Theorem's We Know

- 1. Basic Theorems
 - (a) There exists a first parallel.
 - (b) The angle of parallelism is the same on the left and right.
 - (c) The angle of parallelism is less than a right angle.
- 2. Omega Triangles
 - (a) (Pasch's Axiom Hyperbolic) If a line k contains a point of the interior of an omega triangle and a vertex, it must also cross the side opposite the vertex.
 - (b) (Exterior Angle Theorem Hyperbolic) The measure of an exterior angle of an omega triangle is greater than the measure of the opposite interior angle.
- 3. Omega Triangle Congruence
 - (a) (Angle Side) If the finite sides and one pair of angles of two omega triangles are congruent, the omega triangles are congruent.
 - (b) (Angle Angle) If corresponding angles of omega triangles are congruent, the omega triangles are congruent.
- 4. Quadrilaterals
 - (a) The summit angles of a Saccheri quadrilateral are congruent.
 - (b) The summit angles of a Saccheri quadrilateral are acute.
 - (c) No rectangle exists.
 - (d) The angle sum of a triangle is less than π .
 - (e) The fourth angle of a Lambert quadrilateral is acute.
 - (f) The sides of a Lambert quadrilateral adjacent to the acute angle are longer than the opposing sides.

Hyperbolic Geometry

Chapter 1

Omega Triangles

Theorem 1 (Pasch's Axiom Hyperbolic) If a line k contains a point of the interior of an omega triangle and a vertex, it must also cross the side opposite the vertex.

Proof: Let $\overline{A\Omega}$ and $\overline{B\Omega}$ be sensed parallels. WoLOG let k be a line through A and a point C in the interior. Note $m \angle BAC < m \angle BA\Omega$ by construction. Because $\angle BA\Omega$ is the angle of parallelism, line k must intersect ray $\overline{B\Omega}$. Suppose line k contains C in the interior and Ω . Suppose \overline{AC} intersects $\overline{B\Omega}$ at D. By Pasch's axiom (normal) $\overline{C\Omega}$ must intersect either \overline{AB} or \overline{BD} . If k intersects \overline{BD} then there would exist two sensed parallels in the same direction to $\overline{A\Omega}$ at that point of intersection. Because this is impossible k intersects \overline{AB} .

Theorem 2 (Exterior Angle Theorem Hyperbolic) The measure of an exterior angle of an omega triangle is greater than the measure of the opposite interior angle.

Proof: Let $AB\Omega$ be an omega triangle. Let C be a point such that C - A - B. We show that $m \angle \Omega AC > m \angle \Omega BA$. This proof is by contradiction.

Case 1: Suppose $m \angle CA\Omega < m \angle AB\Omega$. Let Z be a point in the interior such that $\angle ABZ \cong \angle CA\Omega$. Because this is less than the angle of parallelism, $\overline{BZ} \cap \overline{A\Omega} = D$. Now $\angle CA\Omega$ is the exterior angle of a normal $\triangle ABD$ with an equal, opposite interior angle. This is not possible.

Case 2: Suppose $\angle CA\Omega \cong \angle AB\Omega$. Let E be the midpoint of \overline{AB} . Let D be the foot of the perpendicular from E to $\overline{A\Omega}$. Let F be the point on $\overline{B\Omega}$ such that |FB| = |AD| and F and D are on opposite sides of \overline{AB} . Note $\angle FBE \cong \angle DAE$ because they are supplementary to $\angle AB\Omega$ and $\angle CA\Omega$ respectively. By SAS $\triangle FBE \cong \triangle DAE$. Thus $\angle BEF \cong \angle AED$ and F - E - D. Because $\angle ADE$ is right, so is $\angle BFE$. Thus the angle of parallelism at F to $\overline{A\Omega}$ is a right angle. This is a contradiction to the angle of parallelism being less than a right angle. Thus $m\angle \Omega AC > m\angle \Omega BA$.

Hyperbolic Geometry

Chapter 2

Omega Triangle Congruence

Theorem 3 (Angle Side) If the finite sides and one pair of angles of two omega triangles are congruent, the omega triangles are congruent.

Proof: This is a proof by contradiction. Consider omega triangles $AB\Omega$ and $CD\Lambda$ with $\overline{AB} \cong \overline{CD}$ and $\angle AB\Omega \cong CD\Lambda$. Suppose $\angle BA\Omega \ncong \angle DC\Lambda$. WoLOG $m\angle BA\Omega > m\angle DC\Lambda$. Let P be an interior point of $BA\Omega$ such that $\angle BAP \cong \angle DC\Lambda$. By previous theorem it must intersect $\overline{B\Omega}$ at a point E. Let F be a point on $\overline{D\Lambda}$ such that $\overline{DF} \cong \overline{BE}$. Note $\triangle BEA \cong \triangle DFC$ by SAS. However, this implies $\angle DCF \cong \angle BAE \cong \angle DC\Lambda$. Further $\overline{C\Lambda} \cap \overline{D\Lambda} \neq \emptyset$. Thus the second angle must be congruent.

Theorem 4 (Angle Angle) If corresponding angles of omega triangles are congruent, the omega triangles are congruent.

Proof: Let $AB\Omega$ and $CD\Lambda$ be omega triangles with $\angle BA\Omega \cong \angle DC\Lambda$ and $\angle AB\Omega \cong \angle CD\Lambda$. This is a proof by contradiction. WoLOG suppose |CD| > |AB|. Let $\overline{E\Lambda}$ be the sensed parallel to $\overline{C\Lambda}$ through E. By the previous theorem $AB\Omega \cong CE\Lambda$. Thus $\angle CE\Lambda \cong \angle AB\Omega \cong \angle CD\Lambda$. Now, $\overline{D\Lambda}$ and $\overline{E\Lambda}$ are sensed parallels to $\overline{C\Lambda}$, and are therefore sensed parallels to each other. Thus $ED\Lambda$ is an omega triangle. However we have exterior $\angle CE\Lambda \cong \angle ED\Lambda$ which contradicts a previous theorem. Thus |DC| = |AB|.

Hyperbolic Geometry

Chapter 3

Quadrilaterals

Theorem 5 The summit angles of a Saccheri quadrilateral are congruent.

Proof: Let ABCD be a Saccheri quadrilateral with base \overline{AB} and summit \overline{DC} . Thus $\overline{AD} \cong \overline{BC}$, and $m \angle DAB = m \angle CBA = \pi/2$. Construct diagonals \overline{DB} and \overline{CA} . Note $\overline{AB} \cong \overline{AB}$. Thus $\triangle DAB \cong \triangle CBA$ by SAS. Now $\overline{DB} \cong \overline{CA}$ being corresponding parts of congruent triangles. Note $\overline{DC} \cong \overline{DC}$. Thus $\triangle ADC \cong \triangle BCD$. Hence $\angle ADC \cong \angle BCD$ being corresponding parts of congruent triangles. \Box

Theorem 6 The summit angles of a Saccheri quadrilateral are acute.

Proof: Let ABCD be a Saccheri quadrilateral with base \overline{AB} and summit \overline{DC} . Thus $\overline{AD} \cong \overline{BC}$, and $m \angle DAB = m \angle CBA = \pi/2$. Construct left-sensed parallels $\overline{C\Omega}$ and $\overline{D\Omega}$ to \overline{AB} . Let E be a point such that E - D - C. By previous theorem $m \angle ED\Omega > m \angle DC\Omega$. Also $\angle AD\Omega \cong \angle BC\Omega$ by an omega triangle congruency theorem. Thus $m \angle EDA > m \angle DCB$, and $m \angle EDA > m \angle CDA$. Also $m \angle EDA + m \angle CDA = \pi$, so $m \angle CDA < \pi/2$.

Theorem 7 No rectangle exists.

Proof: This is a proof by contradiction. Suppose ABCD is a rectangle. Note ABCD is a Saccheri quadrilateral. By the previous theorem the summit angles are acute. This contradicts that the summit angles are right angles per definition of rectangle. Thus no rectangle exists.

Theorem 8 The fourth angle of a Lambert quadrilateral is acute.

Proof:

Case 1: Suppose the fourth angle is obtuse. This results in a quadrilateral with angle sum greater than 2π . Thus case 1 is not possible.

Case 2: Suppose the fourth angle is a right angle. This results in a rectangle. Thus case 2 is not possible.

7

Case 3: The fourth angle is acute.

Theorem 9 The sides of a Lambert quadrilateral adjacent to the acute angle are longer than the opposing sides.

Proof: Let ABCD be a Lambert quadrilateral with acute $\angle CDA$.

Case 1: Suppose |AD| < |BC|. Let E be the point such that B - E - C and |BE| = |AD|. Note ABED is a Saccheri quadrilateral. Thus $\angle BED$ is acute, and $\angle DEC$ must be obtuse. However this implies the angle sum of $\triangle DEC$ is greater than the sum of a right angle and an obtuse angle. Thus case 1 is not possible.

Case 2: Suppose |AD| = |BC|. Thus DABC is a Saccheri quadrilateral with summit angles $\angle BCD$ and $\angle ADC$. However $\angle BCD$ is a right angle. Thus $|AD| \neq |BC|$. Thus case 2 is not possible.

Case 3: |AD| > |BC|.