## Math 314

Exam 1 Key

## Instructions

1. Do NOT write your answers on these sheets. Nothing written on the test papers will be graded.
2. Please begin each section of questions on a new sheet of paper.
3. Do not write problems side by side.
4. Do not staple test papers.
5. Limited credit will be given for incomplete or incorrect justification.

## Questions

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
7 & 8 & 3 \\
3 & 3 & 4
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 7 & -5 \\
4 & 29 & -21 \\
2 & 13 & -9
\end{array}\right], \vec{b}=\left[\begin{array}{r}
7 \\
20 \\
64
\end{array}\right], \vec{c}=\left[\begin{array}{r}
8 \\
7 \\
51
\end{array}\right] .
$$

1. Matrix $A$ ( 6 each)
(a) Calculate $A^{-1}$.

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
7 & 8 & 3 & 0 & 1 & 0 \\
3 & 3 & 4 & 0 & 0 & 1
\end{array}\right] \sim \begin{array}{l}
R_{2} \leftarrow-7 R_{1}+R_{2} \\
R_{3} \leftarrow-3 R_{1}+R_{3}
\end{array}} \\
& {\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & -4 & -7 & 1 & 0 \\
0 & 0 & 1 & -3 & 0 & 1
\end{array}\right] \sim \quad R_{1} \leftarrow-1 R_{2}+R_{1}} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & 5 & 8 & -1 & 0 \\
0 & 1 & -4 & -7 & 1 & 0 \\
0 & 0 & 1 & -3 & 0 & 1
\end{array}\right] \sim \begin{array}{l}
R_{1} \leftarrow-5 R_{3}+R_{1} \\
R_{2} \leftarrow 4 R_{3}+R_{2}
\end{array}} \\
& {\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 23 & -1 & -5 \\
0 & 1 & 0 & -19 & 1 & 4 \\
0 & 0 & 1 & -3 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

(b) Find all solutions to $A \vec{x}=\overrightarrow{0}$.

Because the matrix is invertible, only the trivial solution exists.

$$
\vec{x}=[0,0,0]^{T}
$$

(c) Find all solutions to $A \vec{x}=\vec{c}$.

$$
\left[\begin{array}{rrr}
23 & -1 & -5 \\
-19 & 1 & 4 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
8 \\
7 \\
51
\end{array}\right]=\left[\begin{array}{r}
-78 \\
59 \\
27
\end{array}\right]
$$

(d) Calculate $\operatorname{det}(A)$.

$$
\operatorname{det}(A)=1
$$

2. Matrix $B$ ( 6 each)
(a) Find all solutions to $B \vec{x}=\vec{c}$.

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{rrr|r}
1 & 7 & -5 & 8 \\
4 & 29 & -21 & 7 \\
2 & 13 & -9 & 51
\end{array}\right]}
\end{array} \sim \begin{array}{l}
R_{2} \leftarrow-4 R_{1}+R_{2} \\
R_{3} \leftarrow-2 R_{1}+R_{3}
\end{array}\right] \begin{array}{rrr|r}
1 & 7 & -5 & 8 \\
0 & 1 & -1 & -25 \\
0 & -1 & 1 & 35
\end{array}\right] \sim \begin{aligned}
& \\
& {\left[\begin{array}{rrr}
1 & R_{3} \leftarrow 1 R_{2}+R_{3} \\
R_{1} \leftarrow-7 R_{2}+R_{1}
\end{array}\right.} \\
& {\left[\begin{array}{rrr|r}
1 & 7 & -5 & 8 \\
0 & 1 & -1 & -25 \\
0 & 0 & 0 & 10
\end{array}\right] \sim}
\end{aligned}
$$

There are no solutions.
(b) Find all solutions to $B \vec{x}=\overrightarrow{0}$.

Based on above calculations

$$
[-2,1,1]^{T} x_{3}
$$

(c) Calculate $\operatorname{det}(B)$.

$$
\operatorname{det}(B)=0
$$

(d) Is $T(\vec{x})=B \vec{x}$ one-to-one? onto?
$T$ is not one-to-one, because many vectors map to $\overrightarrow{0}$. By the Big Theorem it can also not be onto.
3. Transformations (6 each)
(a) Find the matrix of the linear transformation $T$ that maps $T\left([1,1,0]^{T}\right)=[2,15,6]^{T}$, and $T\left([1,0,1]^{T}\right)=[2,10,7]^{T}$, and $T\left([0,1,1]^{T}\right)=[2,11,7]^{T}$.

$$
\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrr}
2 & 2 & 2 \\
15 & 10 & 11 \\
6 & 7 & 7
\end{array}\right] .
$$

To make this easier to solve not that if $X A=B$ then $(X A)^{T}=B^{T}$ or $A^{T} X^{T}=B^{T}$ so we can solve this using the transpose.

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{rrr|rrr}
1 & 1 & 0 & 2 & 15 & 6 \\
1 & 0 & 1 & 2 & 10 & 7 \\
0 & 1 & 1 & 2 & 11 & 7
\end{array}\right] \sim R_{2} \leftarrow-1 R_{1}+R_{2}} \\
{\left[\begin{array}{rrr|rrr}
1 & 1 & 0 & 2 & 15 & 6 \\
0 & -1 & 1 & 0 & -5 & 1 \\
0 & 1 & 1 & 2 & 11 & 7
\end{array}\right] \sim} \\
{\left[\begin{array}{rrr|rrr}
1 & 1 & 0 & 2 & 15 & 6 \\
0 & -1 & 1 & 0 & -5 & 1 \\
0 & 0 & 2 & 2 & 6 & 8
\end{array}\right]}
\end{array} \sim \begin{array}{l} 
\\
R_{3} \leftarrow 1 R_{2}+R_{3} \\
R_{1} \leftarrow 1 R_{2}+R_{1} \\
R_{2} \leftarrow-R_{2}
\end{array}\right] \quad \begin{array}{l}
R_{1} \leftarrow-\frac{1}{2} R_{3}+R_{1} \\
{\left[\begin{array}{rrr|rrr}
1 & 0 & 1 & 2 & 10 & 7 \\
0 & 1 & -1 & 0 & 5 & -1 \\
0 & 0 & 2 & 2 & 6 & 8
\end{array}\right]}
\end{array} \begin{array}{l}
R_{2} \leftarrow \frac{1}{2} R_{3}+R_{2} \\
R_{3} \leftarrow \frac{1}{2} R_{3}
\end{array}\right]
$$

The matrix is

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
7 & 8 & 3 \\
3 & 3 & 4
\end{array}\right]
$$

(b) Determine if the linear transformation $S$ that maps
$S\left([1,0,0]^{T}\right)=[4,1,2]^{T}, S\left([0,1,0]^{T}\right)=[2,1,1]^{T}, S\left([0,0,1]^{T}\right)=[4,1,2]^{T}$
is one-to-one and if it is onto.
Because $[1,0,0]^{T}$ and $[0,0,1]^{T}$ are mapped to the same vector, this is not one-to-one. By the Big Theorem, this can also not be onto.
4. Connections (4 each)
(a) Prove that for two matrices $A$ and $B$ if $A B$ is invertible, then $A$ necessarily has a right inverse. Because $A B$ is invertible there exists $E$ such that $(A B) E=I$. Thus

$$
\begin{aligned}
(A B) E & =I . \\
A(B E) & =I .
\end{aligned}
$$

Thus by associativity of matrix multiplication the right inverse of $A$ is $B E$.
(b) Prove that if $\vec{w}$ is in the span of $\vec{u}$ and $\vec{v}$ that $\{\vec{u}, \vec{v}, \vec{w}\}$ is a dependent set. Do not use the Big Theorem. Because $\vec{w}$ is in the span

$$
\begin{aligned}
\vec{w} & =a \vec{u}+b \vec{v} . \\
\overrightarrow{0} & =a \vec{u}+b \vec{v}+\vec{w} .
\end{aligned}
$$

Thus $[a, b, 1]^{T}$ is a non-trivial solution to $A \vec{x}=\overrightarrow{0}$.

