# Introduction to Abstract Algebra Exam 2 Key

#### Instructions

- 1. Do NOT write your answers on these sheets. Nothing written on the test papers will be graded.
- 2. Do NOT write your name on any of your answer sheets.
- 3. Please begin each section of questions on a new sheet of paper.
- 4. Do not write problems side by side.
- 5. Do not staple test papers.
- 6. Limited credit will be given for incomplete or incorrect justification.

#### Questions

- 1. Groups
  - (a) (4) Per a previous theorem the union of subgroups is rarely a subgroup. For the following subgroups illustrate why this is true.  $H_1 = \{0, 2, 4\}$ .  $H_2 = \{0, 3\}$ .  $G = (\mathbb{Z}_6, +)$ .

Note  $H_1 \cup H_2 = \{0, 2, 3, 4\}$ . Also  $2 + 3 = 5 \notin H_1 \cup H_2$ . Thus this is not a subgroup due to lack of closure.

(b) (5) Prove that  $H = \{5n \mod 200 : n \in \mathbb{Z}\}$  is a subgroup of  $\mathbb{Z}_{200}$ . The multiples of five is a subgroup of  $\mathbb{Z}_{200}$ .

Proof: Closure

Let  $a, b \in H$ . Thus a = 5n, and b = 5m for some  $m, n \in \mathbb{Z}$ . Thus

$$a+b = 5n+5m$$
$$= 5(n+m).$$

Note also that 40[5(n+m)-5k]=40[5(n+m-k)]=200(n+m-k). Thus a+b is equivalent to some multiple of 5 mod 200. H is closed.

Proof: Inverse

let  $a \in H$ . Thus a = 5n for some  $n \in \mathbb{Z}$ . Note

$$200 - 5n = 5(40 - n).$$

Note also that 40[5(40-n)-5k] = 40[5(40-n-k)] = 200(40-n-k). Also 5n + (200-5n) = 0. Thus  $a^{-1}$  is equivalent to some multiple of 5 mod 200. H has inverses.

Thus 
$$H \leq G$$
.

- (c) (3) Prove or disprove that  $D_8$  and  $Q_8$  are isomorphic.  $D_8$  has 6 elements that are their own inverses.  $Q_8$  does not. They are not isomorphic.
- (d) (3) Find a cyclic subgroup of  $D_8$  of cardinality greater than 2.  $H = \{e, (1234), (13)(24), (1432)\}.$

### 2. Cosets

(a) (3) Note  $St(3) \leq S_4$ . Write two, distinct cosets of St(3).

$$eSt(3) = St(3).$$

$$(13)St(3) = \{(13), (132), (134), (13)(24), (1324), (1342)\}.$$

$$(23)St(3) = \{(23), (123), (14)(23), (234), (1234), (1423)\}.$$

$$(34)St(3) = \{(34), (12)(34), (143), (243), (1243), (1432)\}.$$

(b) (3) How many cosets does St(3) have in  $S_4$ ?

$$\frac{|S_4|}{|St(3)|} = \frac{24}{6} = 4.$$

(c) (3) Select the subgroup of  $\mathbb{Z}_5$  that produces the maximum number of cosets (largest index) other than  $\{e\}$ .

 $|Z_5| = 5.5$  is prime so the only subgroups are  $\{e\}$  (excluded) and  $\mathbb{Z}_5$ .

### 3. Let it Proof (5 each)

(a) The set  $H=\{x\in G|x^n=e\}$  for fixed  $n\in\mathbb{Z}$  is a subgroup of an Abelian group G. Proof: Closure

Let  $a, b \in H$ . Note

$$(ab)^n = a^n b^n$$
 Abelian  
=  $ee$  given  
=  $e$  def. of identity

Thus the set is closed.

Proof: Inverses Let  $a \in H$ . Note

$$(a^{-1})^n = (a^n)^{-1}$$
 previous theorem  
=  $e^{-1}$  given  
=  $e$  def. of identity

Thus  $a^{-1} \in H$ .

This set is a subgroup.

(b) The center  $Z = \{x \in G | xg = gx \ \forall g \in G\}$  is a subgroup of G.

Proof: Closure

Let  $x, y \in \mathbb{Z}$ . Note

$$(xy)g = x(yg)$$
 associative  
 $= x(gy)$  given  
 $= (xg)y$  associative  
 $= (gx)y$  given  
 $= g(xy)$  associative

Thus Z is closed.

Proof: Inverses

Let  $x \in \mathbb{Z}$ . Note

$$gx^{-1}$$
 =  $(xg^{-1})^{-1}$  inverse thm.  
 =  $(g^{-1}x)^{-1}$  given  
 =  $x^{-1}g$  inverse thm.

Thus Z contains inverses.

Z is a subgroup.

$$St(3) = \{e, (12), (14), (24) (124), (142)\}$$

## Quaternions $(Q_8)$

|    | 1  | -1 | i  | -i | j  | -j | k  | -k |
|----|----|----|----|----|----|----|----|----|
| 1  | 1  | -1 | i  | -i | j  | -j | k  | -k |
| -1 | -1 | 1  | -i | i  | -j | j  | -k | k  |
| i  | i  | -i | -1 | 1  | k  | -k | -j | j  |
| -i | -i | i  | 1  | -1 | -k | k  | j  | -j |
| j  | j  | -j | -k | k  | -1 | 1  | i  | -i |
| -j | -j | j  | k  | -k | 1  | -1 | -i | i  |
| k  | k  | -k | j  | -j | -i | i  | -1 | 1  |
|    | -k |    |    |    |    |    |    |    |

## Dihedral 8

|          | e        | (13)     | (24)     | (12)(34) | (13)(24) | (14)(23) | (1234)   | (1432)   |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| e        | e        | (13)     | (24)     | (12)(34) | (13)(24) | (14)(23) | (1234)   | (1432)   |
| (13)     | (13)     | e        | (13)(24) | (1432)   | (24)     | (1234)   | (14)(23) | (12)(34) |
| (24)     | (24)     | (13)(24) | e        | (1234)   | (13)     | (1432)   | (12)(34) | (14)(23) |
| (12)(34) | (12)(34) | (1234)   | (1432)   | e        | (14)(23) | (13)(24) | (13)     | (24)     |
| (13)(24) | (13)(24) | (24)     | (13)     | (14)(23) | e        | (12)(34) | (1432)   | (1234)   |
| (14)(23) | (14)(23) | (1432)   | (1234)   | (13)(24) | (12)(34) | e        | (24)     | (13)     |
| (1234)   | (1234)   | (12)(34) | (14)(23) | (24)     | (1432)   | (13)     | (13)(24) | e        |
| (1432)   | (1432)   | (14)(23) | (12)(34) | (13)     | (1234)   | (24)     | e        | (13)(24) |