Introduction to Abstract Algebra Exam 3 Key

Instructions

- 1. Do NOT write your answers on these sheets. Nothing written on the test papers will be graded.
- 2. Do NOT write your name on any of your answer sheets.
- 3. Please begin each section of questions on a new sheet of paper.
- 4. Do not write problems side by side.
- 5. Do not staple test papers.
- 6. Limited credit will be given for incomplete or incorrect justification.

Questions

- 1. Homomorphisms
 - (a) (3) Calculate the Ker(f) for $f : \mathbb{Z}_{24} \to \mathbb{Z}_8$ defined by $f(n) = n \mod 8$.

$$f(n) = 0.$$

 $n \mod 8 = 0.$
 $8 \mid n.$
Ker $(f) = \{0, 8, 16\}.$

- (b) (3) How many elements are in $f^{-1}(1)$? Based on a theorem f^{-1} returns a coset of the kernel, so there are three elemets.
- (c) (3) Write all the ordered pairs for the inner automorphism $g: Q_8 \to Q_8$ defined by g(x) = -ixi.

(d) (3) Demonstrate that g(jk) = g(j)g(k) for g above.

- 2. Normal Groups
 - (a) (3) Find a normal subgroup of \mathbb{Z}_6 (neither trivial case is acceptable). \mathbb{Z}_6 is Abelian so all subgroups are normal. $H = \{0, 3\}$ is one.
 - (b) (3) How many non-trivial normal subgroups does Q₈ have?
 {1,-1} is the center, so it is normal.
 {1,-1,i,-i}, {1,-1,j,-j}, {1,-1,k,-k} have only two cosets, so they are normal. There are no other subgroups.
 - (c) (3) How many non-trivial normal subgroups does Z₁₁ have?
 Z₁1 has no non-trivial subgroups, because it is of prime order.
 - (d) (3) Is $\mathbb{Z}_8/\{0, 2, 4, 6\}$ Abelian? The subgroup is normal. \mathbb{Z}_8 is Abelian so its quotient groups are Abelian.

- 3. Truth
 - (a) Determine if the following are true or false and provide a very brief explanation for each of the following.
 (3 each)
 - A homomorphism can map an Abelian group to a non-Abelian group.
 Yes, because a homomorphism does not need to be onto. That is it can map an Abelian group onto an Abelian subgroup of a non-Abelian group.
 - ii. A group can be normal. Normal refers to subgroups. However, every group is a subgroup of itself and is normal.
 - iii. A group can have a homomorphism from itself to itself that is not an automorphism. Yes, because the homomorphism could be onto a subgroup (e.g., $f : \mathbb{Z}_8 \to \mathbb{Z}_4 \leq \mathbb{Z}_8$).
 - iv. Some group has no automorphism. This is false, because every group has the identity automorphism.
 - v. All groups of order 4 are isomorphic. False, K_4 is not cyclic but \mathbb{Z}_4 is.
 - vi. A group of order 7 can have 14 inner automorphisms. False, inner automorphisms are defined by an element and there are only 7.
 - (b) (5) Prove that if a homomorphism $\text{Ker}(f) = \{e\}$ then f is one-to-one. Proof: Suppose

f(a)	=	f(b).	
		$f(b)f(b)^{-1}.$	Groups have inveses.
$f(a)f(b)^{-1}$	=	e.	Def. inverse
$f(a)f(b^{-1})$	=	e.	Thm. homomorphisms
$f(ab^{-1})$	=	e.	Def. homomorphism
ab^{-1}	=	e.	$\operatorname{Ker}(f) = \{e\}.$
$ab^{-1}b$	=	eb.	
a	=	<i>b</i> .	Def. inverse

Thus the homomorphism is 1-1.

Quaternions (Q_8)

	1	-1	i	-i	j	-j	k	-k
1	1	-1	i	-i	j	-j	k	-k
-1	$^{-1}$	1	-i	i	-j	j	-k	k
i	i	-i	-1	1	k	-k	-j	j
							j	
j	j	-j	-k	k	-1	1	i	-i
-j	-j	j	k	-k	1	-1	-i	i
k	k	-k	j	-j	-i	i	-1	1
							1	