Introduction to Abstract Algebra Final Exam

Instructions

- 1. Do NOT write your answers on these sheets. Nothing written on the test papers will be graded.
- 2. Do NOT write your name on any of your answer sheets.
- 3. Please begin each section of questions on a new sheet of paper.
- 4. Do not write problems side by side.
- 5. Do not staple test papers.
- 6. Limited credit will be given for incomplete or incorrect justification.

Questions

1. Simple Reason (3 each)

Determine whether the following statements are true or false. If false give a counterexample. If true state the definition or theorem supporting it.

- (a) (Z, ×) is not a group.
 True. 0,2,-5 and every element other than 1,-1 do not have an inverse.
- (b) There is a subgroup of some S_n of order 7.
 True. The rotations of seven points (half of D₁₄).
- (c) \mathbb{Z}_{121} is not an integral domain. True. $121 = 11 \cdot 11$ so there are zero divisors.
- (d) S_n always has a cyclic subgroup of order n. True. The rotations of n points (half of D_{2n}).
- (e) The set of all elements of the Q_8 such that $x^4 = 1$ is a group. True. This is the whole group.
- (f) Q_8 has a non-trivial normal subgroup. True. The group $\{1, -1\}$.
- (g) \mathbb{Z}_n has a normal subgroup for all n. True. \mathbb{Z}_n is abelian.
- (h) There is a group with subgroups of order 1,2,3,5,7. True. Cyclic groups have subgroups of all orders dividing the order. Consider Z_n for $n = 2 \cdot 3 \cdot 5 \cdot 7$.
- (i) S_n always has subgroups of order 1, 2, ..., n.
 True. The subgroups generated by (12...n) generate a cyclic subgroup
- (j) There exists a field such that (F, +) and (F^*, \times) are both cyclic. True. \mathbb{Z}_{13} .

2. Calculations (3 each)

(a) Write the inverse element of (125)(34) in S_5 .

(152)(34)

- (b) Find the order of (125)(34) in S_5 . The order of (125) is 3 and the order of (34) is 2. The order of this element is 6.
- (c) Write all the left cosets of $\{e, (12)\}$ in S_3 .

$$eH = \{e, (12)\}.$$

(13)H = {(13), (132)}.
(23)H + {(23), (123)}.

(d) Multiply the Hamiltonian quaternions (1 + 4i - 4j + 5k)(-1 + 3i - 3j + 6k)

$$(1+4i-4j+5k)(-1+3i-3j+6k) = -1+3i-3j+6k + -4i-12-12k-24j + +4j+12k-12-24i + -5k+15j+15i-30 = -55-10i-8j+k.$$

(e) Using the quotient group in Figure 2, find (iH)(jH).

$$(iH)(jH) = (ij)H$$
 by def.
= kH .

- (f) Name a group isomorphic to the quotient group in Figure 2. Every element is its own inverse, so this is K_4 .
- (g) $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic. State the generator. Give the isomorphism between this group and \mathbb{Z}_6 . The generator is (1, 1). An isomorphism is $f(n(1, 1)) \mapsto n1$ (generator to generator).

- 3. Proof
 - (a) In a quotient ring the multiplicative inverses are unique. In a quotient ring R the elements R^* form a group under multiplication. Thus uniqueness of inverse is known.
 - (b) The intersection of two subgroups is a subgroup. Consider G₁ ∩ G₂. Note G₁ ∩ G₂ ⊆ G₁ by previous theorem. Closure: Let a, b ∈ G₁ ∩ G₂. Thus a, b ∈ G₁ and a, b ∈ G₂ by definition of intersection. By closure in groups ab ∈ G₁ and ab ∈ G₂. Thus ab ∈ G₁ ∩ G₂. Inverse: Let a ∈ G₁ ∩ G₂. Thus a ∈ G₁ and a ∈ G₂ by definition of intersection. By definition of groups a⁻¹ ∈ G₁ and a⁻¹ ∈ G₂. Thus a⁻¹ ∈ G₁ ∩ G₂. Therefore G₁ ∩ G₂ ≤ G₁.

(c) If $a^2 = e$ for all $a \in G$ then G is Abelian. Note, because $a^2 = e$ by definition of inverse $a = a^{-1}$. Consider

$$ab = (ab)^{-1}$$
 given
= $b^{-1}a^{-1}$ previous theorem
= ba given.

	1	-1	i	-i	j	-j	k	-k
1	1	-1	i	-i	j	-j	k	-k
$^{-1}$	-1	1	-i	i	-j	j	-k	k
i	i	-i	-1	1	k	-k	-j	j
-i	-i	i	1	-1	-k	k	j	-j
j	j	-j	-k	k	-1	1	i	-i
-j	-j	j	k	-k	1	$^{-1}$	-i	i
k	k	-k	j	-j	-i	i	-1	1
-k	-k	k	-j	j	i	-i	1	-1

Figure 1: Quaternions (Q_8)

	1	i	j	k
1	1	i	j	k
-1	-1	-i	-j	-k

Figure 2: Quotient Group of Quaternions