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In this Letter we show that an inhomogeneous input can induce wave propagation failure in an
excitatory neural network due to the pinning of a stationary front or pulse solution. A subsequent
reduction in the strength of the input can lead to a Hopf instability of the stationary solution resulting in
breatherlike oscillatory waves.
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A number of theoretical studies have established the
occurrence of traveling fronts [1,2] and traveling pulses
[3–5] in one-dimensional excitatory neural networks
modeled in terms of evolution equations of the form
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where u�x; t� is a neural field that represents the local
activity of a population of excitatory neurons at position
x 2 R, I�x� is an external input, � is a synaptic time
constant (assuming first-order or exponential synapses),
f�u� denotes an output firing rate function, andw�x j x0� is
the strength of connections from neurons at x0 to neurons
at x. The neural field v�x; t� represents some form of
negative feedback recovery mechanism such as spike
frequency adaptation or synaptic depression, with 
; "
determining the relative strength and rate of feedback.
(One can also incorporate higher-order synaptic and den-
dritic processes by replacing �@u=@t� u with a more
general linear differential operator L̂Lu.) It has been estab-
lished [5] that there is a direct link between the above
model and experimental studies of wave propagation in
cortical slices where synaptic inhibition is pharmacologi-
cally blocked [6–8]. Since there is strong vertical cou-
pling between cortical layers, it is possible to treat a thin
cortical slice as an effective one-dimensional medium.
Analysis of the model provides valuable information
regarding how the speed of a traveling wave, which is
relatively straightforward to measure experimentally,
depends on various features of the underlying cortical
circuitry.

One of the basic assumptions in the analysis of travel-
ing wave solutions of Eq. (1) is that the system is spatially
homogeneous, that is, the external input I�x� is indepen-
dent of x and the synaptic weights depend only on the
distance between presynaptic and postsynaptic cells,
w�x j x0� � w�x� x0� with w a monotonically decreasing
function of cortical separation. It can then be established

that waves are in the form of traveling fronts in the
absence of any feedback, whereas traveling pulses tend
to occur when there is significant feedback [5]. However,
the cortex is more realistically modeled as an inhomoge-
neous medium. For example, inhomogeneities in the syn-
aptic weight distribution w are likely to arise due to the
patchy nature of long-range horizontal connections in
superficial layers of cortex [9]. Another important source
of inhomogeneity arises from external inputs induced by
sensory stimuli, which may be modeled in terms of a
nonuniform input I�x�. In this Letter we show that for
appropriate choices of input inhomogeneity, wave propa-
gation failure can occur due to the pinning of a stationary
front or pulse solution. More significantly, we find
that these stationary solutions can undergo a Hopf insta-
bility at a critical input amplitude, below which an oscil-
latory back-and-forth pattern of wave propagation or
‘‘breather’’ is observed. Our analysis predicts that the
Hopf frequency depends on the relative strength and
rate of feedback, but is independent of the details of the
weight distribution. We also show numerically how a
secondary instability leads to the generation of traveling
waves. Analogous breatherlike solutions have been found
in inhomogeneous reaction-diffusion systems [10,11] and
in numerical simulations of a realistic model of fertiliza-
tion calcium waves [12].

First, let us consider traveling front solutions of Eq. (1)
in the case of zero input I�x� � 0 and homogeneous
weights w�x j x0� � w�x� x0�. For mathematical conve-
nience, we take w�x� � �2d��1e�jxj=d with

R
1
�1w�y�dy �

1. The time and length scales are fixed by setting
� � d � 1; typical values for these parameters are � �
10 msec and d � 1 mm. As a further simplification, let
f�u� � 	�u� �� where 	 is the Heaviside step function
and � is a threshold. We then seek a traveling front
solution of the form u�x; t� � U���, � � x� ct, c > 0,
such thatU�0� � �,U���< � for � > 0 andU��� > � for
� < 0. The center of the wave is arbitrary due to the
translation symmetry of the homogeneous system.
Eliminating the variable V��� � v�x� ct� by differenti-
ating Eq. (1) twice with respect to �, leads to the second-
order differential equation
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where 0 denotes differentiation with respect to � and
W��� �

R
1
� w�y�dy. The boundary conditions are U�0� �

� andU��1� � U�. HereU� are the homogeneous fixed
point solutions U� � 1=1� 
;U� � 0. It follows that a
necessary condition for the existence of a front solution is
� < U�. The speed of a traveling front solution (if it
exists) can then be obtained by solving the boundary
value problem in the domains �  0 and � � 0 and
matching the solutions at � � 0. This leads to the bifur-
cation scenarios shown in Fig. 1. Such bifurcations also
occur when the Heaviside output function is replaced by a
smooth sigmoid function, which can then be analyzed
using perturbation methods, and for more general mono-
tonically decreasing weight distributions w [13]. Note
that the bifurcation of the stationary front shown in
Fig. 1(a) is analogous to the front bifurcation studied in
reaction-diffusion equations, also known as the nonequi-
librium Ising-Bloch transition [10,14–16]. Front bifurca-
tions are of general interest, since they form organizing
centers for a variety of nontrivial dynamics including the
formation of breathers in the presence of weak input
inhomogeneities (see below).

In the case of an inhomogeneous input, wave propaga-
tion failure can occur due to the formation of a stable
stationary front solution. Stationary front solutions of
Eq. (1) for homogeneous weights and f�u� � 	�u� ��
satisfy the equation

�1� 
�U�x� �
Z x0

�1
w�x� x0�dx0 � I�x�: (3)

Suppose that I�x� is a monotonically decreasing function
of x. Since the system is no longer translation invariant,
the position of the front is pinned to a particular location
x0 where U�x0� � �. Monotonicity of I�x� ensures that
U�x� > � for x < x0 and U�x�< � for x > x0. The center
x0 satisfies �1� 
�� � 1=2� I�x0�, which implies that in
contrast to the homogeneous case, there exists a station-

ary front over a range of threshold values (for fixed 
);
changing the threshold � simply shifts the position of the
center x0. If the stationary front is stable then it will
prevent wave propagation. Stability is determined by
writing u�x; t� � U�x� � p�x; t� and v�x; t� � V�x� �
q�x; t� and expanding Eq. (1) to first order in �p; q�:
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The spectrum of the associated linear operator is found
by taking p�x; t� � e�tp�x� and q�x; t� � e�tq�x�. Using
the identity H0�U�x� � �� � ��x� x0�=jU

0�x0�j, we ob-
tain the equation

��� 1�p�x� �
w�x� x0�

jU0�x0�j
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"
p�x�

�� "
: (5)

Equation (5) has two classes of solution. The first consists
of any function p�x� such that p�x0� � 0, for which the
corresponding eigenvalues always have a negative real
part. The second consists of solutions of the form p�x� �
Aw�x� x0�, A � 0, for which the corresponding eigen-
values are
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with D � jI0�x0�j. We have used the fact that I0�x0�  0

and w�0� � 1=2.
Equation (6) implies that the stationary front (if it

exists) is locally stable provided that 
 > 0 or, equiva-
lently, the gradient of the inhomogeneous input at x0
satisfies

D > Dc �
1

2


� "

1� "
: (8)

Since D � 0, it follows that the front is stable when
" > 
, that is, when the feedback is sufficiently weak
or fast. On the other hand, if " < 
 then there is a
Hopf bifurcation at the critical gradient D � Dc.
Consider as an example the step inhomogeneity I�x� �
��s=2� tanh�#x�, where s is the size of the step and #
determines its steepness. A stationary front will exist
provided that s > �ss � j1� 2��1� 
�j. The gradient D
depends on x0, which is itself dependent on 
 and �. On
eliminating x0, we can write D � #�s2 � �ss2�=2s.
Substituting into Eq. (8) yields an expression for the
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FIG. 1. Plot of wave front speed c as a function of " for fixed

 and � � 0:25. Stable (unstable) branches are shown as solid
(dashed) curves. (a) If 2��1� 
� � 1 then there exists a sta-
tionary front for all "; at a critical value of " the stationary
front loses stability and bifurcates into a left and a right
moving wave. (b) If 2��1� 
� > 1 then there is a single
left-moving wave for all " and a pair of right-moving waves
that annihilate in a saddle-node bifurcation. Left and right
moving waves are reversed when 2��1� 
�< 1 (not shown).
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critical value of s that determines the Hopf bifurcation
points:

sc �
1
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The critical height sc is plotted as a function of 
 for # �
0:5 and various values of " in Fig. 2. Note that close to the
front bifurcation " � 
 a Hopf bifurcation occurs in the
presence of a weak inhomogeneity. Numerically one finds
that reducing the input amplitude below the critical point
induces a transition to a breatherlike oscillatory front
solution, whose frequency of oscillation is approximately

equal to the critical Hopf frequency !H �
�������������������

"�
� "�
p

.
This suggests that the bifurcation is supercritical. Note
that the frequency of oscillations depends only on the size
and rate of the negative feedback, but is independent of
the details of the synaptic weight distribution. As the
input amplitude is further reduced, the breather itself
becomes unstable and there is a secondary bifurcation
to a traveling front. This is illustrated in Fig. 3, which
shows a space-time plot of the developing breather as the
input amplitude is slowly reduced.

The above analysis can be extended to the case of
stationary pulse solutions in the presence of a unimodal
input I�x� which, for concreteness, is taken to be a
Gaussian of width % centered at the origin I�x� �
Ie�x

2=2%2

. From symmetry arguments there exists a sta-
tionary pulse solution U�x� of Eq. (1) centered at x � 0

with U��a=2� � � and U��1� � 0:
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Z a=2
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The threshold � and width a are related according to
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Plotting the functionG�a� for a range of input amplitudes
I , it can be shown that for ��1� 
�< 0:5 there exists a
single pulse solution over the finite range of inputs 0 
I  ��1� 
�, and no pulse solutions when I > ��1�

�. (It is also possible to find three solution branches over
a narrow range of thresholds � [13].) On the other hand,
when ��1� 
� > 0:5 there exist two solution branches as
illustrated in Fig. 4, one corresponding to a narrow pulse
and the other to a broad pulse. These two branches co-
alesce at the critical point I � ISN where G�a� � ��1�

� and G0�a� � 0.

Carrying out a linear stability analysis along similar
lines to the case of a front leads to the following stability
results [13]: (i) The single pulse solution for ��1� 
�<
0:5 is unstable. (ii) The lower branch of solutions (narrow
pulse) for ��1� 
� > 0:5 is always unstable, whereas the
upper branch (broad pulse) is stable for sufficiently large
pulse width a. (iii) If " > 
 then the upper branch is
stable for all I > ISN and undergoes a saddle node bi-
furcation at I � ISN. (iv) If " < 
 then there exists a
critical input amplitude IHB with IHB > ISN such that
the upper branch is stable for I > IHB and undergoes a
Hopf bifurcation at I � IHB. Numerically we find that
the Hopf instability of the upper branch induces a breath-
erlike oscillatory pulse solution as illustrated in Fig. 5.
One finds that the associated Hopf frequency is again
given by !H �

�������������������

"�
� "�
p

, which is independent of the
pulse width a. For the parameter values used in Fig. 5, we
have ! � 0:25��1 � 25 Hz assuming that � � 10 msec.

FIG. 2. Stability phase diagram for a stationary front in the
case of a step input I�x� � �s tanh�#x�=2 where # is the
steepness of the step and s its height. Hopf bifurcation lines
(solid curves) in s� 
 parameter space are shown for various
values of ". In each case the stationary front is stable above the
line and unstable below it. The shaded area denotes the region
of parameter space where a stationary front solution does not
exist. The threshold � � 0:25 and # � 0:5.

FIG. 3 (color online). Breatherlike solution arising from a
Hopf instability of a stationary front due to a slow reduction
in the size s of a step input inhomogeneity and exponential
weights. Here " � 0:5, # � 0:5, 
 � 1, and � � 0:25. The
input amplitude s � 2 at t � 0 and s � 0 at t � 180. The
amplitude of the oscillation steadily grows until it destabilizes
at s � 0:05, leading to the generation of a traveling front.
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As the input amplitude I is slowly reduced below IHB,
the oscillations steadily grow until a new instability point
is reached. Interestingly, the breather persists over a range
of inputs beyond this secondary instability except that it
now periodically emits pairs of traveling pulses. Fur-
thermore, in this parameter regime we observe frequency
locking between the oscillations of the breather and the
rate at which pairs of pulses are emitted from the breather.
Note that although the homogeneous network (I � 0)
also supports the propagation of traveling pulses, it does
not support the existence of a breather that can act as a
source of these waves.

Two major predictions of our analysis are (i) an inho-
mogeneous input current can induce oscillatory behavior
in the form of breathing fronts and pulses, and (ii) the
oscillation frequency is approximately independent of the
details of the underlying synaptic weight distribution,
depending only on parameters that have a direct biologi-
cal interpretation in terms of single cell recovery mecha-
nisms. From an experimental perspective, our results
could be tested by introducing an inhomogeneous current
into a cortical slice and searching for these oscillations.
One potential difficulty of such an experiment is that
persistent currents tend to burn out neurons. In the case
of traveling fronts, this might be avoided by operating
the system close to the front bifurcation of the homoge-
neous network, see Fig. 1(a), such that only weak inho-
mogeneities would be needed to induce oscillations. An
alternative approach might be to use some form of phar-
macological manipulation of N-methyl-D-asparate recep-
tors, for example. Note that the usual method for inducing
traveling waves in cortical slices (and in corresponding
computational models) is to introduce short-lived current
injections; once the wave is formed it propagates in a
homogeneous medium (neglecting the modulatory effects
of long-range horizontal connections [9]). In future work
we will generalize our results to the case of a smooth

output nonlinearity f and determine to what extent the
oscillation frequency now depends on the form of the
weight distribution w. We will also consider extensions
to target waves in two-dimensional networks [13].
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FIG. 5 (color online). Breatherlike solution arising from a
Hopf instability of a stationary pulse due to a slow reduction
in the amplitude I of a Gaussian input and exponential weights.
Here I � 5:5 at t � 0 and I � 1:5 at t � 250. Other parameter
values are " � 0:03, 
 � 2:5, � � 0:3, and % � 1:0. The
amplitude of the oscillation steadily grows until it undergoes
a secondary instability at I � 2, beyond which the breather
persists and periodically generates pairs of traveling pulses
(only one of which is shown). The breather itself disappears
when I � 1.
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FIG. 4. Plot of pulse width a as a function of input amplitude
I obtained by numerically solving Eq. (11) for % � 1, � � 0:5,
and 
 � 1. The lower branch is unstable whereas the upper
branch is stable for large pulse width. (a) If " > 
 then the
upper branch undergoes a saddle-node bifurcation at I � ISN.
(b) If " < 
 then the upper branch undergoes a Hopf bifurca-
tion at I � IHB > ISN.
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