-
ger inhibition at preferred orientations would be accompanied by
increased local cortical excitation. This assumption is consistent with
experimental results (Anderson et al., 2000; Marino et al., 2005; A-
tallah & Scanziani, 2009; Isaacson & Scanziani, 2011) showing that
the excitatory and inhibitory postsynaptic currents in cat area 17 tend
to covary in a way that maintains a balance of inputs.

Stochastic fluctuations in gamma cycle length

We ran repeated simulations of 10—60 s each under each set of con-
ditions considered, referring to each simulation as a trial. Within
each trial, many gamma oscillation cycles occurred. Stochastic fluc-
tuations were introduced into the cycle structure of the gamma oscil-
lations in two ways. (i) Within each trial, the cycle length fluctuated
stochastically around an average cycle length that was set by a trial-
average gamma frequency denoted by w; for trial j. The time Tj,.,
corresponding to the beginning of the (n + 1)th gamma cycle on
trial j was correspondingly computed as 7j,..; = T}, + 87}, where

1000 ms /s
5T, — 1000ms/s
: CO/' + 56()/'_,1

and dw;, denotes the cycle-to-cycle jitter on cycle n within trial j,
selected from a zero mean normal distribution with a SD A®cycie. If
a realisation of dw;, exceeded Amcyce, it Was discarded and resam-
pled. (ii) The average gamma frequency w; itself was varied across
trials, with each ; selected from a uniform distribution over
[0—A®yia, ©+A®yq], centered about a universal average (or trial-
averaged) frequency . These two types of jitter in the cycle length
could be varied independently and had different effects on the oscil-
latory patterning observed in CCHs and ACHs (see below). In most
simulations, all neurons received perfectly coherent (in-phase) rhyth-
mic inhibition, which meant that, whereas the effective conductance
strength g; of the inhibitory current /i(¢) could vary from neuron to
neuron, the summated conductance profile si(f) of the oscillation
was identical for all neurons.
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Stochastic fluctuations and offsets in gamma phase

In a specific set of simulations, we allowed for phase differences to
occur in the cycles of the rhythmic inhibitory inputs to two different
groups of neurons, instead of maintaining perfectly coherent oscilla-
tions. This offset was implemented by generating an additional set
of fluctuations in the cycle length independently for each group.
The onset times T} ,, and T]2n 4 of the (n + 1)th gamma cycle for

Jn+
neuron groups 1 and 2, respectively, were given by

T) =Tl 40T T?

_ 72 2
jin+l 7 Yjn Jin? Jjin+1l Y},n + 57;71

To generate 57}{,1 and 5Tﬁn, we then introduced jitter terms 5\/}_’”
and 5\{%,,, which were sampled from a normal distribution with mean
0 and SD Avy;y, along with a third jitter term 3;,, which was sam-
pled from a normal distribution with mean 0 and SD Aw,;,, and set

ST — 1000 ms/s ) _ 1000 ms/s

@i+ i, +ov), @i+, +ovi,
to produce two gamma oscillations with zero mean phase difference.
Importantly, as 8w, ov},, and 6v7, all contributed to the jitter of
the cycle length for each population, A®yi, could be decreased
while Avg, was simultaneously increased to maintain the same
degree of jitter to each group while increasing the average phase
offset.

Results

To characterise the response properties of neurons that synchronise
promiscuously with other cells, even when lacking a common orien-
tation preference, we performed experimental recordings in cat area
17 during the presentation of oriented stimuli. Next, to test a possi-
ble mechanism that could account for our experimental findings, we
simulated the activity of a collection of computational model neu-
rons (see Materials and methods).

Experiment
Coherent gamma oscillations in cat area 17

Recordings from cat area 17 afforded an opportunity to examine
various relations between autocorrelogram (ACH) and crosscorrelo-
gram (CCH) characteristics and the orientation selectivity of the
response to visual stimuli during gamma oscillations. MUA and
SUA were recorded from many electrodes in parallel using two
probes, each containing 16 channels, and analysed for each of 12
stimulus conditions (spanning orientations in increments of 30°; see
Materials and methods). In total we obtained responses (MUA) from
94 recording sites in three cats, with 31 single units extracted from
the MUA in one cat. Most MUA and SUA were selective for orien-
tation, with corresponding tuning curves featuring a diversity of
widths as shown in Figs 3B1 and C1. The majority of units exhib-
ited oscillations in the gamma frequency band in their ACHs for a
subset of the stimulus conditions, with the strongest oscillations typ-
ically arising at or near the optimal stimulus. Rastergrams of MUA
(Figs 1A and B, thin tall lines) and SUA (Figs 1A and B, short
thick lines), recorded at 10 contacts of a single probe for two stimu-
lus directions, illustrate how tightly the windows of enhanced firing
during the gamma cycles line up in time, which indicates a coherent
oscillation across the probe. The locations of the recorded channels
are highlighted by the dashed circles in Fig. 1C. The rastergrams
also highlight the variability in the length of each gamma cycle as
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well as the duration of enhanced firing within each cycle. MUA and
SUA generally showed strong similarities in synchrony and oscilla-
tory patterning, as illustrated by the CCHs, ACHs, and orientation
tuning curves shown in Fig. 1D. Due to the sparseness of the CCHs
resulting from SUA data, we focused on the MUA in our subse-
quent analyses.

Sharply-tuned units that synchronise well exhibit strong oscillations
at preferred orientations

As noted in the Introduction, we defined units in cat area 17 as SHs
based on their synchronisation promiscuity, i.e. the tendency to syn-
chronise strongly with other neurons regardless of orientation prefer-
ences. Synchronisation was generally graded across the units
recorded by each probe and its range varied from probe to probe
and from cat to cat, thereby making any designation of SHs rather
arbitrary. Nevertheless, for concreteness in this study, we defined
relative criteria for a unit to be an SH based upon both (i) its overall
strength of synchronisation and (ii) the number of units recorded by
the same probe that it synchronised with across all stimulus orienta-
tions. Specifically, a unit was classified as an SH if it exceeded two
thresholds: (i) its synchrony strength (Materials and methods) com-
puted with all units recorded by the same probe exceeded the aver-
age synchrony strength of all units recorded by the same probe, and
(ii) its pairwise synchrony strengths computed with at least 8 of 16
individual units recorded by the same probe exceeded the average
synchrony strength of all units recorded by the same probe. Gener-
ally, a unit’s synchrony strength was positively correlated with the
number of units that it synchronised strongly with. Units that satis-
fied criterion (i) but fell just short of criterion (ii) were considered
moderate SHs and tended to synchronise strongly with other SHs. A
total of 20 of 94 units were classified as SHs according to criteria
(i) and (ii) (Cat 1: 5 of 30 units; Cat 2: 8 of 32 units; Cat 3: 7 of 32
units).

For example, unit 8, shown in Fig. 1D, was identified as an SH
as it exhibited strong synchronisation with the activity in various
other units over the range of stimulus directions; unit 3 was found
to be a moderate SH with similar synchrony strength as unit § but it
fell short of satisfying criterion (ii) with only seven other units
(results not shown). Importantly, both units also exhibited strong
oscillatory patterning in their ACHs as shown in Fig. 1D. An exam-
ple of synchronisation promiscuity is illustrated in Fig. 2 based on
two pairs of units, one composed of nSH 18 and SH 20 and the
other consisting of nSH 25 and SH 28. The tuning curves in
Fig. 2A (diagonal panels for each direction) indicate that the two
pairs have different preferred orientations. Nevertheless, the strong-
est synchronisation occurs between the SHs and the weakest
between the nSHs, as shown in Fig. 2B1 for these pairs of units and
in Fig. 2B2-4 for other SH/nSH pairs. These results illustrate how
the synchronisation promiscuity of SHs extends beyond units with
common preferred stimulus directions.

We used two measures of synchrony (Amari, 2009; Roudi et al.,
2009), which we termed the synchrony strength and the coincidence
measure, to analyse SH, and we found that both measures yielded
analogous general results (compare Figs 3 and S4). However, of the
two, the coincidence measure is uniquely suited to identify certain
key features in the experimental data that are predicted by the
model. (i) The synchrony strength is defined as Pearson’s coefficient
of correlation between spike trains and is given by numbers ranging
from —1 to 1, where 1 indicates perfect positive correlation, —1
perfect negative correlation and O complete lack of correlation.
Pearson’s correlation coefficient is a standard, easily understood
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F1G. 1. Gamma oscillations in MUA and SUA recorded in parallel in cat area 17. For stimulus directions (A) 60° and (B) 210°, synchronous gamma oscil-
lations are evident in rastergrams of parallel MUA and SUA observed within one probe. Thick black lines denote SUA and thin gray lines denote MUA.
(C) The spatial distribution of the 16 channels (contacts) on probe 1 across a 0.6 x 0.6-mm patch of cat primary visual cortex; dashed circles indicate chan-
nels associated with the MUA in A and B. (D) A comparison of ACHs, CCHs (dark colored), and orientation tuning curves (light colored) for the SUA

(left) and MUA (right) recorded in units 3 and 8 on probe 1 when the cells
cal bar in each tuning curve).

measure of synchrony, allowing for comparison with results in other
studies. However, a disadvantage of this measure for our particular
purposes is that it scales the number of coincidences above baseline
by the product of the SDs; therefore, it does not determine the per-
cent increase in the number of coincidences above the baseline
count expected based on the spike counts of the individual units.
This can be relevant because spike counts differ from unit to unit
and vary with stimulus orientation, particularly for MUA. Impor-
tantly, our computational model describes an underlying mechanism
that increases synchrony by shaping the neuronal spiking in a man-
ner that increases the percentage of coincident spikes above the

©

were stimulated nearly optimally (stimulus condition 210°, indicated by a verti-

baseline coincident count. (ii) The coincidence measure addresses
these issues by directly computing the percent increase in the num-
ber of coincidences above baseline. Consequently, this method
induces no biases towards favoring coincidences in high spike
counts (high firing rates), and identical ratios between the CCH peak
size and baseline are obtained irrespective of the average length of
the empty time periods in the spike trains or the number of trains
with only a few spikes in the trains. Thus, the values obtained from
the coincidence measure are directly interpretable in terms of spike
counts (and coincidence counts) irrespective of the variances within
spike trains. Consistent with this description, two important features
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Fi1G. 2. SHs synchronise strongly across different stimulus conditions (single probe). (A) All panels show the ACHs and CCHs for the MUA recorded in four
different units for three different stimulus directions. Along the diagonal of each panel, each unit is represented by its orientation tuning curve for the MUA
(light colored), with the vertical line indicating the direction of the stimulus. Below the diagonal are CCHs computed between each pair of units, whereas ACHs
for the units are shown above the diagonal (dark colored). For each stimulus direction, the insets show the coincidence measure for each pair of units (unit iden-
tities denoted by the pair of numbers in each bar), which indicates the relative increase in the number of coincidences above baseline. The units come from
probe 2 and are arranged as pairs of units with similar orientation preferences within the pair, with a significant difference in preference between the pairs. Each
pair is composed of a unit representing an SH (unit 20 or 28) and an nSH (unit 17 or 25). (B) Bar diagrams plotting the synchrony strength computed for anal-
ogous groupings of four units on probe 2 (Pearson’s correlation coefficient averaged over the three pairwise interactions for each unit across all 12 stimulus
directions); the middle pair in each panel, exhibiting increased synchrony strength in each case, are SHs. Plots above the bar diagrams show the corresponding
orientation tuning curves for each unit. The left-most panel corresponds to the grouping of units in A.

in Fig. 2A that are identified using the coincidence measure and cor-
responding CCHs are that (i) the relative increase in coincidences
above baseline was consistently the most pronounced between SHs;
and (ii) the trend in the values of the coincidence measure between
pairs of units also tended to correlate strongly with the trend in the
oscillation strengths in the corresponding CCHs. In particular, the
pair with highest percent increase in coincidences above baseline
tended to be the pair with the strongest oscillations in the corre-
sponding CCHs. These two distinct features of the experimental data
are captured by our model.

The examples in Figs 1 and 2 also suggest a link between syn-
chronisation promiscuity and oscillation strength in the gamma
range. The SHs exhibited strong oscillations at the preferred stimu-
lus directions (estimated by ACHs), as needed to allow the possibil-
ity of pronounced oscillations in the CCHs between the two SHs. In
contrast, the oscillatory patterning was weakest for nSHs. Given the
link between the tendency of a unit to synchronise promiscuously
and the sharpness of its orientation tuning across all orientations
(Yu et al., 2008), we predicted that orientation selectivity would

also positively correlate with the oscillation strength measured at the
preferred orientation, where it tends to be maximal. In Fig. 3, we
show two example multi-units, one highly selective for orientation
(Fig. 3A1) and another with a moderate level of selectivity
(Fig. 3A2), both from the same recording array (see Materials and
methods). As predicted, the strongly selective unit exhibited more
pronounced oscillations in the gamma range than the less selective
one in response to the optimal stimulus for each unit.

Seeking to extrapolate from these examples, we examined
whether the relationships among firing rates (orientation selectivity),
amplitude of oscillations at the preferred orientation, and strength of
synchronisation across a range of stimulus orientations are general.
In Figs 3B and C, we show results pooled for a total of 62 MUAs
across two recordings, each from a different cat. Although the two
recordings showed different ranges in oscillation strength, syn-
chrony strength, and orientation bias, we observed significant posi-
tive correlations between these features (Fig. 3). Also, the results
were similar when synchrony strength was computed for the pre-
ferred orientation only (Fig. S1) or when scaled correlation analysis
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the ACHs (strongest to weakest).

was applied to exclude spurious effects of slow rate covariation
(Fig. S2). To examine whether the positive correlations were merely
a result of different numbers of SUA comprising the various MUA
(e.g. MUA comprising larger numbers of SUA that have varying
levels of orientation selectivity and oscillation strength could exhibit
weaker orientation selectivity and oscillation strength than MUA
composed of fewer SUA), we investigated how the correlations
between orientation bias, oscillation strength, and synchrony
strength change as a function of peak firing rates. In most cases, the

peak firing rate did not affect the correlations (Fig. S3), suggesting
that our results were not an artifact of MUA composition. Finally,
analogous results to Fig. 3 were found when the coincidence mea-
sure was used in place of the synchrony strength (Fig. S4). Note
that, although we have opted to categorise neurons as either SHs or
nSHs, the borders of these categories are somewhat arbitrary as the
neuronal response properties tend to be distributed along a contin-

uum (Fig. 3), a feature that is reproduced by our computational
model.
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Synchronisation promiscuity and strong oscillations at non-
preferred orientations

To compute the synchrony results shown in Fig. 3, we used the
responses to all stimulus orientations to measure synchronisation
promiscuity. Oscillation strength was computed using ACHs from
preferred orientations only, as they tend to elicit the strongest oscil-
lations and the high firing rate provides sufficient data to generate a
well-resolved ACH for computing the oscillation strength. More-
over, measuring the oscillations at a single orientation avoids con-
founding the oscillation strength near its maximum value with the
trend of oscillation strengths over the range of stimulus orientation.
However, in considering the mechanisms underlying our data, we
reasoned that synchronisation promiscuity may, in fact, be causally
linked to the maintenance of strong oscillations away from preferred
orientations. For example, in Fig. 2A, the units identified as SHs
(units 20 and 28) maintained much stronger oscillations in their
ACHs at non-optimal stimuli (150° for unit 20 and 210° for unit
28) than the other units. Thus, we next examined the link between
synchronisation promiscuity and oscillation strength away from pre-
ferred orientations in our data.
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F1G. 5. Oscillation strengths in response to optimal and suboptimal stimuli
are correlated. (A) Examples of two units (Cat 2), one with a weak oscillatory
response to the optimal direction (Pr. Dir.) of the grating stimulus and the
other with a strong oscillatory response. Orientation tuning curves (polar
plots) and ACHs in response to both the optimal (light-colored arrow) and
two suboptimal (black arrows) stimuli are shown. (B) The minimal oscillation
scores (OSs) for the optimal (OS,) and two suboptimal (30° away from the
optimal directions; OS,,; and OS,_;) directions are plotted against the OS
for the optimal direction (OS,) for a total of 62 units, across two cats. A dou-
ble-logarithmic scale is used in the scatter plots to increase the visual clarity.
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Figure 4 illustrates another example showing that units that oscil-
late strongly at their preferred direction also maintain the strongest
oscillations away from this direction. Tuning curves of four units
with a common preferred orientation are arranged in order of
decreasing oscillation strength at the preferred stimulus direction;
the same order of oscillation strength is preserved across all three of
the stimuli shown (i.e. the strongest oscillations are in unit 7 and
the weakest in unit 6). The corresponding ACHs, CCHs, and coinci-
dence measures demonstrate that, although the relative increase in
the coincident spike count above baseline can vary markedly
depending on stimulus direction, the largest numbers of coinci-
dences relative to baseline and the strongest oscillations for all con-
ditions occur for SHs and moderate SHs (units 7 and 3,
respectively) and the weakest for nSHs (units 6 and 4). Note that
the gamma-band oscillations in unit 6 are considerably diminished
at direction 180°, coinciding with a drastic loss of synchrony with
the other units. We also observed a sharper drop in firing rates asso-
ciated with units 7 and 3 as stimulus direction was varied from 240°
than in the firing rates of the other units (Fig. 4), consistent with
earlier results (Yu et al., 2008).

These examples of the persistence of relative oscillation strength
across orientations were reproduced throughout our data. Figure SA
provides two examples of ACHs computed across multiple orienta-
tions, one set from a broadly tuned unit exhibiting weak oscillations
at the preferred orientation and the two adjacent orientations, and
another set from a sharply tuned unit that maintains strong
oscillations at analogous orientations. In our pooled results of 62
MUAs shown in Fig. 5B, we found a significant positive correlation
between the oscillation strength arising at a unit’s preferred orienta-
tion and the minimal oscillation strength measured across the pre-
ferred and two adjacent orientations (e.g. Fig. 5A), indicating that
strongly oscillatory units maintained strong oscillations away from
their preferred orientations (Fig. 5B).

Synchrony between probes

The definition of our synchrony measure implies that the synchrony
between two units exhibiting strong oscillations will be strong if
their oscillations are coherent. Consequently, we reasoned that the
strength of synchronisation over long distances (between two
probes) would depend strongly on the presence of coherent oscilla-
tions in the gamma band across the two locations. CCHs computed
between units in two different probes separated by at least 1 mm
generally showed significantly shorter (or non-existent) central peaks
and weaker oscillations, relative to the CCHs found within a single
probe (0.6 x 0.6 mm). This result is consistent with earlier work on
carbachol-induced gamma oscillations in slices from the entorhinal
cortex, in which the strength of synchronisation at multiple record-
ing sites declined with increasing spatial distance between electrodes
(Dickson et al., 2000). We also found that synchronisation across
probes was restricted to a narrower range of stimulus conditions
when compared with units recorded by a single probe.

We did, however, find several cases of strong synchrony and oscil-
latory CCHs over long distances. These cases occurred exclusively for
SHs and moderate SHs. Figure 6A shows examples for two pairs of
units. All four units show strong oscillations for stimulus direction
180°. The reduction in oscillation strength for stimuli at 210°, and fur-
ther drop at 240°, is associated with a much more dramatic decline of
long-distance synchronisation between the two probes, such that syn-
chrony is not even detectable in the CCHs at 240°. In Fig. 6B, we plot
representative examples of rastergrams for 500-ms recordings (MUA)
in response to two different stimulus directions. Windows of enhanced
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F1G. 6. Synchronisation between two probes relates to coherent oscillations in the gamma band. (A) ACHs, CCHs, and orientation tuning curves for four units,
two from probe 1 (dark-colored tuning curves) and two from probe 2 (light-colored tuning curves). All four units have strong oscillations in their ACHs for at
least one stimulus direction and were categorised as SHs (units 8 and 28) or moderate SHs (units 3 and 23). (B) Rastergrams for 10 units from two probes for
the same trial. The dark-colored short lines in each row represent the spike times of the MUA recorded in each unit. Each short line is extended into a light-col-
ored line to help visualisation of the cycles of the gamma oscillations at respective probes.

firing across the two probes align more often for the stimulus direction
that produces overall stronger oscillations (more often for 180° than
for 240°). This comparison supports the notion that the significant
increase in coincident firing relative to baseline, indicated by the cen-
ter peak heights in the CCHs between units in two different probes, is
closely tied to the degree to which the oscillatory firing patterns are in
phase across distant recording sites.

Simulations
Hypothesised mechanism for synchronisation hubs

Activity in networks of inhibitory neurons has been strongly linked
to the generation of gamma oscillations through experiments on in
vitro slice preparations pharmacologically treated with kainate and/

or carbachol (Whittington et al., 1995; Buhl et al., 1998; Fisahn
et al., 1998; Dickson et al., 2000; Traub et al., 2000; Whittington
et al., 2000; Cunningham et al., 2003; Traub et al., 2005) and
through computational studies (Van Vreeswijk er al., 1994; Traub
et al., 1996; Wang & Buzsaki, 1996; White er al., 1998; Traub
et al., 2000; Tiesinga er al., 2001; Borgers & Kopell, 2003; Doiron
et al., 2003; Bartos et al., 2007). Gamma rhythmicity is evident in
inhibitory postsynaptic potentials recorded in the cat visual cortex
(Ferster, 1986), and rhythmic inhibitory postsynaptic potentials help
control the probability and timing of pyramidal cell spikes during
gamma oscillations (Csicsvari et al., 2003; Hasenstaub ez al., 2005).
Further evidence for the involvement of inhibitory interneurons in
gamma oscillations in vivo is demonstrated through recent experi-
ments conducted using optogenetics (Cardin er al., 2009; Sohal
et al., 2009). We hypothesised that a single property, heterogeneity
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rons. In our model, SHs receive stronger levels of rhythmic inhibition from the inhibitory pool compared with neurons that are nSHs as represented here by
connection thicknesses. (B-D) Cumulative or summated inhibitory synaptic conductance (SISC) from the pool of interneurons (top) arrives in rhythmic pulses
in the gamma frequency range, with SHs receiving a larger signal compared with nSHs, resulting in a qualitative difference in the probability of excitatory neu-
ron firing across the phases of the gamma cycle (bottom). (B) When an SH and nSH are both optimally stimulated, the SH receives a larger SISC than the
nSH. Although this disparity results in significant differences in the neurons’ probabilities of firing, the oscillatory inputs to the two neurons are perfectly in
phase, resulting in direct overlap of their windows of maximal firing, which promotes synchrony. (C) A suboptimally stimulated SH receives relatively weak
inhibition (SISC) balanced by relative weak excitation to maintain a relatively narrow window of maximal firing that still promotes synchronisation with an
optimally stimulated nSH. (D) Analogous plots to B with phase offsets introduced between the oscillations for two different excitatory neurons, which results in

less overlap in the phases of maximal firing for the two neurons during each cycle.

in the strength and tuning of gamma-modulated inhibition to differ-
ent excitatory neurons, could be predominantly responsible for the
covariation among oscillation strength at preferred and non-preferred
orientations, synchronisation promiscuity, and orientation tuning that
we observed in cat area 17. In particular, SHs would be those neu-
rons receiving the strongest inhibition. To test the feasibility of this
hypothesis, we simulated a model consisting of a small set of excit-
atory neurons that were not directly connected and that received
independent, Poisson-distributed excitatory inputs as well as inhibi-
tory inputs correlated through a shared rhythm.

The schematic diagrams in Fig. 7 illustrate our proposed mecha-
nism for the origin of SHs. Although there may be a continuum of
strengths of rhythmic synaptic inhibition received by different neu-
rons, the illustration in Fig. 7A compares two levels of inhibition,

figuratively representing inputs to an SH and to an nSH. Although
inhibition does not directly induce spiking, we conjectured that the
stronger inhibition to the SH would cause its firing to be more
tightly constrained in time as illustrated in Fig. 7B. In particular, the
effect of inhibition could be strong enough to constrain firing in this
way even though the SH would also receive stronger excitation than
the nSH to maintain similar firing rates of the SH and nSH at their
preferred orientations, in agreement with experimental recordings
(Nikoli¢, 2009). We used simulations of the computational model to
explore the extent to which such shaping of activity by rhythmic
synaptic inhibition could arise and could control synchronisation
promiscuity in conjunction with oscillation strength and orientation
tuning. Moreover, we reasoned that the strength of synchronisation
measured between two neurons would also depend on the degree to
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F1G. 8. Rhythmic inhibitory input shapes the timing of neuronal firing. Results of simulations with integrate-and-fire neurons are shown. In all cases, neurons
are optimally stimulated, represented by a tuning of inputs to elicit an average firing rate of 10 spikes/s. (A) Histograms of spike counts at different phases
(computed by partitioning the average cycle length 7 into Ny, = 500 bins) during inhibitory gamma oscillations of three different strengths (left, g; = 0.01 mS/
cm?; center, g; = 0.025 mS/cm?; right, g; = 0.05 mS/cm?), normalised by the baseline spike count computed in the absence of inhibition (also shown as light-
colored background). The differences relative to baseline reveal a window of enhanced firing toward the end of the gamma cycle, when inhibition is attenuated.
(B) Autocorrelograms (ACHs) (above diagonal) and crosscorrelograms (CCHs) (below diagonal) for four excitatory neurons subject to different levels of coher-
ent rhythmic inhibition (neuron 1, g; = 0.01 mS/cmz; neuron 2, g; = 0.025 mS/cmz; neuron 3, g; = 0.05 mS/cmz; neuron 4, g; = 0.1 mS/cmz). In each plot, the
vertical axis denotes the total number of coincidences normalised by the baseline number of coincidences, and the horizontal axis denotes the lag (in ms). ACHs
were computed for simulated SUA (left) and MUA (right). Increasing levels of inhibition and concomitant excitation to maintain a rate of 10 spikes/s result in
stronger oscillations in the ACHs and CCHs and stronger synchrony, indicated by taller central peaks in the CCHs. (C) Left and middle: plot of the normalised
spike count histograms s3 and s4 computed for unit 3 (g; = 0.05 mS/cm?) and unit 4 (g; = 0.01 mS/cm?), respectively, at different phases of the gamma oscilla-
tion (as shown in A). Right: crosscorrelation (s3xs4)/Nyin (dashed curve) overlaid with the CCH (gray histogram) from B computed between units 3 and 4. The
strong agreement between the central peaks and adjacent troughs of each indicates that the pronounced center peak in the CCH is predominantly generated by
the overlap in windows of enhanced firing at the end of each gamma cycle in the two units. (D) The coincidence measure (Materials and methods) computed
for each of the six CCHs in B indicates that stronger, coherent rhythmic inhibition yields an increase in the number of coincidences relative to the baseline
number of coincidences. (E) Rastergrams of simulated SUA (dots) and MUA (bars) for four levels of rhythmic coherent inhibition matching the levels used for
neurons 1-4 in B. Each neuron has the same average firing rate, and an increase in input strength results in a narrowing of the window of enhanced firing at
the end of the gamma cycle (each onset of a gamma cycle is indicated by a vertical line). CCH for a pair of neurons with the same average firing rate, receiving
the same level of rhythmic inhibition, with synaptic excitation to the neurons generated stochastically by a homogeneous Poisson process only (F) or by a com-
bination of a homogeneous Poisson process and a non-homogeneous, gamma-modulated Poisson process (G).

which their oscillatory inhibitory inputs were coherent and how they
varied across cycles or trials (Fig. 7C), and thus we also explored
these effects computationally.

Rhythmic inhibition determines spike patterning and synchrony

Simulations were performed with integrate-and-fire and conduc-
tance-based model neurons (see Materials and methods). In these

simulations, in addition to coherent rhythmic inhibition oscillating in
the gamma frequency range, the excitatory neurons were subject to
excitatory input with some rate fluctuations (Materials and methods).
We assumed that all neurons fired at the same rate when optimally
stimulated and that they exhibited a tuned response, with average
firing rates varying depending on the optimality of a hypothetical
presented stimulus; we varied the strengths of inhibition and excita-
tion to provide a representation of stimulus optimality.
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For each neuron in this particular set of simulations, we generated
a cycle-averaged histogram of normalised spike counts at different
phases of the rhythmic inhibition cycle for different inhibition
strengths (defined in terms of both the number and efficacy of syn-
aptic inputs producing it) (Fig. 8A). The normalised spike counts
were calculated as follows. After each simulation was completed,
we rescaled each cycle length to match the trial-averaged cycle
length T = o (1000 ms/s) and converted the time within a cycle to
the relative phase (between 0 at the beginning of the cycle and T at
the end of the normalised cycle). Histograms of spike counts, as a
function of relative phase, were then computed by averaging over
trials and dividing by the average number of cycles; for a histogram
with k=500 bins (each corresponding to a phase range of
T/k = 0.0027), the value corresponding to the first bin was the aver-
age number of spikes during each cycle that occurred between phase
0 and phase 7/k during each cycle, the second bin displayed the
average number of spikes between phase 77k and phase 277k, and so
on. As a baseline case, we also performed a simulation in the
absence of inhibition in which excitatory inputs were generated by a
homogeneous Poisson process. The elapsed time during the baseline
simulation was partitioned into cycles of the same time lengths used
for the simulations with inhibition, cycles were rescaled to units of
phase, and a baseline spike count for each phase bin was computed
by averaging over all cycles. Due to the Poisson inputs, the
probability of firing at each phase in the baseline simulations was
equal, and the resulting uniform baseline spike count was used to
normalise the spike counts obtained with inhibition.

In Fig. 8A, deviations from the baseline count indicate regions of
increased or decreased spike counts, on average, during each cycle
of the gamma oscillation. As the level of rhythmic inhibition
increases, it shapes more drastically the timing of the firing output
of the excitatory neuron despite concomitant adjustments of excita-
tion levels to maintain a constant firing rate (Fig. 7). Consistent with
this result, ACHs for single model neurons and for simulated MUA
accumulated over many trials (each tens of seconds in length) exhi-
bit a graded increase in the strength of oscillations in the (constant
rate) firing output as the strength of rhythmic inhibition increases, as
shown in Fig. 8B. The six CCHs computed for all possible pairs
among the four units also show an inhibition-dependent increase in
oscillation strength (Fig. 8B). Importantly, as indicated by the grow-
ing height of the central peak in the normalised CCHs, the number
of coincident spikes measured above baseline increases from neu-
rons 1-2, with the weakest levels of inhibition, to neurons 3—4, with
the strongest levels of inhibition. This trend is quantified by the
coincidence measure plotted in Fig. 8D, which is computed pairwise
between the four neurons.

Given that the average firing rate remains constant for the differ-
ent levels of inhibitory input, the high concentration of spikes in
narrow windows that occurs for higher levels of inhibition (as in the
histograms in Fig. 8A) reflects the expected increase in the probabil-
ity of firing towards the end of each gamma cycle. The overlap of
these windows of elevated firing can then be related to the probabil-
ity of coincident spikes between neurons (see Appendix), providing
an explanation of how strong rhythmic inhibition in the model can
serve both to produce stronger oscillations in the firing output and
increase the probability of coincident spikes. Indeed, as can be seen
in Fig. 8C, the correlation function computed from the normalised
cycle-averaged spike histograms (in Fig. 8A) for any two neurons
closely matches the center peak of the normalised CCH (which mea-
sures actual coincidences) between those neurons. As the spike his-
tograms and CCHs are calculated relative to baseline, modulations
to the synchrony strength arising from differences in average firing
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rates are effectively scaled out, thereby (i) directly identifying the
relative increase in coincident spikes (above baseline) that result
from the shaping of the firing windows, e.g. by rhythmic inhibition,
and (ii) allowing for a more direct comparison between pairings of
neurons with different firing rates.

The shaping of the firing output by rhythmic inhibition is also
evident in rastergrams of simulated MUA, each composed of 15
independent neurons subject to inhibitory input with the same rhyth-
mic time course at the same strength (Fig. 8E). This shaping of fir-
ing times provides a primary mechanism that underlies both the
oscillations and synchrony in the ACHs and CCHs that we observe.
Note that the ACHs and CCHs computed from our simulations exhi-
bit attenuation away from their central peaks, analogous to those
seen in ACHs and CCHs calculated from experimental data, due to
fluctuations in the cycle lengths of the rhythmic inhibition (see Sup-
porting Information Results, Fig. S5 and Materials and methods).

These effects of inhibition on spike timing are further enhanced
by the inclusion of a gamma-modulated stochastic component of the
excitatory synaptic input (e.g. representing output of excitatory neu-
rons in the cortical layer that are subject to gamma inhibition). This
enhancement is illustrated by comparing the CCHs between a pair
of neurons in two cases, shown in Fig. 8F and G. The inhibitory
input strength and firing rates are the same in both cases, but in one
the excitatory input is generated by a homogeneous Poisson process
only (Fig. 8F), and in the other it consists of a mixture of a homo-
geneous Poisson stream and a gamma-modulated excitatory compo-
nent (Fig. 8G). The gamma-modulated component yields stronger
oscillations in the CCH with a larger central peak, as this compo-
nent also plays a role in shaping the firing window; however, at
stronger levels of inhibition (and correspondingly higher levels of
excitation), the effect that increasing the gamma-modulated compo-
nent has on shaping the firing window becomes less pronounced
unless the rhythmic excitatory input is further constrained to increas-
ingly narrow windows.

Hubs coordinated by strong, coherent inhibition synchronise
promiscuously

Based on the output patterning described above, we hypothesised
that the strength of a rhythmic inhibitory signal to a neuron could
control the promiscuity with which it synchronises with other neu-
rons that also receive in-phase rhythmic inhibition but do not neces-
sarily share its orientation preference. To investigate this idea, we
considered model neurons with simulated orientation tuning. This
tuned response was achieved by jointly varying the strengths of
rhythmic inhibitory, rhythmic excitatory, and homogeneous Poisson
excitatory inputs to these neurons to represent varying degrees of
stimulus optimality (with 10 spikes/s activity at fully optimal stimu-
lation). Certain neurons were selected to receive inhibition at twice
the strength of the inhibition to the other neurons sharing their stim-
ulus preferences, with excitation scaled accordingly to maintain
equal firing rates. Simulations showed that these strongly inhibited
neurons consistently exhibited the highest degree of synchronisation
and the highest rate of spike coincidences above baseline with other
neurons. Consequently, we labeled these as SHs and denoted the
other weakly synchronising neurons as nSHs.

Next, we considered a set of four model neurons organised in
two pairs. Each pair consisted of an SH and an nSH. Neurons
within a pair were assumed to have the same stimulus preference. In
one case, both pairs of neurons were stimulated optimally and in
another case one pair of neurons was stimulated optimally and the
other suboptimally. The stronger rhythmic inhibition to the SHs was
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F1G. 9. Graded synchronisation between SHs and nSHs. (A) Oscillatory patterning is evident in CCHs and ACHs computed for four neurons grouped into two
pairs, each composed of an SH and an nSH that are optimally stimulated, all with an average firing rate of 10 spikes/s. The vertical axes of the ACH/CCHs rep-
resent the total number of coincidences normalised by the baseline number of coincidences for different time lags, and the time lag along the horizontal axis is
measured in 1-ms bins. The inset shows a bar diagram of the coincidence measure computed from each of the CCHs, where the pair of numbers in each bar
corresponds to the numbers used to label the neurons in the diagonal of the main figure. (B) When one pair of neurons is suboptimally stimulated, achieved by
weakening inputs to elicit an average firing rate of 3—4 spikes/s, the oscillations in the neurons’ ACHs are suppressed. Nonetheless, oscillations remain in the
CCHs, particularly those involving either or both SHs. The coincidence measure becomes graded, with substantially more coincidences above baseline in pairs
involving at least one SH than in the nSH-nSH pair (inset).
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reflected in the enhanced strength of oscillations in their ACHs rela- nSHs. All results were consistent with the SH and nSH labels; all

tive to those of the nSHs (Fig. 9). Because of the strong inhibition
to SHs, some ACH patterning persisted even with the weakening of
inputs associated with a non-optimal stimulus (Fig. 9B). In both the
optimal-optimal (Fig. 9A) and the optimal-suboptimal (Fig. 9B)
cases, the largest value of the coincidence measure occurred
between the two SHs (neurons 2 and 3), indicating that neurons sub-
ject to the strongest levels of rhythmic inhibition exhibited the larg-
est increase in coincident spikes above baseline. The weakest value
of the coincidence measure was always found between the two

CCHs and coincidence measures involving at least one SH showed
a significantly greater number of coincidences relative to baseline
than the case of the nSH-nSH. With only optimal stimulation, the
four SH-nSH pairings had similar CCHs and coincidence measures
(Fig. 9A), whereas the values of the coincidence measure for the
SH-nSH pairings became more graded when the stimulus to one
pair was made non-optimal (Fig. 9B). A key point in explaining
these results is that, although the inhibitory and excitatory oscilla-
tory inputs to each neuron differ in strength from those to all three

normalised
count
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F1G. 10. Loss of gamma coherence leads to a rapid decrease in synchrony. Each panel shows the CCHs between four SHs grouped into two pairs, each consid-
ered as corresponding to its own cortical column. A pair of neurons within the same column receives perfectly coherent rhythmic inhibitory input; however, the
phases of the rhythmic inputs in one column are offset relative to the inputs of the other column, in a way that varies stochastically from cycle to cycle. The
size of the maximal offsets introduced on each cycle increases across panels from (A) 0.5 ms to (B) 1 ms to (C) 2 ms. An increase in phase offsets results in a
substantial erosion of the central peak and strength of oscillations in the CCHs of pairs of neurons from two different columns.
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other neurons, these inputs are perfectly coherent across all four
neurons. Thus, although the rhythmic inputs are unable to induce
strong oscillations in the ACHs of nSHs, the oscillations in SH
firing translate into oscillations in the CCHs computed between the
SHs and nSHs.

Although gamma oscillations may be in phase locally, our experi-
mental results suggest that gamma oscillations between pairs of
simultaneously recorded neurons that are separated by longer dis-
tances may become significantly less coherent (Fig. 6). We used
independent jitter values to produce less coherent oscillations
between two groups (columns) of model neurons (see Materials and
methods), with each group receiving perfectly in-phase rhythmic
inputs. With even fairly small increases in the size of the jitter, the
central peak and the strength of oscillations in the CCHs between
groups decayed significantly, as illustrated in Fig. 10. Importantly,
this effect demonstrates that synchrony can be very sensitive to the
degree to which the gamma oscillations are coherent across two col-
umns. Moreover, it makes the prediction that, in experimental
recordings, the windows of enhanced firing in two different probes
should occur at similar phases when they exhibit strong synchrony
and should become increasingly out of phase when synchrony is
observed to weaken.

Oscillation strength and tuning curve sharpness

Our experimental results showed a covariation of oscillation strength
and orientation selectivity (Fig. 3). In a final set of simulations, we
addressed the relationship between oscillations and orientation tun-
ing indirectly by differentially decreasing synaptic input parameters

A 008 . B -
~
0.06 Seo 94
~] 1
g; 004 A
p \ 0
A 80 0 80
0.02 \ \
0 - \\ 2
o 1 2 3 & \
= \
0.11 .
g6 \ 0
(e \ ~80 0 80
0.07 KON
Thom 9 'P\\
0.04 e EERRY
[*)] 1 1 A Y
£ - .
0 = £, N
o 1 2 3 % 3438 \
T A
0.13 2 \
3 Q
1 Eo ~
o
009 S 80 0 80 AN
r lag (ms) ~
non . N
0.04 \ N
0 0+, . . . ; . J
o 1 2 3 0 1 2 3

stimulus condition number stimulus condition number

Fi1G. 11. Variation of inhibition and excitation modulates firing rate and
oscillatory patterning. (A) Top: Strength of inhibition (g;); middle: rate (r,om)
of homogeneous Poisson excitatory synaptic input; and bottom: rate (r,,) of
gamma-modulated excitatory synaptic input. Three different sets of simula-
tions were performed (solid gray, solid black, dashed black lines), each
across four conditions (0, 1, 2, 3) corresponding to the decreasing trend of
firing rates along an orientation tuning curve from the preferred orientation
(Condition 0) through three successive suboptimal stimulus conditions (Con-
ditions 1-3). As all three sets used the same level of r,om, only one line is
visible in the middle panel. The cases represented by the dashed and solid
black lines also used the same level of r,,,, shown by the solid black line in
the bottom panel. In the cases marked with solid lines, excitation and inhibi-
tion were varied with slopes given by the same fixed proportion of maximal
input magnitude. (B) Plot of the average firing rate computed for each set of
inputs (firing rate curve lines are matched to those for the inputs), across all
four conditions. Insets show ACHs for MUA for stimulus condition 1.
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(gi» Tnon)s from most to least optimal (in terms of ability to elicit
spikes), in four steps denoted by stimulus conditions O, 1, 2 and 3,
respectively (Fig. 11A). Three different regimes of parameter reduc-
tion were considered. In two of these, all inputs were weakened
proportionally to maintain the balance between excitation and inhibi-
tion (Marino et al., 2005; Isaacson & Scanziani, 2011), resulting in
similar firing rates across regimes despite different input strengths
(Fig. 11, solid lines). Both cases produced oscillations, but the case
with stronger inhibition across all conditions (black) yielded signifi-
cantly stronger oscillations. In the third regime, the inputs remained
strong, but excitation declined more rapidly than inhibition (dashed
black line) and the sharpest tuning and the strongest oscillations
resulted. Here, the dominant inhibition effectively restricted spikes
to windows of sufficient inhibitory decay for the suboptimal stimuli,
curtailing firing rates and promoting oscillations. Thus, within this
framework, relatively strong inhibition across all stimulation condi-
tions appears to be critical for the empirically observed association
between sharpness of orientation tuning and oscillation propensity.

Discussion

Our experimental recordings during gamma oscillations in cat area
17 reveal a large degree of variability in the strength of oscillations,
level of synchronisation, and sharpness of orientation selectivity
across units recorded in parallel, and, furthermore, reveal that these
three features are positively correlated. Units that exhibited particu-
larly high synchronisation propensity, even across non-preferred
stimulus orientations, we have dubbed SHs [in contrast to the ‘hub
cells’ defined by Bonifazi et al. (2009), which are defined specifi-
cally in terms of their high connectivity and ability to strongly influ-
ence network dynamics, the term ‘synchronisation hub’ only
requires the proclivity to synchronise with many neurons, irre-
spective of their afferent connections and influence]. Such units also
typically exhibited strong oscillations and sharp tuning curves.
Using a computational model, we demonstrate that rhythmic synap-
tic inhibition that is relatively coherent over the spatial extent of a
probe (< 0.6-0.84 mm) might lie at the heart of these relationships.
In particular, three facets of the synaptic inhibition to a neuron dur-
ing gamma oscillations, namely its strength, its rhythmicity, and the
extent to which it is in phase across different neurons, play critical
roles in determining the neuron’s synchronisation promiscuity, oscil-
lation strength, and orientation selectivity. Our results predict that
SHs receive relatively strong rhythmic inhibition, and, consequently,
exhibit strong oscillations across a broad range of stimulus orien-
tations. Such rhythmic inhibition provides a temporal framework
that promotes synchrony by establishing and coordinating coherent,
narrow windows of enhanced firing in its postsynaptic targets.
Excitatory neurons are known to receive rhythmic inhibitory
inputs during gamma oscillations (Ferster, 1986; Hasenstaub et al.,
2005; Buzsaki & Wang, 2012). Neurons in area 17 exhibit diversity
in orientation selectivity, with stronger inhibition being consistent
with sharper orientation tuning (Sillito, 1975; Ringach et al., 1997;
Sompolinsky & Shapley, 1997; Crook et al., 1998; Shapley et al.,
2007; Liu et al., 2011; Li et al., 2012) (however, see Finn et al.,
2007; Li et al., 2008; Liu et al., 2011). Studies have also revealed
heterogeneity in the tuning of inhibition, with inhibition more
broadly tuned than excitation in some cases (Sato et al., 1996; Roe-
rig & Chen, 2002; Monier et al., 2003; Nowak et al., 2008). In a
study providing additional support for our conclusions, Li et al.
(2008) investigated the effects of both GABA and bicuculline on
neurons in cat area 17 that were weakly, moderately, and strongly
orientation selective. The GABA, antagonist bicuculline diminished
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orientation selectivity to the largest extent in strongly selective neu-
rons and had minimal effects on the weakly orientation-selective
neurons. However, applying GABA had the strongest effect of
enhancing orientation selectivity in weakly selective neurons and
minimal effects on strongly selective neurons. These results are con-
sistent with our notion that stronger inhibition leads to higher orien-
tation selectivity. Another recent study demonstrated more directly
the relation between inhibition and tuning properties in the V1. Op-
togenetic activation of GABAergic interneurons in the mouse V1
enhances orientation selectivity as well as perceptual discrimination
(Lee et al., 2012; see also Wilson er al., 2012). Additionally, we
observed a loss of coherent oscillatory patterning and a drop in syn-
chrony in our recordings of pairs of units separated by distances
> 1 mm. This observation is consistent with the findings of Albus
et al. (1991), who reported in cat area 17 that 70% of the axons of
GABAergic neurons in layers II/III project over a region < 1 mm.
This indicates that units separated by > 1 mm are less likely to
receive coherent inhibition than more proximal units.

Mechanisms other than rhythmic inhibition could produce oscilla-
tions and synchronisation in neuronal firing. However, it is unclear
whether they can explain how these properties correlate across neu-
rons. For example, broadly tuned sensory-induced excitatory inputs
to a subset of area 17 neurons could promote synchronisation with
cells of different orientation preferences. This would imply that SHs
are more broadly tuned; however, we find that SHs are more sharply
tuned (see also Yu et al, 2008). The sharp tuning of SHs also
suggests that they might lie in regions of homogeneous orientation
preference (Nauhaus et al., 2008), making it less likely that they
synchronise promiscuously as a consequence of direct excitatory
input from cells with other preferences (Schummers et al., 2002;
Marino et al., 2005). If SHs did receive strong levels of rhythmic
excitation, then the weaker rhythmic excitation to nSHs would need
to be compensated by stronger non-rhythmic excitation to maintain
equal firing rates at preferred orientations. Although it is theoreti-
cally possible to adjust such inputs to achieve sharper tuning and
stronger oscillations, to our knowledge such a negatively correlated
balance of excitatory inputs has not been observed experimentally.
Furthermore, to produce strong synchronisation, rhythmic excitatory
signals would need to be in phase across different neurons and suffi-
ciently narrowly distributed in their arrival times. In contrast, excit-
atory synapses are distributed across dendritic trees and dendrites
filter excitatory input. Hence, the resultant blurring and delaying of
rhythmic excitatory signals (Magee, 2000; London ef al., 2010;
Branco & Hausser, 2011) limits the plausibility of these excitation-
based mechanisms to produce robust in-phase oscillations in the
network.

A compelling feature of our model is that it is general in two
important ways. First, we did not make any a-priori assumptions
about the particular source and mechanism for the prescribed synap-
tic currents. Second, although our recordings were conducted in the
visual cortex, our modeling results apply more generally to brain
regions with analogous anatomy. The simplicity of our model, based
on prescribed inputs to a small set of unconnected neurons, allows
efficient exploration of the effects of rhythmic inhibition (and excita-
tion). In a future study, it would be interesting to explore similar
ideas in a larger, interconnected model network of excitatory and
inhibitory neurons, featuring heterogeneous coupling strengths that
generate gamma oscillations and orientation tuning autonomously.
In such a network, when tuned to produce gamma oscillations, we
predict that neurons receiving relatively strong inhibition over a
wide range of orientations will (i) synchronise promiscuously, (ii)
exhibit narrow orientation tuning curves, and (iii) feature a high

degree of oscillatory patterning in their firing output, thus emerging
as SHs. Inclusion of various intrinsic ionic currents could also add
further realism to a future model. For example, our preliminary
explorations of conductance-based models with calcium currents that
induce bursting (data not shown) produced analogous results to
those herein but additionally produced ACHs that resemble those
from SUA in our experimental recordings that did not exhibit a pro-
nounced gap in coincidences near zero lag. However, a shortcoming
of such studies is that generating smooth ACH/CCHs from such
simulations is numerically intensive, which severely limits the
parameters and types of conductance-based models that can be
explored.

At present we are unsure what the functional role of SHs may
be. Nevertheless, there are several possibilities. Attention and
expectation can modulate the strength of gamma oscillations (Fries
et al., 2007; Chalk et al., 2010; Lima ef al., 2011). Given that
SHs exhibit particularly strong gamma oscillations, and given that
similar gamma oscillations appear to emerge from similar mecha-
nisms in awake and anaesthetised states (Xing et al., 2012), varia-
tions in inhibitory signaling may therefore play a role in
attentional mechanisms. Similarly, SHs may also play a role in the
strongly coherent gamma oscillations that are proposed to contrib-
ute to communication between neuronal populations (Schoffelen
et al., 2005; Fries et al., 2007; Tiesinga & Sejnowski, 2010).
Finally, gamma oscillations and synchrony shaped by SHs may
drive coding based on relative spike timing (Nikoli¢, 2007,
Havenith et al., 2011) .

In conclusion, heterogeneity in the strength of coherent rhythmic
inhibition offers a parsimonious way to explain how oscillation
strength, synchronisation promiscuity, and orientation selectivity
could covary in a network of excitatory neurons during gamma
oscillations as we have shown occurs in cat area 17. In particular,
neurons receiving the strongest inhibitory inputs are capable of syn-
chronising promiscuously across orientations and could serve as
SHs in the network. Future experiments should characterise the
properties of inhibitory inputs to excitatory neurons during gamma
oscillations. These efforts could be quite informative for elucidating
the importance of this putative heterogeneity for stimulus encoding
and processing.

Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:

Figure S1. Analogous results to those in Figure 3 of the main paper,
showing the significant correlation between synchrony strength, ori-
entation bias, and oscillation strength, with oscillation strength and
synchrony strength computed only at the preferred orientation (opti-
mally stimulated).

Figure S2. Analogue of Figure S1, showing the significant correla-
tion between synchrony strength and orientation bias/oscillation
strength, with synchrony strength calculated using scaled correlation
at the preferred orientation.

Figure S3. Orientation bias (A,D), oscillation strength (B,E), and
synchrony strength (C,F) reveal no trend with respect to the peak
firing rate response.

Figure S4. Analogous results to those in Figure 3 of the main paper
and Figure S1 for the case of the coincidence measure (instead of
the synchrony strength) computed only at the preferred orientation
(optimally stimulated).

Figure S5. Variability in the gamma cycle length attenuates the
satellite peaks in the CCH/ACHs.
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where N; is the trial-averaged spike count for neuron j. The value
Si(n) can be interpreted as the trial-averaged fraction of cycles in
which a spike occurred in phase bin n. As the histogram S;(n) for
any neuron j is defined on the normalised cycle [0,7], it can be
extended periodically, and the crosscorrelation S;*S; between the
histograms for neuron i and neuron j can be calculated as

Nbin

(SxS))(n) = Si(m)S;(n+m)

m=1

where —MNpi, < n <0 corresponds to [—7,0]. The quantities S;(n)
and S;(n), respectively, represent the trial-averaged fractions of
cycles in which neuron i and neuron j individually fire a spike in
phase bin n, which effectively represent the cycle-averaged probabil-
ities that neurons i and j individually fire a spike in phase bin n (as
the probability itself can fluctuate cycle by cycle). As the spiking in
neurons i and j is approximately independent (over the time course
of a bin that is sufficiently short relative to the length of the gamma
cycle, the features of the synaptic inputs that induce correlations
through changes in the neuronal spiking vary sufficiently slowly that
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they can be taken to be approximately constant), then (S;%S;) (0)
represents the cycle-averaged probability that neurons i and j fire a
coincident spike in the same phase bin and, more generally, (S;xS))
(n) represents the cycle-averaged probability that the two neurons
fire a coincident spike in phase bins separated by a lag of (n/Ny;,)T.
(Note that as the neurons fire sparsely and skip cycles, the cycle-
averaged probability of firing on any cycle is less than 1.)

For any two spike histograms that are uniform at the baseline
level, i.e. Si(n) = $™(n) = B; and Sj(n) = $"*(n) = B; for all n,
the cycle-averaged probability that neurons i and j fire a spike in
phase bins separated by a lag of (1n/Ny,)T is given by the uniform
histogram

Noin
) = BiB; = NyinB:B;
m=1

(S}Jase *Sjt_)ase ) (I’l

(Note that, in the uniform baseline case, this indicates that the aver-
age probability of coincident spikes occurring between neurons i
and j increases if the average firing rates of the neurons increase.)
From this we see that the quantity (1/Ny;,) (s;xs;) (n), which can be
expressed as

i(n + m) ZN"‘“ Si(m)S;(n + m)

m=1

NyinBiB;

1 Npin
si%kes;)(
me ( J me Z::

represents the ratio of the cycle-averaged probability that neurons i
and j fire spikes separated by a lag of (1n/Ny,)T during each cycle
relative to the cycle-averaged probability in the uniform baseline
case. Importantly, as the synchrony strength between two neurons is
not only affected by the shaping of the windows of enhanced firing

Synchronisation hubs 2883

but also the average firing rates of the neurons, the scaling by base-
line identifies the degree to which the shaping of the windows of
enhanced firing increases the probability of coincident spikes rela-
tive to baseline, allowing for a more direct comparison of this effect
between pairings of neurons exhibiting different firing rates. This
not only applies to (1/Nyin) (si%s;) but also to the normalised CCHs
in Fig. 8B, which are scaled by the baseline number of coincidences
for each pairing.

The matching of the plots in Fig. 8C, of (1/Ny;,) (sixs;) [which
measures the probability of coincident spikes at lags (1/Nyi,)T] and
the CCH [which measures the actual number of coincident spikes at
lags (n/Npin)T], consistent with the Law of Large Numbers, shows
that the increase in probability of coincident spiking relative to base-
line due to the shaping of the windows of enhanced firing results in
a commensurate increase in the number of coincident spikes relative
to baseline found in realisations of the model.

Finally, we mention that, in the coincidence measure, we
considered coincident spikes to be those with spike time differ-
ences of less than 3 ms, which, in the context of (1/Nyi,) (si%s)),
would span (2m + 1) phase lag bins about n =0, where
1 <m < Ny, depends on the value of the average cycle length
T. Consequently, the coincidence measure would correspond to
the increase above 1 in the ratio of the cycle-averaged probability
of coincident spikes to the cycle-averaged probability in the base-
line case, i.e.
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