
OpenAL Specification and Reference

OpenAL Specification and Reference
Version 1.0 Draft Edition
Published June 2000
Copyright © 1999-2000 by Loki Software

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute translations of this manual into another language, under the above
conditions for modified versions, except that this permission notice may be stated in a translation approved by the
copyright owners.

UNIX is a trademark of X/Open Group.
X Window System is a trademark of X Consortium, Inc.
Linux is a trademark of Linus Torvalds.
Windows is a trademark of Microsoft Corp.
Macintosh and Apple are trademarks of Apple Computer, Inc.
Loki and OpenAL are trademarks of Loki Software, Inc.
All other trademarks are property of their respective owners.

Table of Contents
1. Introduction ...7

1.1. Formatting and Conventions...7
1.2. What is the OpenAL Audio System? ...7
1.3. Programmer’s View of OpenAL ...7
1.4. Implementor’s View of OpenAL ..8
1.5. Our View ..8
1.6. Requirements, Conformance and Extensions ...8
1.7. Architecture Review and Acknowledgements ...9

2. OpenAL Operation...10
2.1. OpenAL Fundamentals ..10

2.1.1. Primitive Types ...10
2.1.2. Floating-Point Computation ...11

2.2. AL State...11
2.3. AL Command Syntax ...11
2.4. Basic AL Operation ...12
2.5. AL Errors ..12
2.6. Controlling AL Execution ..13
2.7. Object Paradigm ..14

2.7.1. Object Categories ..14
2.7.2. Static vs. Dynamic Objects ..14
2.7.3. Object Names ..14
2.7.4. Requesting Object Names ...14
2.7.5. Releasing Object Names ..15
2.7.6. Validating an Object Name ...15
2.7.7. Setting Object Attributes ...15
2.7.8. Querying Object Attributes...16
2.7.9. Object Attributes...16

3. State and State Requests..18
3.1. Querying AL State...18

3.1.1. Simple Queries ..18
3.1.2. Data Conversions..18
3.1.3. String Queries..18

3.2. Time and Frequency..19
3.3. Space and Distance ...19
3.4. Attenuation By Distance ..19

3.4.1. Inverse Distance Rolloff Model ..20
3.4.2. Inverse Distance Clamped Model ..20

3.5. Evaluation of Gain/Attenuation Related State...20
3.6. No Culling By Distance..21
3.7. Velocity Dependent Doppler Effect ..21

4. Listener and Sources ..23
4.1. Basic Listener and Source Attributes..23
4.2. Listener Object ...24

4.2.1. Listener Attributes..24
4.2.2. Changing Listener Attributes ...24
4.2.3. Querying Listener Attributes..24

4.3. Source Objects..24
4.3.1. Managing Source Names...25

4.3.1.1. Requesting a Source Name...25
4.3.1.2. Releasing Source Names ...25
4.3.1.3. Validating a Source Name...25

4.3.2. Source Attributes ..25
4.3.2.1. Source Positioning ...25

3

4.3.2.2. Buffer Looping..26
4.3.2.3. Current Buffer...26
4.3.2.4. Queue State Queries ..26
4.3.2.5. Bounds on Gain..27
4.3.2.6. Distance Model Attributes..28
4.3.2.7. Frequency Shift by Pitch ...28
4.3.2.8. Direction and Cone ..28

4.3.3. Changing Source Attributes..30
4.3.4. Querying Source Attributes ..30
4.3.5. Queueing Buffers with a Source...30

4.3.5.1. Queueing command ..31
4.3.5.2. Unqueueing command..31

4.3.6. Managing Source Execution..31
4.3.6.1. Source State Query...31
4.3.6.2. State Transition Commands ...32
4.3.6.3. Resetting Configuration ..33

5. Buffers...34
5.1. Buffer States ...34
5.2. Managing Buffer Names ..34

5.2.1. Requesting Buffers Names ..34
5.2.2. Releasing Buffer Names...35
5.2.3. Validating a Buffer Name ..35

5.3. Manipulating Buffer Attributes ..35
5.3.1. Buffer Attributes ...35
5.3.2. Querying Buffer Attributes ...36
5.3.3. Specifying Buffer Content ...36

6. AL Contexts and the ALC API..37
6.1. Managing Devices...37

6.1.1. Connecting to a Device ..37
6.1.2. Disconnecting from a Device ..37

6.2. Managing Rendering Contexts ...37
6.2.1. Context Attributes ..38
6.2.2. Creating a Context..38
6.2.3. Selecting a Context for Operation ..38
6.2.4. Initiate Context Processing..39
6.2.5. Suspend Context Processing...39
6.2.6. Destroying a Context..39

6.3. ALC Queries ..39
6.3.1. Query for Current Context..40
6.3.2. Query for a Context’s Device..40
6.3.3. Query For Extensions...40
6.3.4. Query for Function Entry Addresses...40
6.3.5. Retrieving Enumeration Values..40
6.3.6. Query for Error Conditions...41
6.3.7. String Query ..41
6.3.8. Integer Query ..42

6.4. Shared Objects ...42
6.4.1. Shared Buffers ...42

A. Global Constants ...44
B. Extensions..45

B.1. Extension Query..45
B.2. Retrieving Function Entry Addresses..45
B.3. Retrieving Enumeration Values..45
B.4. Naming Conventions ...46
B.5. ARB Extensions...46

4

B.6. Other Extension...46
B.6.1. IA-SIG I3DL2 Extension ..46

B.7. Compatibility Extensions ..46
B.7.1. Loki Buffer InternalFormat Extension ..46
B.7.2. Loki BufferAppendData Extension ...46
B.7.3. Loki Decoding Callback Extension..47
B.7.4. Loki Infinite Loop Extension ..47
B.7.5. Loki Byte Offset Extension..48

B.8. Loop Point Extension ...48
C. Extension Process...49

5

List of Examples
2-1. Initialization Example..12

6

Chapter 1. Introduction

1.1. Formatting and Conventions
This API Specification and Reference uses a style that is a blend of the OpenGL v1.2
specification and the OpenGL Programming Guide, 2nd ed. Conventions: ’T’ is used
to designate a type for those functions which exist in multiple signatures for
different types. ’Object’ is used to designate a target Object for those functions
which exist in multiple versions for different Object categories. The ’al’ and ’AL_’
prefix is omitted throughout the document.

Revision History

Revision 1.8/1.7./1.6/1.5September-August 2000Revised by: bk
Final Draft for Public Review
Revision 1.4 June 2000 Revised by: bk
First Draft for Public Review
Revision 1.2 March 2000 Revised by: mkv
Draft released for GDC

1.2. What is the OpenAL Audio System?
OpenAL (for "Open Audio Library") is a software interface to audio hardware. The
interface consists of a number of functions that allow a programmer to specify the
objects and operations in producing high-quality audio output, specifically
multichannel output of 3D arrangements of sound sources around a listener.

The OpenAL API is designed to be cross-platform and easy to use. It resembles the
OpenGL API in coding style and conventions. OpenAL uses a syntax resembling
that of OpenGL where applicable.

OpenAL is foremost a means to generate audio in a simulated three-dimensional
space. Consequently, legacy audio concepts such as panning and left/right channels
are not directly supported. OpenAL does include extensions compatible with the
IA-SIG 3D Level 1 and Level 2 rendering guidelines to handle sound-source
directivity and distance-related attenuation and Doppler effects, as well as
environmental effects such as reflection, obstruction, transmission, reverberation.

Like OpenGL, the OpenAL core API has no notion of an explicit rendering context,
and operates on an implied current OpenAL Context. Unlike the OpenGL
specification the OpenAL specification includes both the core API (the actual
OpenAL API) and the operating system bindings of the ALC API (the "Audio
Library Context"). Unlike OpenGL’s GLX, WGL and other OS-specific bindings, the
ALC API is portable across platforms as well.

1.3. Programmer’s View of OpenAL
To the programmer, OpenAL is a set of commands that allow the specification of
sound sources and a listener in three dimensions, combined with commands that
control how these sound sources are rendered into the output buffer. The effect of
OpenAL commands is not guaranteed to be immediate, as there are latencies
depending on the implementation, but ideally such latency should not be noticeable
to the user.

7

Chapter 1. Introduction

A typical program that uses OpenAL begins with calls to open a sound device
which is used to process output and play it on attached hardware (e.g. speakers or
headphones). Then, calls are made to allocate an AL context and associate it with
the device. Once an AL context is allocated, the programmer is free to issue AL
commands. Some calls are used to render Sources (point and directional Sources,
looping or not), while others affect the rendering of these Sources including how
they are attenuated by distance and relative orientation.

1.4. Implementor’s View of OpenAL
To the implementor, OpenAL is a set of commands that affect the operation of CPU
and sound hardware. If the hardware consists only of an addressable output buffer,
then OpenAL must be implemented almost entirely on the host CPU. In some cases
audio hardware provides DSP-based and other acceleration in various degress. The
OpenAL implementors task is to provide the CPU software interface while dividing
the work for each AL command between the CPU and the audio hardware. This
division should be tailored to the available audio hardware to obtain optimum
performance in carrying out AL calls.

OpenAL maintains a considerable amount of state information. This state controls
how the Sources are rendered into the output buffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it,
however, is visible only by the effect it has on what is rendered. One of the main
goals of this specification is to make OpenAL state information explicit, to eludicate
how it changes, and to indicate what its effects are.

1.5. Our View
We view OpenAL as a state machine that controls a multichannel processing system
to synthesize a digital stream, passing sample data through a chain of parametrized
digital audio signal processing operations. This model should engender a
specification that satisfies the needs of both programmers and implementors. It does
not, however, necessarily provide a model for implementation. Any conformant
implementation must produce results conforming to those produced by the
specified methods, but there may be ways to carry out a particular computation that
are more efficient than the one specified.

1.6. Requirements, Conformance and Extensions
The specification has to guarantee a minimum number of resources. However,
implementations are encouraged to compete on performance, available resources,
and output quality.

There will be an OpenAL set of conformance tests available along with the open
source sample implementation. Vendors and individuals are encouraged to specify
and implement extensions to OpenAL in the same way OpenGL is extensible.
Successful extensions will become part of the core specification as necessary and
desirable. OpenAL implementations have to guarantee backwards compatibility
and ABI compatibility for minor revisions.

The current sample implementation and documentation for OpenAL can be
obtained from openal.org1. OpenAL is also available from the the OpenAL CVS
repository2. For more information on how to get OpenAL from CVS also see Loki
Software CVS3.

8

Chapter 1. Introduction

1.7. Architecture Review and Acknowledgements
Like OpenGL, OpenAL is meant to evolve through a joined effort of implementators
and application programmers meeting in regular sessions of an Architecture Review
Board (ARB). As of this time the ARB has not yet been set up. Currently, the two
companies committed to implementing OpenAL drivers have appointed two
contacts responsible for preparing the specification draft.

Consequently OpenAL is a cooperative effort, one in a sequence of earlier attempts
to create a cross-platform audio API. The current authors/editors have assembled
this draft of the specification, but many have, directly and indirectly, contributed to
the content of the actual document. The following list (in all likelihood incomplete)
gives in alphabetical order participants in the discussion and contributors to the
specification processs and related efforts: Juan Carlos Arevalo Baeza, Jonathan Blow,
Keith Charley, Scott Draeker, John Grantham, Jacob Hawley, Garin Hiebert, Carlos
Hasan, Nathan Hill, Bill Huey, Mike Jarosch, Jean-Marc Jot, Maxim Kizub, John
Kraft, Bernd Kreimeier, Ian Ollmann, Rick Overman, Sean L. Palmer, Pierre
Phaneuf, Terry Sikes, Joseph Valenzuela, Michael Vance, Carlo Vogelsang

Notes
1. http://wwww.openal.org/

2. http://cvs.lokigames.com/cgi-bin/cvsweb.cgi/openal/

3. http://cvs.lokigames.com/

9

Chapter 2. OpenAL Operation

2.1. OpenAL Fundamentals
OpenAL (henceforth, the "AL") is concerned only with rendering audio into an
output buffer, and primarily meant for spatialized audio. There is no support for
reading audio input from buffers at this time, and no support for MIDI and other
components usually associated with audio hardware. Programmers must relay on
other mechanisms to obtain audio (e.g. voice) input or generate music.

The AL has three fundamental primitives or objects – Buffers, Sources, and a single
Listener. Each object can be changed independently, the setting of one object does
not affect the setting of others. The application can also set modes that affect
processing. Modes are set, objects specified, and other AL operations performed by
sending commands in the form of function or procedure calls.

Sources store locations, directions, and other attributes of an object in 3D space and
have a buffer associated with them for playback. There are normally far more
sources defined than buffers. When the program wants to play a sound, it controls
execution through a source object. Sources are processed independently from each
other.

Buffers store compressed or un-compressed audio data. It is common to initialize a
large set of buffers when the program first starts (or at non-critical times during
execution – between levels in a game, for instance). Buffers are referred to by
Sources. Data (audio sample data) is associated with buffers.

There is only one listener (per audio context). The listener attributes are similar to
source attributes, but are used to represent where the user is hearing the audio from.
The influence of all the sources from the perspective of the listener is mixed and
played for the user.

2.1.1. Primitive Types
As AL is meant to allow for seamless integration with OpenGL code if needed, the
AL primitive (scalar) data types mimic the OpenGL data types. Guaranteed
minimum sizes are stated for OpenGL data types (see table 2.2 of the OpenGL 1.2
Specification), but the actual choice of C datatype is left to the implementation. All
implementations on a given binary architecture, however, must use a common
definition of these datatypes.

Note that this table uses explicit AL prefixes for clarity, while they might be omitted
from the rest of the document for brevity. GCC equivalents are given for IA32, i.e. a
portable and widely available compiler on the most common target architecture.

Table 2-1. AL Primitive Data Types

AL Type Description GL Type GCC IA32
ALboolean 8-bit boolean GLboolean unsigned char
ALbyte signed 8-bit

2’s-complement
integer

GLbyte signed char

ALubyte unsigned 8-bit
integer

GLubyte unsigned char

10

Chapter 2. OpenAL Operation

AL Type Description GL Type GCC IA32
ALshort signed 16-bit

2’s-complement
integer

GLshort short

ALushort unsigned 16-bit
integer

GLushort unsigned short

ALint signed 32-bit
2’s-complement
integer

GLint int

ALuint unsigned 32-bit
integer

GLuint unsigned int

ALsizei non-negative 32-bit
binary integer size

GLsizei int

ALenum enumerated 32-bit
value

GLenum unsigned int

ALbitfield 32 bit bitfield GLbitfield unsigned int
ALfloat 32-bit IEEE754

floating-point
GLfloat float

ALclampf Same as ALfloat,
but in range [0, 1]

GLclampf float

ALdouble 64-bit IEEE754
floating-point

GLdouble double

ALclampd Same as ALdouble,
but in range [0, 1]

GLclampd double

2.1.2. Floating-Point Computation
Any representable floating-point value is legal as input to a AL command that
requires floating point data. The result of providing a value that is not a floating
point number to such a command is unspecified, but must not lead to AL
interruption or termination. In IEEE arithmetic, for example, providing a negative
zero or a denormalized number to a GL command yields predictable results, while
providing an NaN or infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified
result but must not lead to GL interruption or termination.

2.2. AL State
The AL maintains considerable state. This documents enumerates each state
variable and describes how each variable can be changed. For purposes of
discussion, state variables are categorized somewhat arbitrarily by their function.
For example, although we describe operations that the AL performs on the implied
output buffer, the outbut buffer is not part of the AL state. Certain states of AL
objects (e.g. buffer states with respect to queueing) are introduced for discussion
purposes, but not exposed through the API.

2.3. AL Command Syntax

11

Chapter 2. OpenAL Operation

AL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To
conveniently accomodate this variation, we adopt the OpenGL nnotation for
describing commands and their arguments.

2.4. Basic AL Operation
AL can be used for a variety of audio playback tasks, and is an excellent
complement to OpenGL for real-time rendering. A programmer who is familiar
with OpenGL will immediately notice the similarities between the two APIs in that
they describe their 3D environments using similar methods.

For an OpenGL/AL program, most of the audio programming will be in two places
in the code: initialization of the program, and the rendering loop. An OpenGL/AL
program will typically contain a section where the graphics and audio systems are
initialized, although it may be spread into multiple functions. For OpenAL,
initialization normally consists of creating a context, creating the initial set of
buffers, loading the buffers with sample data, creating sources, attaching buffers to
sources, setting locations and directions for the listener and sources, and setting the
initial values for state global to AL.

Example 2-1. Initialization Example

The audio update within the rendering loop normally consists of telling AL the
current locations of the sources and listener, updating the environment settings, and
managing buffers.

2.5. AL Errors
The AL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the
performance of an error-free program. The command

enum GetError (void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected by AL, a flag is set and the error code is recorded.
Further errors, if they occur, do not affect this recorded code. When GetError is
called, the code is returned and the flag is cleared, so that a further error will again
record its code. If a call to GetError returns NO_ERROR then there has been no
detectable error since the last call to GetError (or since the AL was initialized).

Error codes can be mapped to strings. The GetString function returns a pointer to a
constant (literal) string that is identical to the identifier used for the enumeration
value, as defined in the specification.

Table 2-2. Error Conditions

Name Description
NO_ERROR "No Error" token.

12

Chapter 2. OpenAL Operation

Name Description
INVALID_NAME Invalid Name parameter.
INVALID_ENUM Invalid parameter.
INVALID_VALUE Invalid enum parameter value.
INVALID_OPERATION Illegal call.
OUT_OF_MEMORY Unable to allocate memory.

The table summarizes the AL errors. Currently, when an error flag is set, results of
AL operations are undefined only if OUT_OF_MEMORY has occured. In other
cases, the command generating the error is ignored so that it has no effect on AL
state or output buffer contents. If the error generating command returns a value, it
returns zero. If the generating command modifies values through a pointer
argument, no change is made to these values. These error semantics apply only to
AL errors, not to system errors such as memory access errors.

Several error generation conditions are implicit in the description of the various AL
commands. First, if a command that requires an enumerated value is passed a value
that is not one of those specified as allowable for that command, the error
INVALID_ENUM results. This is the case even if the argument is a pointer to a
symbolic constant if that value is not allowable for the given command. This will
occur whether the value is allowable for other functions, or an invalid integer value.

Integer parameters that are used as names for AL objects such as Buffers and
Sources are checked for validity. If an invalid name parameter is specified in an AL
command, an INVALID_NAME error will be generated, and the command is
ignored.

If a negative integer is provided where an argument of type sizei is specified, the
error INVALID_VALUE results. The same error will result from attempts to set
integral and floating point values for attributes exceeding the legal range for these.
The specification does not guarantee that the implementation emits
INVALID_VALUE if a NaN or Infinity value is passed in for a float or double
argument (as the specification does not enforce possibly expensive testing of
floating point values).

Commands can be invalid. For example, certain commands might not be applicable
to a given object. There are also illegal combinations of tokens and values as
arguments to a command. AL responds to any such illegal command with an
INVALID_OPERATION error.

If memory is exhausted as a side effect of the execution of an AL command, either
on system level or by exhausting the allocated resources at AL’s internal disposal,
the error OUT_OF_MEMORY may be generated. This can also happen independent
of recent commands if AL has to request memory for an internal task and fails to
allocate the required memory from the operating system.

Otherwise errors are generated only for conditions that are explicitely described in
this specification.

2.6. Controlling AL Execution
The application can temporarily disable certain AL capabilities on a per Context
basis. This allows the driver implementation to optimize for certain subsets of
operations. Enabling and disabling capabilities is handled using a function pair.

void Enable (enum target);

13

Chapter 2. OpenAL Operation

void Disable (enum target);

The application can also query whether a given capability is currently enabled or
not.

boolean IsEnabled (enum target);

If the token used to specify target is not legal, an INVALID_ENUM error will be
generated.

At this time, this mechanism is not used. There are no valid targets.

2.7. Object Paradigm
AL is an object-oriented API, but it does not expose classes, structs, or other explicit
data structures to the application.

2.7.1. Object Categories
AL has three primary categories of Objects:

• one unique Listener per Context

• multiple Buffers shared among Contexts

• multiple Sources, each local to a Context

In the following, "{Object}" will stand for either Source, Listener, or Buffer.

2.7.2. Static vs. Dynamic Objects
The vast majority of AL objects are dynamic, and will be created on application
demand. There are also AL objects that do not have to be created, and can not be
created, on application demand. Currently, the Listener is the only such static object
in AL.

2.7.3. Object Names
Dynamic Objects are manipulated using an integer, which in analogy to OpenGL is
referred to as the object’s "name". These are of type unsigned integer (uint). Names
can be valid beyond the lifetime of the context they were requested, if the objects in
question can be shared among contexts. No guarantees or assumptions are made in
the specification about the precise values or their distribution, over the lifetime of
the application. As objects might be shared Names are guaranteed to be unique
within a class of AL objects, but no guarantees are made across different classes of
objects. Objects like the Listener that are unique (singletons) do not require, and do
not have, an integer "name".

2.7.4. Requesting Object Names
AL provides calls to obtain Object Names. The application requests a number of
Objects of a given category using Gen{Object}s. If the number n of Objects requested
is negative, an INVALID_VALUE error will caused. The actual values of the Names

14

Chapter 2. OpenAL Operation

returned are implementation dependent. No guarantees on range or value are made.
Unlike OpenGL OpenAL does not offer alternative means to define (bind) a Name.

Allocation of Object Names does not imply immediate allocation of resources or
creation of Objects: the implementation is free to defer this until a given Object is
actually used in mutator calls. The Names are written at the memory location
specified by the caller.

void Gen{Object}s (sizei n , uint * objectNames);

Requesting zero names is a legal NOP. Requesting a negative number of names
causes an INVALID_VALUE error. AL will respond with an OUT_OF_MEMORY if
the application requests too many objects. The specification does not guarantee that
the AL implementation will allocate all resources needed for the actual objects at the
time the names are reserved. In many cases (Buffers) this could only be
implemented by worst case estimation. Allocation of names does not guarantee that
all the named objects can actually be used.

2.7.5. Releasing Object Names
AL provides calls to the application to release Object Names using Delete{Object}s,
implicitly requesting deletion of the Objects associated with the Names released. If
the number n of Objects named is negative, an INVALID_VALUE error will be
caused. If one or more of the specified Names is not valid, an INVALID_NAME
error will be caused. Implementation behavior following any error is undefined.

Once deleted (even if an error occured on deletion), the Names are no longer valid
for use with any AL function calls including calls to Delete{Objects}s. Any such use
will cause an INVALID_NAME error.

The AL implementation is free to defer actual release of resources. Ideally, resources
should be released as soon as possible, but no guarantees are made.

void Delete{Object}s(sizei n, uint *objectNames);

2.7.6. Validating an Object Name
AL provides calls to validate the Name of an Object. The application can verify
whether an Object Name is valid using the Is{Object} query. There is no vector
(array) version of this function as it defeats the purpose of unambiguous
(in)valdiation. Returns TRUE if id is a valid Object Name, and FALSE otherwise.
Object Names are valid between request (Gen{Object}s) and release
(Delete{Object}s). Is{Object} does not distinguish between invalid and deleted
Names.

boolean Is{Object}(uint objectName);

2.7.7. Setting Object Attributes

15

Chapter 2. OpenAL Operation

For AL Objects, calls to control their attributes are provided. These depend on the
actual properties of a given Object Category. The precise API is discussed for each
category, below. Each AL command affecting the state of a named Object is usually
of the form

void {Object}{n}{sifd}{v} (uint objectName , enum paramName , T
values);

In the case of unnamed (unique) Objects, the (integer) objectName is omitted, as it is
implied by the {Object} part of function name:

void {Object}{n}{sifd}{v} (enum paramName , T values);

For example, the Listener3d command would not require an (integer) objectName
argument.

The objectName specifies the AL object affected by this call. Use of an invalid Name
will cause an INVALID_NAME error.

The Object’s Attribute to be affected has to be named as paramName. AL
parameters applicable to one category of Objects are not necessarily legal for
another catetgory of AL Objects. Specification of a parameter illegal for a given
object will cause an INVALID_OPERATION error.

Not all possible values for a type will be legal for a given objectName and
parameterName. Use of an illegal value or a NULL value pointer will cause an
INVALID_VALUE error.

Any command that causes an error is a NOP.

2.7.8. Querying Object Attributes
For named and for unique AL Objects, calls to query their current attributes are
provided. These depend on the actual properties of a given Object Category. The
performance of such queries is implementation dependent, no performance
guarantees are made. The valid values for the parameter paramName are identical
to the ones legal for the complementing attribute setting function.

void Get{Object}{n}{sifd}{v} (uint objectName , enum paramName ,
T * destination);

For unnamed unique Objects, the objectName is omitted as it is implied by the
function name:

void Get{Object}{n}{sifd}{v} (enum paramName , T * destination);

The precise API is discussed for each category separately, below. Unlike their
matching mutators, Query functions for non-scalar properties (vectors etc.) are only
available in array form.

Use of an invalid Name will cause an INVALID_NAME error. Specification of an
illegal parameter type (token) will cause an INVALID_ENUM error. A call with a
destination NULL pointer will be quietly ignored. The AL state will not be affected
by errors. In case of errors, destination memory will not be changed.

16

Chapter 2. OpenAL Operation

2.7.9. Object Attributes
Attributes affecting the processing of sounds can be set for various AL Object
categories, or might change as an effect of AL calls. The vast majority of these Object
properties are specific to the AL Object category, in question, but some are
applicable to two or more categories, and are listed separately.

The general form in which this document describes parameters is

Table 2-3. {Object} Parameters

Name Signature Values Default
paramName T range or set scalar or n-tupel

Description: The description specifies additional restrictions and details.
paramName is given as the AL enum defined as its name. T can be a list of legal
signatures, usually the array form as well as the flat (unfolded) form.

17

Chapter 3. State and State Requests

The majority of AL state is associated with individual AL objects, and has to be set
and queried referencing the objects. However, some state - e.g. processing errors - is
defined context specific. AL has global state that affects all objects and processing
equally. This state is set using a variety of functions, and can be queried using query
functions. The majority of queries has to use the interface described in "Simple
Queries".

3.1. Querying AL State

3.1.1. Simple Queries
Like OpenGL, AL uses a simplified interface for querying global state. The
following functions accept a set of enumerations.

void GetBooleanv (enum paramName , boolean * dest);

void GetIntegerv (enum paramName , int * dest);

void GetFloatv (enum paramName , float * dest);

void GetDoublev (enum paramName , double * dest);

Legal values are e.g. DOPPLER_FACTOR, DOPPLER_VELOCITY,
DISTANCE_MODEL.

NULL destinations are quietly ignored. INVALID_ENUM is the response to errors
in specifying paramName. The amount of memory required in the destination
depends on the actual state requested. Usually, state variables are returned in only
one or some of the formats above.

To query state controlled by Enable/Disable there is an additional IsEnabled
function defined (see "Controlling AL Execution").

3.1.2. Data Conversions
If a Get command is issued that returns value types different from the type of the
value being obtained, a type converswion is performed. If GetBooleanv is called, a
floating-point or integer value converts to FALSE if and only if it is zero (otherwise
it converts to TRUE). If GetIntegerv is called, a boolean value is interpreted as either
1 or 0, and a floating-point value is rounded to the nearest integer. If GetFloatv is
called, a boolean value is interpreted as either 1.0 or 0.0, an integer is coerced to
floating point, and a double-presicion foating-point value is converted to single
precision. Analogous conversions are carried out in the case of GetDoublev. If a
value is so large in magnitude that it cannot be represented with the requested type,
then the nearest value is representable using the requested type is returned.

3.1.3. String Queries

18

Chapter 3. State and State Requests

The application can retrieve state information global to the current AL Context.
GetString will return a pointer to a constant string. Valid values for param are
VERSION, RENDERER, VENDOR, and EXTENSIONS, as well as the error codes
defined by AL. The application can use GetString to retrieve a string for an error
code.

const ubyte * GetString (enum paramName);

3.2. Time and Frequency
By default, AL uses seconds and Hertz as units for time and frequency, respectively.
A float or integral value of one for a variable that specifies quantities like duration,
latency, delay, or any other parameter measured as time, specifies 1 second. For
frequency, the basic unit is 1/second, or Hertz. In other words, sample frequencies
and frequency cut-offs or filter parameters specifying frequencies are expressed in
units of Hertz.

3.3. Space and Distance
AL does not define the units of measurement for distances. The application is free to
use meters, inches, or parsecs. AL provides means for simulating the natural
attenuation of sound according to distance, and to exagerate or reduce this effect.
However, the resulting effects do not depend on the distance unit used by the
application to express source and listener coordinates. AL calculations are scale
invariant.

The specification assumes Euclidean calculation of distances, and mandates that if
two Sources are sorted with respect to the Euclidean metric, the distance calculation
used by the implementation has to preserve that order.

3.4. Attenuation By Distance
Samples usually use the entire dynamic range of the chosen format/encoding,
independent of their real world intensity. In other words, a jet engine and a
clockwork both will have samples with full amplitude. The application will then
have to adjust Source GAIN accordingly to account for relative differences.

Source GAIN is then attenuated by distance. The effective attenuation of a Source
depends on many factors, among which distance attenuation and source and
Listener GAIN are only some of the contributing factors. Even if the source and
Listener GAIN exceed 1.0 (amplification beyond the guaranteed dynamic range),
distance and other attenuation might ultimately limit the overall GAIN to a value
below 1.0.

AL currently supports three modes of operation with respect to distance
attenuation. It supports two distance-dependent attenuation models, one which is
similar to the IASIG I3DL2 (and DS3D) model. The application choses one of these
two models (or can chose to disable distance-dependent attenuation effects model)
on a per-context basis.

void DistanceModel (enum modelName);

19

Chapter 3. State and State Requests

Legal arguments are NONE, INVERSE_DISTANCE, and
INVERSE_DISTANCE_CLAMPED. NONE bypasses all distance attenuation
calculation for all Sources. The implementation is expected to optimize this
situation. INVERSE_DISTANCE_CLAMPED is the DS3D model, with
REFERENCE_DISTANCE indicating both the reference distance and the distance
below which gain will be clamped. INVERSE_DISTANCE is equivalent to the DS3D
model with the exception that REFERENCE_DISTANCE does not imply any
clamping. The AL implementation is still free to apply any range clamping as
necessary. The current distance model chosen can be queried using GetIntegerv and
DISTANCE_MODEL.

3.4.1. Inverse Distance Rolloff Model
The following formula describes the distance attenutation defined by the Rolloff
Attenutation Model, as logarithmic calculation.

G_dB = GAIN - 20*log10(1 + ROLLOFF_FACTOR*(dist-
REFERENCE_DISTANCE)/REFERENCE_DISTANCE);

G_dB = min(G_dB,MAX_GAIN);
G_dB = max(G_dB,MIN_GAIN);

The REFERENCE_DISTANCE parameter used here is a per-Source attribute that can
be set and queried using the REFERENCE_DISTANCE token.
REFERENCE_DISTANCE is the distance at which the Listener will experience
GAIN (unless the implementation had to clamp effective GAIN to the available
dynamic range). ROLLOFF_FACTOR is per-Source parameter the application can
use to increase or decrease the range of a source by decreasing or increasing the
attenuation, respectively. The default value is 1. The implementation is free to
optimize for a ROLLOFF_FACTOR value of 0, which indicates that the application
does not wish any distance attenuation on the respective Source.

3.4.2. Inverse Distance Clamped Model
This is essentially the Inverse Distance model, extended to guarantee that for
distances below REFERENCE_DISTANCE, gain is clamped. This mode is equivalent
to the IASIG I3DL2 (and DS3D) distance model.

dist = max(dist,REFERENCE_DISTANCE);
dist = min(dist,MAX_DISTANCE);
G_dB = GAIN - 20*log10(1 + ROLLOFF_FACTOR*(dist-

REFERENCE_DISTANCE)/REFERENCE_DISTANCE)
G_dB = min(G_dB,MAX_GAIN);
G_dB = max(G_dB,MIN_GAIN);

3.5. Evaluation of Gain/Attenuation Related State
While amplification/attenuation commute (mulplication of scaling factors),
clamping operations do not. The order in which various gain related operations are
applied is: Distance attenuation is calculated first, including minimum

20

Chapter 3. State and State Requests

(REFERENCE_DISTANCE) and maximum (MAX_DISTANCE) thresholds. If the
Source is directional (CONE_INNER_ANGLE less than CONE_OUTER_ANGLE),
an angle-dependent attenuation is calculated depending on CONE_OUTER_GAIN,
and multiplied with the distance dependent attenuation. The resulting attenuation
factor for the given angle and distance between Listener and Source is multiplied
with Source GAIN. The effective GAIN computed this way is compared against
MIN_GAIN and MAX_GAIN thresholds. The result is guaranteed to be clamped to
[MIN_GAIN, MAX_GAIN], and subsequently multiplied by Listener GAIN which
serves as an overall volume control. The implementation is free to clamp Listener
GAIN if necessary due to hardware or implementation constraints.

3.6. No Culling By Distance
With the DS3D compatible Inverse Clamped Distance Model, AL provides a
per-Source MAX_DISTANCE attribute that can be used to define a distance beyond
which the Source will not be further attenuated by distance. The DS3D distance
attenuation model and its clamping of volume is also extended by a mechanism to
cull (mute) sources from proccessing, based on distance. However, AL does not
support culling a Source from processing based on a distance threshold.

At this time AL is not meant to support culling at all. Culling based on distance, or
bounding volumes, or other criteria, is best left to the application. For example, the
application might employ sophisticated techniques to determine whether sources
are audible that are beyond the scope of AL. In particular, rule based culling
inevitably introduces acoustic artifacts. E.g. if the Listener-Source distance is nearly
equal to the culling threshold distance, but varies above and below, there will be
popping artifacts in teh absence of hysteresis.

3.7. Velocity Dependent Doppler Effect
The Doppler Effect depends on the velocities of Source and Listener relative to the
medium, and the propagation speed of sound in that medium. The application
might want to emphasize or de-emphasize the Doppler Effect as physically accurate
calculation might not give the desired results. The amount of frequency shift (pitch
change) is proportional to the speed of listener and source along their line of sight.
The application can increase or decrease that frequency shift by specifying the
scaling factor AL should apply to the result of the calculation.

The Doppler Effect as implemented by AL is described by the formula below. Effects
of the medium (air, water) moving with respect to listener and source are ignored.
DOPPLER_VELOCITY is the propagation speed relative to which the Source
velocities are interpreted.

VD: DOPPLER_VELOCITY
DF: DOPPLER_FACTOR
vl: Listener velocity (scalar, projected on source-listener vector)
vs: Source verlocity (scalar, projected on source-listener vector)
f: Frequency in sample
f’: effective Doppler shifted frequency

f’ = DF * f * (VD-vl)/(VD+vs)

vl<0, vs>0 : source and listener approaching each other
vl>0, vs<0 : source and listener moving away from each other

21

Chapter 3. State and State Requests

The implementation has to clamp the projected Listener velocity vl, if abs(vl) is
greater or equal VD. It similarly has to clamp the projected Source velocity vs if
abs(vs) is greater or equal VD.

There are two API calls global to the current context that provide control of the two
related parameters. DOPPLER_FACTOR is a simple scaling to exaggerate or
deemphasize the Doppler (pitch) shift resulting from the calculation.

void DopplerFactor (float dopplerFactor);

A negative value will result in an INVALID_VALUE error, the command is then
ignored. The default value is 1. The current setting can be queried using GetFloatv
and DOPPLER_FACTOR. The implementation is free to optimize the case of
DOPPLER_FACTOR being set to zero, as this effectively disables the effect.

DOPPLER_VELOCITY allows the application to change the reference (propagation)
velocity used in the Doppler Effect calculation. This permits the application to use a
velocity scale appropriate to its purposes.

void DopplerVelocity (float dopplerVelocity);

A negative or zero value will result in an INVALID_VALUE error, the command is
then ignored. The default value is 1. The current setting can be queried using
GetFloatv and DOPPLER_VELOCITY.

22

Chapter 4. Listener and Sources

4.1. Basic Listener and Source Attributes
This section introduces basic attributes which can be set both for the Listener object
and for Source objects.

The AL Listener and Sources have attributes to describe their position, velocity and
orientation in three dimensional space. AL like OpenGL, uses a right-handed
Cartesian coordinate system (RHS), where in a frontal default view X (thumb)
points right, Y (index finger) points up , and Z (middle finger) points towards the
viewer/camera. To switch from a left handed coordinate system (LHS) to a right
handed coordinate systems, flip the sign on the Z coordinate.

Table 4-1. Listener/Source Position

Name Signature Values Default
POSITION 3fv, 3f any except NaN { 0.0f, 0.0f, 0.0f }

Description: POSITION specifies the current location of the Object in the world
coordinate system. Any 3-tuple of valid float/double values is allowed.
Implementation behavior on encountering NaN and Infinity is not defined. The
Object position is always defined in the world coordinate system.

Table 4-2. Listener/Source Velocity

Name Signature Values Default
VELOCITY 3fv, 3f any except NaN { 0.0f, 0.0f, 0.0f }

Description: VELOCITY specifies the current velocity (speed and direction) of the
Object, in the world coordinate system. Any 3-tuple of valid float/double values is
allowed. The Object VELOCITY does not affect its position. AL does not calculate
the velocity from subsequent position updates, nor does it adjust the position over
time based on the specified velocity. Any such calculation is left to the application.
For the purposes of sound processing, position and velocity are independent
parameters affecting different aspects of the sounds.

VELOCITY is taken into account by the driver to synthesize the Doppler effect
perceived by the Listener for each source, based on the velocity of both Source and
Listener, and the Doppler related parameters.

Table 4-3. Listener/Source Gain (logarithmic)

Name Signature Values Default
GAIN f 0.0f, (0.0f, any 1.0f

Description: GAIN defines a scalar amplitude multiplier. As a Source attribute, it
applies to that particular source only. As a Listener attribute, it effectively applies to
all Sources in the current Context. The default 1.0 means that the sound is
un-attenuated. A GAIN value of 0.5 is equivalent to an attenuation of 6 dB. The
value zero equals silence (no output). Driver implementations are free to optimize
this case and skip mixing and processing stages where applicable. The
implementation is in charge of ensuring artifact-free (click-free) changes of gain

23

Chapter 4. Listener and Sources

values and is free to defer actual modification of the sound samples, within the
limits of acceptable latencies.

GAIN larger than 1 (amplification) is permitted for Source and Listener. However,
the implementation is free to clamp the total gain (effective gain per source times
listener gain) to 1 to prevent overflow.

4.2. Listener Object
The Listener Object defines various properties that affect processing of the sound for
the actual output. The Listener is unique for an AL Context, and has no Name. By
controlling the listener, the application controls the way the user experiences the
virtual world, as the listener defines the sampling/pickup point and orientation,
and other parameters that affect the output stream.

It is entirely up to the driver and hardware configuration, i.e. the installation of AL
as part of the operating system and hardware setup, whether the output stream is
generated for headphones or 2 speakers, 4.1 speakers, or other arrangements,
whether (and which) HRTF’s are applied, etc..

4.2.1. Listener Attributes
Several Source attributes also apply to Listener: e.g. POSITION, VELOCITY, GAIN.
In addition, some attributes are listener specific.

Table 4-4. Listener Orientation

Name Signature Values Default
ORIENTATION fv any except NaN { { 0.0f, 0.0f, -1.0f }, {

0.0f, 1.0f, 0.0f } }

Description: ORIENTATION is a pair of 3-tuples representing the ’at’ direction
vector and ’up’ direction of the Object in Cartesian space. AL expects two vectors
that are orthogonal to each other. These vectors are not expected to be normalized. If
one or more vectors have zero length, implementation behavior is undefined. If the
two vectors are linearly dependent, behavior is undefined.

4.2.2. Changing Listener Attributes
Listener attributes are changed using the Listener group of commands.

void Listener{n}{sifd}{v} (enum paramName , T values);

4.2.3. Querying Listener Attributes
Listener state is maintained inside the AL implementation and can be queried in
full. See Querying Object Attributes. The valid values for paramName are identical
to the ones for the Listener* command.

void GetListener{sifd}v (enum param , T * values);

24

Chapter 4. Listener and Sources

4.3. Source Objects
Sources specify attributes like position, velocity, and a buffer with sample data. By
controlling a Source’s attributes the application can modify and parameterize the
static sample data provided by the Buffer referenced by the Source. Sources define a
localized sound, and encapsulate a set of attributes applied to a sound at its origin,
i.e. in the very first stage of the processing on the way to the listener. Source related
effects have to be applied before Listener related effects unless the output is
invariant to any collapse or reversal of order.

AL also provides additional functions to manipulate and query the execution state
of Sources: the current playing status of a source (started, stopped, paused),
including access to the current sampling position within the associated Buffer.

4.3.1. Managing Source Names
AL provides calls to request and release Source Names handles. Calls to control
Source Execution State are also provided.

4.3.1.1. Requesting a Source Name

The application requests a number of Sources using GenSources.

sizei GenSources (sizei n , uint * sources);

4.3.1.2. Releasing Source Names

The application requests deletion of a number of Sources by DeleteSources.

void DeleteSources (sizei n , uint * sources);

4.3.1.3. Validating a Source Name

The application can verify whether a source name is valid using the IsSource query.

boolean IsSource (uint sourceName);

4.3.2. Source Attributes
This section lists the attributes that are set per Source, affecting the processing of the
current buffer. Some of these attributes can also be set for buffer queue entries.

4.3.2.1. Source Positioning

Table 4-5. SOURCE_RELATIVE Attribute

25

Chapter 4. Listener and Sources

Name Signature Values Default

SOURCE_RELATIVE
boolean FALSE, TRUE FALSE

SOURCE_RELATIVE set to TRUE indicates that the values specified by POSITION
are to be interpreted relative to the listener position.

4.3.2.2. Buffer Looping

Table 4-6. Source LOOPING Attribute

Name Signature Values Default
LOOPING uint TURE, FALSE FALSE

Description: LOOPING is a flag that indicates that the Source will not be in
STOPPED state once it reaches the end of last buffer in the buffer queue. Instead, the
Source will immediately promote to INITIAL and PLAYING. The default value is
FALSE. LOOPING can be changed on a Source in any execution state. In particular,
it can be changed on a PLAYING Source.

4.3.2.3. Current Buffer

Table 4-7. Source BUFFER Attribute

Name Signature Values Default
BUFFER ui any valid

bufferName
NONE

Description: Specify the current Buffer object, which means the head entry in its
queue. Using BUFFER with the Source command on a STOPPED or INITIAL Source
empties the entire queue, then appends the one Buffer specified.

For a PLAYING or PAUSED Source, using the Source command with BUFFER is an
INVALID_OPERATION. It can be applied to INITIAL and STOPPED Sources only.
Specifying an invalid bufferName will result in an INVALID_VALUE error while
specifying an invalid sourceName results in an INVALID_NAME error.

NONE, i.e. 0, is a valid buffer Name. Source(sName, BUFFER, 0) is a legal way to
release the current buffer queue on an INITIAL or STOPPED Source, whether it has
just one entry (current buffer) or more. The Source(sName, BUFFER, NONE) call
still causes an INVALID_OPERATION for any source PLAYING or PAUSED,
consequently it can not be abused to mute or stop a source.

4.3.2.4. Queue State Queries

Table 4-8. BUFFERS_QUEUED Attribute

Name Signature Values Default

26

Chapter 4. Listener and Sources

Name Signature Values Default

BUFFERS_QUEUED
uint [0, any] none

Query only. Query the number of buffers in the queue of a given Source. This
includes those not yet played, the one currently playing, and the ones that have
been played already. This will return 0 if the current and only bufferName is 0.

Table 4-9. BUFFERS_PROCESSED Attribute

Name Signature Values Default

BUFFERS_PROCESSED
uint [0, any] none

Query only. Query the number of buffers that have been played by a given Source.
Indirectly, this gives the index of the buffer currently playing. Used to determine
how much slots are needed for unqueueing them. On an STOPPED Source, all
buffers are processed. On an INITIAL Source, no buffers are processed, all buffers
are pending. This will return 0 if the current and only bufferName is 0.

4.3.2.5. Bounds on Gain

Table 4-10. Source Minimal Gain

Name Signature Values Default
MIN_GAIN f 0.0f, (0.0f, 1.0f] 0.0f

Description: MIN_GAIN is a scalar amplitude threshold. It indicates the minimal
GAIN which is always guaranteed for this Source. At the end of the processing of
various attenuation factors such as distance based attenuation and Source GAIN,
the effective gain calculated is compared to this value. If the effective gain is lower
than MIN_GAIN, MIN_GAIN is applied. This happens before the Listener GAIN is
applied. If a zero MIN_GAIN is set, then the effective gain will not be corrected.

Table 4-11. Source Maximal Gain (logarithmic)

Name Signature Values Default
MAX_GAIN f 0.0f, (0.0f, 1.0f] 1.0f

Description: MAX_GAIN defines a scalar amplitude threshold. It indicates the
maximal GAIN permitted for this Source. At the end of the processing of various
attenuation factors such as distance based attenuation and Source GAIN, the
effective gain calculated is compared to this value. If the effective gain is higher than
MAX_GAIN, MAX_GAIN is applied. This happens before the Listener GAIN is
applied. If the Listener gain times MAX_GAIN still exceeds the maximum gain the
implementation can handle, the implementation is free to clamp. If a zero
MAX_GAIN is set, then the Source is effectively muted. The implementation is free
to optimize for this situation, but no optimization is required or recommended as
setting GAIN to zero is the proper way to mute a Source.

27

Chapter 4. Listener and Sources

4.3.2.6. Distance Model Attributes

Table 4-12. REFERENCE_DISTANCE Attribute

Name Signature Values Default
REFER-

ENCE_DISTANCE
float [0, any] 1.0f

This is used for distance attenuation calculations based on inverse distance with
rolloff. Depending on the distance model it will also act as a distance threshold
below which gain is clamped. See the section on distance models for details.

Table 4-13. ROLLOFF_FACTOR Attribute

Name Signature Values Default

ROLLOFF_FACTOR
float [0, any] 1.0f

This is used for distance attenuation calculations based on inverse distance with
rolloff. For distances smaller than MAX_DISTANCE (and, depending on the
distance model, larger than REFERENCE_DISTANCE), this will scale the distance
attenuation over the applicable range. See section on distance models for details
how the attenuation is computed as a function of the distance.

In particular, ROLLOFF_FACTOR can be set to zero for those Sources which are
supposed to be exempt from distance attenuation. The implementation is
encouraged to optimize this case, bypassing distance attenuation calculation
entirely on a per-Source basis.

Table 4-14. MAX_DISTANCE Attribute

Name Signature Values Default
MAX_DISTANCE float [0, any] MAX_FLOAT

This is used for distance attenuation calculations based on inverse distance with
rolloff, if the Inverse Clamped Distance Model is used. In this case, distances greater
than MAX_DISTANCE will be clamped MAX_DISTANCE. MAX_DISTANCE based
clamping is applied before MIN_GAIN clamping, so if the effective gain at
MAX_DISTANCE is larger than MIN_GAIN, MIN_GAIN will have no effect. No
culling is supported.

4.3.2.7. Frequency Shift by Pitch

Table 4-15. Source PITCH Attribute

Name Signature Values Default
PITCH f (0.0f, 1.0f] 1.0f

Description: Desired pitch shift, where 1.0 equals identity. Each reduction by 50
percent equals a pitch shift of -12 semitones (one octave reduction). Zero is not a

28

Chapter 4. Listener and Sources

legal value.

4.3.2.8. Direction and Cone

Each Source can be directional, depending on the settings for
CONE_INNER_ANGLE and CONE_OUTER_ANGLE. There are three zones
defined: the inner cone, the outside zone, and the transitional zone in between. The
angle-dependent gain for a directional source is constant inside the inner cone, and
changes over the transitional zone to the value specified outside the outer cone.
Source GAIN is applied for the inner cone, with an application selectable
CONE_OUTER_GAIN factor to define the gain in the outer zone. In the transitional
zone implementation-dependent interpolation between GAIN and GAIN times
CONE_OUTER_GAIN is applied.

Table 4-16. Source DIRECTION Attribute

Name Signature Values Default
DIRECTION 3fv, 3f any except NaN { 0.0f, 0.0f, 0.0f }

Description: If DIRECTION does not equal the zero vector, the Source is directional.
The sound emission is presumed to be symmetric around the direction vector
(cylinder symmetry). Sources are not oriented in full 3 degrees of freedom, only two
angles are effectively needed.

The zero vector is default, indicating that a Source is not directional. Specifying a
non-zero vector will make the Source directional. Specifying a zero vector for a
directional Source will effectively mark it as nondirectional.

Table 4-17. Source CONE_INNER_ANGLE Attribute

Name Signature Values Default

CONE_INNER_ANGLE
i,f any except NaN 360.0f

Description: Inside angle of the sound cone, in degrees. The default of 360 means
that the inner angle covers the entire world, which is equivalent to an
omnidirectional source.

Table 4-18. Source CONE_OUTER_ANGLE Attribute

Name Signature Values Default

CONE_OUTER_ANGLE
i,f any except NaN 360.0f

Description: Outer angle of the sound cone, in degrees. The default of 360 means
that the outer angle covers the entire world. If the inner angle is also 360, then the
zone for angle-dependent attenuation is zero.

Table 4-19. Source CONE_OUTER_GAIN Attribute

29

Chapter 4. Listener and Sources

Name Signature Values Default

CONE_OUTER_GAIN
i,f [0.0f, 1.0f] 0.0f

Description: the factor with which GAIN is multiplied to determine the effective
gain outside the cone defined by the outer angle. The effective gain applied outside
the outer cone is GAIN times CONE_OUTER_GAIN. Changing GAIN affects all
directions, i.e. the source is attenuated in all directions, for any position of the
listener. The application has to change CONE_OUTER_GAIN as well if a different
behavior is desired.

4.3.3. Changing Source Attributes
The Source specifies the position and other properties as taken into account during
sound processing.

void Source{n}{sifd} (uint sourceName , enum paramName , T
value);

void Source{n}{sifd}v (uint sourceName , enum paramName , T *
values);

4.3.4. Querying Source Attributes
Source state is maintained inside the AL implementation, and the current attributes
can be queried. The performance of such queries is implementation dependent, no
performance guarantees are made. The valid values for the paramName parameter
are identical to the ones for Source*.

void GetSource{n}{sifd}{v} (uint sourceName , enum paramName , T
* values);

4.3.5. Queueing Buffers with a Source
AL does not specify a built-in streaming mechanism. There is no mechanism to
stream data e.g. into a Buffer object. Instead, the API introduces a more flexible and
versatile mechanism to queue Buffers for Sources.

There are many ways to use this feature, with streaming being only one of them.

• Streaming is replaced by queuing static buffers. This effectively moves any
multi-buffer caching into the application and allows the application to select how
many buffers it wants to use, whether these are re-used in cycle, pooled, or
thrown away.

• Looping (over a finite number of repititions) can be implemented by explicitely
repeating buffers in the queue. Infinite loops can (theoretically) be accomplished

30

Chapter 4. Listener and Sources

by sufficiently large repetition counters. If only a single buffer is supposed to be
repeated infinitely, using the respective Source attribute is recommended.

• Loop Points for restricted looping inside a buffer can in many cases be replaced
by splitting the sample into several buffers, queueing the sample fragments
(including repetitions) accordingly.

Buffers can be queued, unqueued after they have been used, and either be deleted,
or refilled and queued again. Splitting large samples over several buffers
maintained in a queue has a distinct advantages over approaches that require
explicit management of samples and sample indices.

4.3.5.1. Queueing command

The application can queue up one or multiple buffer names using
SourceQueueBuffers. The buffers will be queued in the sequence in which they
appear in the array.

void alSourceQueueBuffers (uint sourceName , sizei numBuffers ,
uint * bufferNames);

This command is legal on a Source in any state (to allow for streaming, queueing
has to be possible on a PLAYING Source). Queues are read-only with exception of
the unqueue operation. The Buffer Name NONE (i.e. 0) can be queued.

4.3.5.2. Unqueueing command

Once a queue entry for a buffer has been appended to a queue and is pending
processing, it should not be changed. Removal of a given queue entry is not possible
unless either the Source is STOPPED (in which case then entire queue is considered
processed), or if the queue entry has already been processed (PLAYING or PAUSED
Source).

The Unqueue command removes a number of buffers entries that have finished
processing, in the order of appearance, from the queue. The operation will fail if
more buffers are requested than available, leaving the destination arguments
unchanged. An INVALID_VALUE error will be thrown. If no error, the destination
argument will have been updated accordingly.

void SourceUnqueueBuffers (uint sourceName , sizei numEntries ,
uint * bufferNames);

4.3.6. Managing Source Execution
The execution state of a source can be queried. AL provides a set of functions that
initiate state transitions causing Sources to start and stop execution.

TBA: State Transition Diagram.

4.3.6.1. Source State Query

The application can query the current state of any Source using GetSource with the
parameter Name SOURCE_STATE. Each Source can be in one of four possible

31

Chapter 4. Listener and Sources

execution states: INITIAL, PLAYING, PAUSED, STOPPED. Sources that are either
PLAYING or PAUSED are considered active. Sources that are STOPPED or INITIAL
are considered inactive. Only PLAYING Sources are included in the processing. The
implementation is free to skip those processing stages for Sources that have no effect
on the output (e.g. mixing for a Source muted by zero GAIN, but not sample offset
increments). Depending on the current state of a Source certain (e.g. repeated) state
transition commands are legal NOPs: they will be ignored, no error is generated.

4.3.6.2. State Transition Commands

The default state of any Source is INITIAL. From this state it can be propagated to
any other state by appropriate use of the commands below. There are no irreversible
state transitions.

void SourcePlay (uint sName);

void SourcePause (uint sName);

void SourceStop (uint sName);

void SourceRewind (uint sName);

The functions are also available as a vector variant, which guarantees synchronized
operation on a set of Sources.

void SourcePlayv (sizei n , uint * sNames);

void SourcePausev (sizei n , uint * sNames);

void SourceStopv (sizei n , uint * sNames);

void SourceRewindv (sizei n , uint * sNames);

The following state/command/state transitions are defined:

• Play() applied to an INITIAL Source will promote the Source to PLAYING, thus
the data found in the Buffer will be fed into the processing, starting at the
beginning. Play() applied to a PLAYING Source will restart the Source from the
beginning. It will not affect the configuration, and will leave the Source in
PLAYING state, but reset the sampling offset to the beginning. Play() applied to a
PAUSED Source will resume processing using the Source state as preserved at the
Pause() operation. Play() applied to a STOPPED Source will propagate it to
INITIAL then to PLAYING immediately.

• Pause() applied to an INITIAL Source is a legal NOP. Pause() applied to a
PLAYING Source will change its state to PAUSED. The Source is exempt from
processing, its current state is preserved. Pause() applied to a PAUSED Source is a
legal NOP. Pause() applied to a STOPPED Source is a legal NOP.

32

Chapter 4. Listener and Sources

• Stop() applied to an INITIAL Source is a legal NOP. Stop() applied to a PLAYING
Source will change its state to STOPPED. The Source is exempt from processing,
its current state is preserved. Stop() applied to a PAUSED Source will change its
state to STOPPED, with the same consequences as on a PLAYING Source. Stop()
applied to a STOPPED Source is a legal NOP.

• Rewind() applied to an INITIAL Source is a legal NOP. Rewind() applied to a
PLAYING Source will change its state to STOPPED then INITIAL. The Source is
exempt from processing, its current state is preserved, with the exception of the
sampling offset which is reset to the beginning. Rewind() applied to a PAUSED
Source will change its state to INITIAL, with the same consequences as on a
PLAYING Source. Rewind() applied to a STOPPED Source promotes the Source to
INITIAL, resetting the sampling offset to the beginning.

4.3.6.3. Resetting Configuration

The INITIAL state is not necessarily identical to the default state in which Source is
created. INITIAL merely indicates that the Source can be executed using the
SourcePlay command. A STOPPED or INITIAL Source can be reset into the default
configuration by using a sequence Source commands as necessary. As the
application has to specify all relevant state anyway to create a useful Source
configuration, no reset command is provided.

33

Chapter 5. Buffers

A Buffer encapsulates AL state related to storing sample data. The application can
request and release Buffer objects, and fill them with data. Data can be supplied
compressed and encoded as long as the format is supported. Buffers can, internally,
contain waveform data as uncompressed or compressed samples,

Unlike Sources and Listener, Buffer Objects can be shared among AL contexts.
Buffers are referenced by Sources. A single Buffer can be referred to by multiple
Sources. This separation allows driver and hardware to optimize storage and
processing where applicable.

The simplest supported format for buffer data is PCM.

5.1. Buffer States
At this time, Buffer states are defined for purposes of discussion. The states
described in this section are not exposed through the API (can not be queried, or be
set directly), and the state description used in the implementation might differ from
this.

A Buffer is considered to be in one of the following States, with respect to all
Sources:

• UNUSED: the Buffer is no included in any queue for any Source. In particular,
the Buffer is neither pending nor current for any Source. The Buffer name can be
deleted at this time.

• PROCESSED: the Buffer is listed in the queue of at least one Source, but is neither
pending nor current for any Source. The Buffer can be deleted as soon as it has
been unqueued for all Sources it is queued with.

• PENDING: there is at least one Source for which the Buffer has been queued, for
which the Buffer data has not yet been dereferenced. The Buffer can only be
unqueued for those Sources which have dereferenced the data in the Buffer in its
entirety, and can not be deleted or changed.

The Buffer state is dependent on the state of all Sources that is has been queued for.
A single queue occurrence of a Buffer propagates the Buffer state (over all Sources)
from UNUSED to PROCESSED or higher. Sources that are STOPPED or INITIAL
still have queue entries that cause Buffers to be PROCESSED.

A single queue entry with a single Source for which the Buffer is not yet
PROCESSED propagates the buffer’s queueing state to PENDING.

Buffers that are PROCESSED for a given Source can be unqueued from that Source’s
queue. Buffers that have been unqueued from all Sources are UNUSED. Buffers that
are UNUSED can be deleted, or changed by BufferData commands.

5.2. Managing Buffer Names
AL provides calls to obtain Buffer names, to request deletion of a Buffer object
associated with a valid Buffer name, and to validate a Buffer name. Calls to control
Buffer attributes are also provided.

5.2.1. Requesting Buffers Names

34

Chapter 5. Buffers

The application requests a number of Buffers using GenBuffers.

void GenBuffers (sizei n , uint * bufferNames);

5.2.2. Releasing Buffer Names
The application requests deletion of a number of Buffers by calling DeleteBuffers.

Once deleted, Names are no longer valid for use with AL function calls. Any such
use will cause an INVALID_NAME error. The implementation is free to defer actual
release of resources.

void DeleteBuffers (sizei n , uint * bufferNames);

IsBuffer(bname) can be used to verify deletion of a buffer. Deleting bufferName 0 is
a legal NOP in both scalar and vector forms of the command. The same is true for
unused buffer names, e.g. such as not allocated yet, or as released already.

5.2.3. Validating a Buffer Name
The application can verify whether a buffer Name is valid using the IsBuffer query.

boolean IsBuffer (uint bufferName);

5.3. Manipulating Buffer Attributes

5.3.1. Buffer Attributes
This section lists the attributes that can be set, or queried, per Buffer. Note that some
of these attributes can not be set using the Buffer commands, but are set using
commands like BufferData.

Querying the attributes of a Buffer with a buffer name that is not valid throws an
INVALID_OPERATION. Passing in an attribute name that is invalid throws an
INVALID_VALUE error.

Table 5-1. Buffer FREQUENCY Attribute

Name Signature Values Default
FREQUENCY float none (0, any]

Description: Frequency, specified in samples per second, i.e. units of Hertz [Hz].
Query by GetBuffer. The frequency state of a buffer is set by BufferData calls.

Table 5-2. Buffer SIZE Attribute

35

Chapter 5. Buffers

Name Signature Values Default
SIZE sizei [0, MAX_UINT] 0

Description: Size in bytes of the buffer data. Query through GetBuffer, can be set
only using BufferData calls. Setting a SIZE of 0 is a legal NOP. The number of bytes
does not necessarily equal the number of samples (e.g. for compressed data).

5.3.2. Querying Buffer Attributes
Buffer state is maintained inside the AL implementation and can be queried in full.
The valid values for paramName are identical to the ones for Buffer*.

void GetBuffer{n}{sifd}{v} (uint bufferName, enum paramName , T *
values);

5.3.3. Specifying Buffer Content
A special case of Buffer state is the actual sound sample data stored in asociation
with the Buffer. Applications can specify sample data using BufferData.

void BufferData{n}{sifd}{v} (uint bufferName, enum format, void *;
data , sizei size , uint frequency);

The data specified is copied to an internal software, or if possible, hardware buffer.
The implementation is free to apply decompression, conversion, resampling, and
filtering as needed. The internal format of the Buffer is not exposed to the
application, and not accessible. Valid formats are FORMAT_MONO8,
FORMAT_MONO16, FORMAT_STEREO8, and FORMAT_STEREO16. An
implementation may expose other formats, see the chapter on Extensions for
information on determining if additional formats are supported.

Applications should always check for an error condition after attempting to specify
buffer data in case an implementation has to generate an OUT_OF_MEMORY or
conversion related INVALID_VALUE error. The application is free to reuse the
memory specified by the data pointer once the call to BufferData returns. The
implementation has to dereference, e.g. copy, the data during BufferData execution.

36

Chapter 6. AL Contexts and the ALC API

This section of the AL specification describes ALC, the AL Context API. ALC is a
portable API for managing AL contexts, including resource sharing, locking, and
unlocking. Within the core AL API the existence of a Context is implied, but the
Context is not exposed. The Context encapsulates the state of a given intance of the
AL state machine.

To avoid confusion with the AL related prefixes implied throughout this document,
the "alc" and "ALC_" prefixes have been made explicit in the ALC related sections.

ALC defines the following objects: Contexts.

6.1. Managing Devices
ALC introduces the notion of a Device. A Device can be, depending on the
implementation, a hardware device, or a daemon/OS service/actual server. This
mechanism also permits different drivers (and hardware) to coexist within the same
system, as well as allowing several applications to share system resources for audio,
including a single hardware output device. The details are left to the
implementation, which has to map the available backends to uniq7ue device
specifiers (represented as strings).

6.1.1. Connecting to a Device
The alcOpenDevice function allows the application (i.e. the client program) to
connect to a device (i.e. the server).

ALCdevice * alcOpenDevice(const ubyte * deviceSpecifier);

If the function returns NULL, then no sound driver/device has been found. The
argument is a null terminated string that requests a certain device or device
configuration. If NULL is specified, the implementation will provide an
implementation specific default.

6.1.2. Disconnecting from a Device
The alcCloseDevice function allows the application (i.e. the client program) to
disconnect from a device (i.e. the server).

void alcCloseDevice(ALCdevice * deviceHandle);

If deviceHandle is NULL or invalid, an ALC_INVALID_DEVICE error will be
generated. Once closed, a deviceHandle is invalid.

6.2. Managing Rendering Contexts
All operations of the AL core API affect a current AL context. Within the scope of
AL, the ALC is implied - it is not visible as a handle or function parameter. Only one
AL Context per INprocess can be current at a time. Applications maintaining
multiple AL Contexts, whether threaded or not, have to set the current context

37

Chapter 6. AL Contexts and the ALC API

accordingly. Applications can have multiple threads that share one more or contexts.
In other words, AL and ALC are threadsafe.

The default AL Context interoperates with a hardware device driver. The
application manages hardware and driver resources by communicating through the
ALC API, and configures and uses such Contexts by issuing AL API calls. A default
AL Context processes AL calls and sound data to generate sound output. Such a
Context is called a Rendering Context. There might be non-rendering contexts in the
future.

The word "rendering" was chosen intentionally to emphasize the primary objective
of the AL API - spatialized sound - and the underlying concept of AL as a sound
synthesis pipeline that simulates sound propagation by specifying spatial
arrangements of listeners, filters, and sources. If used in describing an application
that uses both OpenGL and AL, "sound rendering context" and "graphics rendering
context" should be used for clarity. Throughout this document, "rendering" is used
to describe spatialized audio synthesis (avoiding ambiguous words like
"processing", as well as proprietary and restrictive terms like "wavetracing").

6.2.1. Context Attributes
The application can choose to specify certain attributes for a context. Attributes not
specified explicitely are set to implementation dependend defaults.

Table 6-1. Context Attributes

Name Description
ALC_FREQUENCY Frequency for mixing output buffer, in

units of Hz.
ALC_REFRESH Refresh intervalls, in units of Hz.
ALC_SYNC Flag, indicating a synchronous context.

6.2.2. Creating a Context
A context is created using alcCreateContext. The device parameter has to be a valid
device. The attribute list can be NULL, or a zero terminated list of integer pairs
composed of valid ALC attribute tokens and requested values.

ALCcontext * alcCreateContext (const ALCdevice * deviceHandle ,
int * attrList);

Context creation will fail if the application requests attributes that, by themselves,
can not be provided. Context creation will fail if the combination of specified
attributes can not be provided. Context creation will fail if a specified attribute, or
the combination of attributes, does not match the default values for unspecified
attributes.

6.2.3. Selecting a Context for Operation
To make a Context current with respect to AL Operation (state changes by issueing
commands), alcMakeContextCurrent is used. The context parameter can be NULL

38

Chapter 6. AL Contexts and the ALC API

or a valid context pointer. The operation will apply to the device that the context
was created for.

boolean alcMakeContextCurrent (ALCcontext * context);

For each OS process (usually this means for each application), only one context can
be current at any given time. All AL commands apply to the current context.
Commands that affect objects shared among contexts (e.g. buffers) have side effects
on other contexts.

6.2.4. Initiate Context Processing
The current context is the only context accessible to state changes by AL commands
(aside from state changes affecting shared objects). However, multiple contexts can
be processed at the same time. To indicate that a context should be processed (i.e.
that internal execution state like offset increments are supposed to be performed),
the application has to use alcProcessContext.

void alcProcessContext(ALCcontext * context);

Repeated calls to alcProcessContext are legal, and do not affect a context that is
already marked as processing. The default state of a context created by
alcCreateContext is that it is not marked as processing.

6.2.5. Suspend Context Processing
The application can suspend any context from processing (including the current
one). To indicate that a context should be suspended from processing (i.e. that
internal execution state like offset increments is not supposed to be changed), the
application has to use alcSuspendContext.

void alcSuspendContext(ALCcontext * context);

Repeated calls to alcSuspendContext are legal, and do not affect a context that is
already marked as suspended. The default state of a context created by
alcCreateContext is that it is marked as suspended.

6.2.6. Destroying a Context

void alcDestroyContext (ALCcontext * context);

The correct way to destroy a context is to first release it using alcMakeCurrent and
NULL. Applications should not attempt to destroy a current context.

39

Chapter 6. AL Contexts and the ALC API

6.3. ALC Queries

6.3.1. Query for Current Context
The application can query for, and obtain an handle to, the current context for the
application. If there is no current context, NULL is returned.

ALCcontext * alcGetCurrentContext(void);

6.3.2. Query for a Context’s Device
The application can query for, and obtain an handle to, the device of a given context.

ALCdevice * alcGetContextsDevice(ALCcontext * context);

6.3.3. Query For Extensions
To verify that a given extension is available for the current context and the device it
is associated with, use

boolean IsExtensionPresent(const ALCdevice * deviceHandle, const
ubyte * extName);

A NULL name argument returns FALSE, as do invalid and unsupported string
tokens. A NULL deviceHandle will result in an INVALID_DEVICE error.

6.3.4. Query for Function Entry Addresses
The application is expected to verify the applicability of an extension or core
function entry point before requesting it by name, by use of alcIsExtensionPresent.

void * alcGetProcAddress(const ALCdevice * deviceHandle, const
ubyte * funcName);

Entry points can be device specific, but are not context specific. Using a NULL
device handle does not guarantee that the entry point is returned, even if available
for one of the available devices. Specifying a NULL name parameter will cause an
ALC_INVALID_VALUE error.

6.3.5. Retrieving Enumeration Values
Enumeration/token values are device independend, but tokens defined for
extensions might not be present for a given device. Using a NULL handle is legal,

40

Chapter 6. AL Contexts and the ALC API

but only the tokens defined by the AL core are guaranteed. Availability of extension
tokens dependends on the ALC extension.

uint alcGetEnumValue (const ALCdevice * deviceHandle, const ubyte
enumName);

Specifying a NULL name parameter will cause an ALC_INVALID_VALUE error.

6.3.6. Query for Error Conditions
ALC uses the same conventions and mechanisms as AL for error handling. In
particular, ALC does not use conventions derived from X11 (GLX) or Windows
(WGL). The alcGetError function can be used to query ALC errors.

enum alcGetError(ALCdevice * deviceHandle);

Error conditions are specific to the device.

Table 6-2. Error Conditions

Name Description
ALC_NO_ERROR The device handle or specifier does name

an accessible driver/server.
ALC_INVALID_DEVICE The Context argument does not name a

valid context.
ALC_INVALID_CONTEXT The Context argument does not name a

valid context.
ALC_INVALID_ENUM A token used is not valid, or not

applicable.
ALC_INVALID_VALUE An value (e.g. attribute) is not valid, or

not applicable.

6.3.7. String Query
The application can obtain certain strings from ALC.

const ubyte * alcGetString(ALCdevice * deviceHandle, enum token);

For some tokens, NULL is is a legal value for the deviceHandle. In other cases,
specifying a NULL device will generate an ALC_INVALID_DEVICE error.

Table 6-3. String Query Tokens

Name Description
ALC_DEFAULT_DEVICE_SPECIFIER The specifier string for the default device

(NULL handle is legal).

41

Chapter 6. AL Contexts and the ALC API

Name Description
ALC_DEVICE_SPECIFIER The specifier string for the device (NULL

handle is not legal).
ALC_EXTENSIONS The extensions string for diagnostics and

printing.

In addition, printable error message strings are provided for all valid error tokens,
including ALC_NO_ERROR, ALC_INVALID_DEVICE, ALC_INVALID_CONTEXT,
ALC_INVALID_ENUM, ALC_INVALID_VALUE.

6.3.8. Integer Query
The application can query ALC for information using an integer query function.

void alcGetIntegerv(ALCdevice * deviceHandle, enum token , sizei
size , int dest);

For some tokens, NULL is a legal deviceHandle. In other cases, specifying a NULL
device will generate an ALC_INVALID_DEVICE error. The application has to
specify the size of the destination buffer provided. A NULL destination or a zero
size parameter will cause ALC to ignore the query.

Table 6-4. Integer Query Tokens

Name Description
ALC_MAJOR_VERSION Major version query.
ALC_MINOR_VERSION Minor version query.
ALC_ATTRIBUTES_SIZE The size required for the zero-terminated

attributes list, for the current context.
NULL is an invalid device. NULL (no
current context for the specified device) is
legal.

ALC_ALL_ATTRIBUTES Expects a destination of
ALC_CURRENT_ATTRIBUTES_SIZE,
and provides the attribute list for the
current context of the specified device.
NULL is an invalid device. NULL (no
current context for the specified device)
will return the default attributes defined
by the specified device.

6.4. Shared Objects
For efficiency reasons, certain AL objects are shared across ALC contexts. At this
time, AL buffers are the only shared objects.

6.4.1. Shared Buffers

42

Chapter 6. AL Contexts and the ALC API

Buffers are shared among contexts. The processing state of a buffer is determined by
the dependencies impose by all contexts, not just the current context. This includes
suspended contexts as well as contexts that are processing.

43

Appendix A. Global Constants

Table A-1. Misc. AL Global Constants

Name OpenAL: datatype Description Literal value

ALenum FALSE boolean false 0
ALenum TRUE boolean true 1

44

Appendix B. Extensions

Extensions are a way to provide for future expansion of the AL API. Typically,
extensions are specified and proposed by a vendor, and can be treated as vendor
neutral if no intellectual property restrictions apply. Extensions can also be specified
as, or promoted to be, ARB extensions, which is usually the final step before adding
a tried and true extension to the core API. ARB extensions, once specified, have
mandatory presence for backwards compatibility. The handling of vendors-specific
or multi-vendor extensions is left to the implementation. The IA-SIG I3DL2
Extension is an example of multi-vender extensions to the current AL core API.

B.1. Extension Query
To use an extension, the application will have to obtain function addresses and
enumeration values. Before an extension can be used, the application will have to
verify the presence of an extension using IsExtensionPresent(). The application can
then retrieve the address (function pointer) of an extension entry point using
GetProcAddress. Extensions and entry points can be Context-specific, and the
application can not count on an Extension being available based on the mere return
of an entry point. The application also has to maintain pointers on a per-Context
basis.

boolean IsExtensionPresent(const ubyte * extName);

Returns TRUE if the given extension is supported for the current context, FALSE
otherwise.

B.2. Retrieving Function Entry Addresses

void * GetProcAddress(const ubyte * funcName);

Returns NULL if no entry point with the name funcName can be found.
Implementations are free to return NULL if an entry point is present, but not
applicable for the current context. However the specification does not guarantee this
behavior.

Applications can use GetProcAddress to obtain core API entry points, not just
extensions. This is the recommended way to dynamically load and unload AL
DLL’s as sound drivers.

B.3. Retrieving Enumeration Values
To obtain enumeration values for extensions, the application has to use
GetEnumValue of an extension token. Enumeration values are defined within the
AL namespace and allocated according to specification of the core API and the
extensions, thus they are context-independent.

uint GetEnumValue (const ubyte enumName);

45

Appendix B. Extensions

Returns 0 if the enumeration can not be found. The presence of an enum value does
not guarantee the applicability of an extension to the current context. A non-zero
return indicates merely that the implementation is aware of the existence of this
extension. Implementations should not attempt to return 0 to indicate that the
extensions is not supported for the current context.

B.4. Naming Conventions
Extensions are required to use a postfix that separates the extension namespace from
the core API’s namespace. For example, an ARB-approved extension would use
"_ARB" with tokens (ALenum), and "ARB" with commands (function names). A
vendor specific extension uses a vendor-chosen postfix, e.g. Loki Extensions use
"_LOKI" and "LOKI", respectively.

B.5. ARB Extensions
There are no ARB Extensions defined yet, as the ARB has yet to be installed.

B.6. Other Extension
For the time being this section will list externally proposed extensions, namely the
extension based on the IASIG Level 2 guideline.

B.6.1. IA-SIG I3DL2 Extension
The IA-SIG I3DL2 guideline defines a set of parameters to control the reverberation
characteristics of the environment the listener is located in, as well as filtering or
muffling effects applied to individual Sources (useful for simulating the effects of
obstacles and partitions). These features are supported by a vendor neutral
extension to AL (TBA). The IA-SIG 3D Level 2 rendering guideline1 provides related
information.

B.7. Compatibility Extensions
The extensions described have at one point been in use for experimental purposes,
proof of concept, or short term needs. They are preserved for backwards
compatibility. Use is not recommended, avialability not guaranteed. Most of these
will be officially dropped by the time API revision 2.0 is released.

B.7.1. Loki Buffer InternalFormat Extension
AL currently does not provide a separate processing chain for multichannel data. To
handle stereo samples, the following alternative entry point to BufferData has been
defined.

void BufferWriteData(uint bufferName, enum format, void *; data ,
sizei size , uint frequency, enum internalFormat);

46

Appendix B. Extensions

Valid formats for internalFormat are FORMAT_MONO8, FORMAT_MONO16,
FORMAT_STEREO8, and FORMAT_STEREO16.

B.7.2. Loki BufferAppendData Extension
Experimental implementation to append data to an existing buffer. Obsoleted by
Buffer Queueing. TBA.

B.7.3. Loki Decoding Callback Extension
Experimental implementation to allow the application to specify a decoding
callback for compression formats and codecs not supported by AL. This is supposed
to be used if full uncompression by the application is prohibited by memory
footprint, but streaming (by queueing) is not desired as the compressed data can be
kept in memory in its entirety.

If mixing can be done from the compressed data directly, several sources can use the
sample without having to be synchronized. For compression formats not supported
by AL, however, partial decompression has to be done by the application. This
extension allows for the implementation to "pull" data, using apllication provided
decompression code.

The use of this callback by the AL implementation makes sense only if late
decompression (incremerntal, on demand, as needed for mixing) is done, as full
early compression (ahead-of-time) inside the implementation would exact a similar
memory footprint.

TBA.

This extension forces execution of third party code during (possibly threaded)
driver operation, and might also require state management with global variables for
decoder state, which raises issues of thread safety and use for multiple buffers. This
extension should be obsolete as soon as AL supports a reasonable set of state of the
art compression and encoding schemes.

B.7.4. Loki Infinite Loop Extension
To support infinite looping, a boolean LOOP was introduced. With the introduction
of buffer queueing and the request for support for a limited number of repetitions,
this mechanism was redundant. This extension is not supported for buffer queue
operations, attempts to use it will cause an ILLEGAL_OPERATION error. For
backwards compatibility it is supported as the equivalent to

Source(sName, PLAY_COUNT, MAX_INTEGER)

For the query LOOP==TRUE, the comparison PLAY_COUNT!=MAX_INTEGER has
to be executed on the queue, not the current value which is decremented for a
PLAYING Source.

Table B-1. Source LOOP_LOKI Attribute

Name Signature Values Default
LOOP_LOKI b TRUE FALSE FALSE

47

Appendix B. Extensions

Description: TRUE indicates that the Source will perform an inifinite loop over the
content of the current Buffer it refers to.

B.7.5. Loki Byte Offset Extension
The following has been obsoleted by explicit Source State query. hack.

Table B-2. Buffer BYTE Offset attribute

Name Signature Values Default
BYTE_LOKI ui n/a n/a

Current byte for the buffer bound to the source interpreted as an offset from the
beginning of the buffer.

B.8. Loop Point Extension
In external file now.

Notes
1. http://www.iasig.org/pages/wg/3DWG/3dwg.htm

48

Appendix C. Extension Process

There are two ways to suggest an Extension to AL or ALC. The simplest way is to
write an ASCII text that matches the following template:

RFC: rfc-iiyymmdd-nn
Name: (indicating the purpose/feature)
Maintainer: (name and spam-secured e-mail)
Date: (last revision)
Revision: (last revision)

new enums
new functions

description of operation

Such an RFC can be submitted on the AL discussion list (please use RFC in the
Subject line), or send to the maintainer of the AL specification. If you are shipping
an actual implementation as a patch or as part of the AL CVS a formal writeup is
recommend. In this case, the Extension has to be described as part of the
specification, which is maintained in DocBook SGML (available for UNIX, Linux
and Win32). The SGML source of the specification is available by CVS, and the
Appendix on Extensions can be used as a template. Contact the maintainer for
details.

49

