Assignment 3

The arclength of a space curve is given by the integral

\[\int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} \, dt \]

The surface area of revolution obtained by rotating about the y-axis is

\[\int_a^b 2\pi x \sqrt{1 + (f'(x))^2} \, dx. \]

The volume under the surface of revolution about the y-axis is

\[\int_a^b 2\pi x f(x) \, dx. \]

1. Consider the spacial curve \(x = t, \ y = \sin(nt), \ z = \cos(nt) \) for \(t \in [0, 10\pi/n] \).
 (a) Plot this curve for \(n = 1, 2, 3 \).
 (b) Produce an animation of this curve for \(n \) from 1 to 5. Note you will need to use some plot options to make this easy to view.
 (c) Calculate the arclength of this curve. Leave \(n \) as a variable when calculating.
 (d) Evaluate the length of the curve for specific \(n \) values 1, 2, 3, 4, 5.
 (e) Calculate the limit of the arclength as \(n \) approaches \(\infty \).
 (f) If this were a spring, would it make sense for the arclength to change as the spring stretches?

2. Consider the 3D surface obtained by rotating \(f_n(x) = \sin(nx) + 1, x \in [0, 2\pi] \) about the y-axis.
 (a) Plot the surface of revolution for \(n = 1, 2, 3 \).
 (b) Produce an animation of this curve for \(n \) from 1 to 5.
 (c) Calculate the surface area of this curve for \(n \) from 1 to 5.
 (d) Conjecture, based on the above experiment, what is happening to the area as \(n \) approaches infinity

3. Again consider the 3D surface obtained by rotating \(f_n(x) = \sin(nx) + 1, x \in [0, 2\pi] \) about the y-axis.
 (a) Calculate the volume beneath this curve for \(n \) from 1 to 5.
 (b) Calculate the volume beneath this curve for arbitrary \(n \).
 (c) Evaluate the limit of the volume beneath the curve as \(n \) approaches infinity.
 (d) What does surface seem to become as \(n \) approaches infinity? Your answer should be geometric.
 (e) Does your answer above explain the limit of the volume?