Faculty Workload Data Management System

CS 470 Final Write-up

By: Shane Ursani

      John Vicente

Abstract

Every year, UAA faculty members and department chairs are required to fill out two forms as obligated by their UAA contracts. The first form is called the Workload form. In this form, faculty members are required to propose courses they are going to instruct, research they are planning to complete, and any community or other service they are required to accomplish for the upcoming year. The second form is the Activity Report in which faculty members and department chairs are to report the actual teaching, research, and/or community service they completed in contrast to what they proposed in the Workload form.

The current method to fill out the workload and activity report is on paper. The mission of this project was to implement an electronic management system in order to abolish the present method using a system prototype produced by a development group in the CIOS department. This prototype was formed using the research the group compiled in the Spring 2002 semester. 

The process usually follows a three-tier level framework. The faculty proposes work that adheres to their labor contracts, with possible exception for varying reasons. The chair of the department is responsible for editing the submittal to ensure that all proposed work is acceptable. The dean of the college then has the responsibility to approve departments.

This three-tier process requires effective means of proposal submittal for the faculty, appropriate resources for review by chairpersons, and a liberal power authority to the deans of colleges.

1. Introduction

This project was developed for the University of Alaska-Anchorage (UAA). The contracts of UAA faculty members and department chairs with the University of Alaska-Anchorage mandate these individuals to fill out two forms. The first form is called the Workload form. In this form, faculty members must propose courses they are going to instruct, research they are planning to complete, and any community or other service they are required to accomplish for the upcoming year. The second form is the Activity Report in which faculty members and department chairs are to report the actual teaching, research, and/or community service they completed in contrast to what they proposed in the Workload form.

We were commissioned by the provost office of UAA to implement an electronic database driven web application that would effectively mimic and enhance the existing method. The entire project was started and implemented with a liberal and informal definition of what was expected. We were provided with pre-accumulated research along with a pre-approved system prototype to help complete the application.

2. Project Overview

The project’s name is ‘Faculty Workload Data Management System’. The initial research normally necessary to undertake this kind of project was given to us by legacy from another development group. This group initially undertook this project from a CIOS 489 class, Spring 2002. They were able to develop a prototype that established the viability of such an undertaking and received wide acceptance from the UAA faculty and Academic Affairs. Their research included talking with various members of academic affairs and financial affairs. They were able to gather enough required aspects to design a database that would accurately hold relevant information and capture key relationships.

The prototype was not adopted into use, however, due to unattractive shortcomings. These shortcomings were described as key concerns to concentrate on. The project was initially modeled after the pre-approved system, but quickly evolved on its own merits. The research gathered by the CIOS group to provide us knowledge of the desired deliverable was the only directly related contribution left in the new system.

· We obtained a system prototype developed by three students in CIOS 489 during the spring semester in 2002.
· The prototype demonstrated an ability to effectively improve communication of faculty workloads and activity reports to their respective academic components of the university.
· Due to its popular acceptance the method was desired to be adopted by some UAA personnel. The system however had deficiencies that limited its usability and performance. 
· Our goals were to redesign a more efficient system based on this prototype. 
· Network latency and the user interface were the primary concerns over the prototype’s failure to be adopted.
· Also missing from the prototype was the ability to perform statistical queries on issues important to the University. The most important issues involved tracking the activities of the adjunct faculty, which represent sixty percent of the courses taught each year. Currently there is only a remote tracking method of their activities via another UAA system, Banner.
· After a faculty member has submitted a workload form, it is necessary for the department chair to have the ability to make requests to the college dean for the proposed workload form. The department chair does not have the authority to change a faculty member’s workload form and therefore needs to be able to make these requests.
The prototype supplied to us from the previous group was the only key entry point to this project. There was no System Requirements Specifications (SRS) document. There was no design document, either. A general description of the functionality was given, but different UAA personnel gave contradicting statements about both functionality and appearance. If a SRS was provided, the extra communication problems between the developers, the clients, and us could have been evaded. Without the SRS, different individuals expected different features from the system and when a system prototype, made by the CIOS group, was shown late in the development process, it became very expensive to implement the requested features.

2.1 Database

The system prototype included tables that were already supported for a relational database design.

MAU Code: Major academic unit

Campus: Physical description of the university.

College: A specific division of academic study.

Faculty: a teaching member of a college.

Department: a specific division of a college.

Special Rank: prefix to the faculty member’s normal rank.

Rank: a faculty member’s rank, describing status ranging from adjunct to faculty to visiting lecturer.

Discipline: indicates a faculty member’s classified area of expertise.

Course: a description of a class offered by a department.

Faculty Report: High-level data regarding faculty workload and activity report.

Workload Component: descriptive types of faculty units submitted with the workload.

Organization Membership: the organization the faculty is a member of.

Narrative: container that holds responses to questions that are purely narrative.

Component Item: individual line items of faculty workload components. They contain detailed information about faculty submittals.

Research Funding: stores data about the funding associated with research projects.

Research Collaborator: stores names of people who collaborate on research projects.

Research Product: a description of the research project.

Research Proposal: a description of a proposed research project.

Chair_Request: information document by a chairperson about the review of a faculty report.

Request: a description of a request on a faculty report by the chair to the dean.

Using these tables, we will be able to create dynamic web pages based solely on the UAA each employee’s personal information. These tables also provide the basis to perform statistical queries as needed. The database is the primary storage of all information used on this system. All information is carefully recorded and preserved, maintaining integrity from its inception to permanent storage.

The prototype project was the basis of our database design. We incorporated other tables, however, due to the previously mentioned adjunct-tracking and the chair-to-dean request problems.  The workload_component table was expanded to eliminate costly processing time, but created redundant information. In order to make this tradeoff, some thought was placed into maintaining the code for future use, the number of accesses to the database to perform some queries and additional storage needed to house redundant information. It was decided that the small increase in size, relative to a server’s overall storage led to redundancy with the benefit of easier maintenance, code reuse and processor performance. Another table, the chair_request was created to map specific comment made during the review process. These entries are used to explain any failed reports or as documented comments for the dean to consider.

 The web pages will have certain functionality based on their logins. For example, if the end-user logging in has a rank value of a faculty member in the database then the faculty home page will be loaded and populated with that member’s information. Conversely, if the end-user logging in has a rank value of a college dean then the end-user’s browser will be directed to a dean’s home page with the necessary information. More information of the user-interface is provided in section 4.1.

3. Project Requirements

The general requirements of this web management system were explained to us in brief. We were required to implement the database design, which was created in the prototype and was pre-approved by our client. Nevertheless, we were still allowed to make slight modifications to this design that were necessary in the construction of this project. The user-interface we designed looks similar to the prototype, except that our new form layout was more user-friendly.

Also mentioned to us in brief was to provide the ability to perform various statistical queries. Beyond adjunct tracking capabilities, the client did not specify the extent of statistical queries needed. The following section describes an informal list of system functionality that was gathered through interviews with UAA personnel from academic affairs, financial affairs, several faculty, the dean of the College of Arts and Sciences (CAS) and Hilary Davies, chairperson of the mathematical sciences department in the CAS.

3.1 Functional Specifications

· There are four types of users that must be explicitly recognized by the system.

· Faculty members

· Chairs of Departments

· Deans of colleges

· Academic Affairs and other administrative offices

· More information will be provided after demonstrations to UAA personnel in the coming weeks.

· Access to the web forms must be authenticated by username and password.

· Every access to a page requires authentication that the user is a valid user.

· This is to be implemented with form authentication with time out requirements.

· Information must be securely recorded and integrity of data must be preserved.

· A faculty member must have the ability to view their previous submittal forms.

· TYPE 1: Faculty Workload Submittal Form, completed once a year specifying the type of academic teaching, research, etc. they expect to perform the upcoming year.

· A user interface will be created that will allow the users to select the desired academic unit and then select or specify the appropriate area of study and what it may consist of. In regards to teaching credits a list will be created that must make the user specifically choose the specified course they want. An additional area will be included for a new course the end-user may want to add to the curriculum that didn’t previously exist.

· TYPE 2: Faculty Activity Report, which are to be completed yearly specifying the actual work a faculty member accomplished during the school year.

· A user interface will be created that will allow the users to select the desired academic unit and then select or specify the appropriate area of study and what it may consist of. In regards to teaching credits, a list will be created that must make the user specifically choose the specified course they want. An additional area will be included for a new course they want to add to the curriculum that didn’t previously exist.

· The chairpersons must be able to access the submitted workloads and activity reports of all faculty members in their respective department. They need to have the ability to approve or disapprove the forms that are submitted by faculty in their departments. Also, the ability to make requests on individual workload components to the dean was required.

· The college deans must have access to all the reports submitted by the chairpersons and the ability to view a faculty member’s individual form submittal as needed. They must also have the ability to perform ‘buyouts’ of regular faculty and assign them to adjunct while maintaining the ability to monitor adjuncts’ workloads for overload credits. Furthermore, the deans needed to have the ability to nullify or delete individual workload components in a faculty member’s workload form. The nullify option kept that individual workload component on record while the delete option completely removed that component from the database. The ability to add new workload components was also provided.

· Academic Affairs or other groups not specified to us in the requirements may need or desire statistics that reflect the percentage of units that are used for teaching, research, etc. The framework to perform these statistical queries is provided.

· Financial Affairs requires the database accurately contain information regarding all faculty of the university. Adjunct activities must be monitored and provided to chairpersons and deans on an as-needed basis. Furthermore, they require statistical information about buyout percentages, researches and to-be-determined other statistics.

3.2 System Specifications

The system accessing the Faculty Workload Data Management System may be of any platform. It needs to include an installed web browser such as Internet Explorer 5.0 or higher, Netscape 7.0 or higher. Time permitting, a text based browser, like Lynx should also have interactive capabilities with the system. The web browser being used necessitates having the cookies option enabled. The recommended resolution of the system is 1024 by 786 pixels or more. Resolutions smaller than the specified one may result in an undesired display of the web pages.

4.0 System Design

The project was appointed with relatively few restrictions. This allowed for extensive experience deriving the desired results for an undefined procedure. The freedom granted allotted independent research on new technologies. We were required to pick a format and chose to be consistent with our strategy after a programming language, C#, was chosen. We chose to use ASP for our web form development and the .NET framework for the development environment. We chose these tools because they had the power to accomplish the project and were ready and available resources to the project. Our database was assigned to us; we were instructed to use a Microsoft SQL Server database that the University provided (by Dr. Kenrick Mock.)
Due to the nature of web programming, a true object-oriented design was not possible. However, a modular decomposition and event-based design was performed. The user information for a logged-in user would be ‘cookied’ into their system’s machine. Several cookies are created at log in time to allow the page to be dynamically tailored for the user. The visiting faculty member’s name and other personal information were the needed primitives to allow proper queries. After the initial queries gather the needed data, further cookies are added dynamically to capture current state information, like report identification, individual component identification and submittal information.
[image: image1.png][image: image2.png][image: image3.png][image: image4.png][image: image5.png][image: image6.png][image: image7.png][image: image8.png][image: image9.png][image: image10.png]







4.1 User-Interface Design

Figure 1.1.1 displays the login page for the Faculty Workload Data Management System.


Figure 1.1.1

The log in page

for the Faculty

Workload Data

Management

System

Figure 1.1.2: A faculty member’s home page. The page allows for selection of reports, and information about the current state of the report approval process. The logging in procedure will redirect the end-user to the appropriate home page. Figures 1.1.2, 1.1.3, and 1.1.4 display the home pages for faculty members, department chairs, and college deans, respectively.

Figure 1.1.3: A department chair’s home page. 

[image: image11.png]
Figure 1.1.4: A college dean’s home page. Allowing access to all faculty personnel in their college.


If the end-user logging in is a faculty member, the user is granted the ability to create, edit, and approve workload and activity report forms. Figure 1.1.2 shows two workload forms the faculty member has created with the option to edit the latter form since it has not been submitted to the chair as of yet. A screenshot of this case is shown in Figure 1.1.5. On the other hand, the form can only be viewed and is not editable if it is the case where a faculty member has already submitted a form. A screenshot of this phase is shown in Figure 1.1.6.

Figure 1.1.5: A workload form in the editable phase prior to submission to the chair.

Figure 1.1.6: A workload form in the non-editable phase after it has been submitted to the chair. This report is made available for faculty review after submission.

In the case where the end-user logging in is a department chair, the user is granted the ability to do the following tasks: 

· Create, edit, and submit his/her own workload and activity report forms.

· View the workload and activity report forms of other faculty members in his/her department to decide whether to approve or disapprove them. 

· Add further descriptive comment regarding individual components and an overall statement about any failures, successes or necessary documentation.

As shown in Figure 1.1.3, the chair home page provides links to complete the above-mentioned tasks. If the chair decides to complete his/her own workload and activity report forms, their browser is redirected to a web page similar to the faculty home page. From this point onwards, the chair has the same functionality as a faculty member for creation and approval of own their personal workload and activity report forms.

If the chair selects to view the workload and activity report forms of other faculty members in his/her department, the web page shown in Figure 1.1.7 is loaded.

Figure 1.1.7: A list of faculty members in a chair’s department.


From the faculty list provided, the chair can select a faculty member to view that individual’s submitted forms. Next, the chair can view and approve/disapprove any forms that the chair has not yet approved. There are special cases where the chair does not legally have the authority to approve or disapprove a faculty member’s workload forms. For those special cases, we have created a bypass option where the forms would be forwarded to the college dean for final approval. 

Additionally, the chair can request changes to the dean that they feel are obligatory on a workload form. These are only requests since the dean is the authoritative figure who has the power to make changes to a faculty’s workload form. Figure 1.1.8 shows chair’s view of a faculty member’s workload form prior to submitting it to the college dean.

Figure 1.1.8: A chair’s view of a faculty member’s workload form prior to submittal to the college dean.

Lastly, if the end-user logging in is a college dean, the user is granted the ability to do the following tasks:

· View the workloads of all the faculty members and department chairs in his/her college to decide whether to approve or disapprove the workload or activity report forms.

· Make changes to workload and activity report forms of any faculty member or department chair as necessary. This includes nullifying workload components such as courses, community service, research, etc. from workload forms. Nullifying a workload component does not remove it from the database and a record of this component can be viewed at a later time.  Furthermore, the dean has the capability to add or delete any components to/from workload forms.

· Future inclusions will allow for the dean to process his/her own workload and activity reports, but the process of approval has been thus unrevealed to this project.

A screenshot of the dean’s view of a faculty member’s workload form is shown in Figure 1.1.9. Additionally, a screen capture of adding a new component on a faculty member’s workload form is also shown in Figure 1.1.10.

Figure 1.1.9: The college dean’s view of a faculty member’s workload form.

Figure 1.1.10

The college dean’s web page for add new component to a workload form.

4.2 Data Structures

The data structures used in the Faculty Workload Data Management System were relatively simple. No abstract data types were used since the application structure was not object-oriented. Primitive data types, native to the .NET framework, were only used. The data abstractions used led the project to include built in form-control widgets like drop-down lists and data grids. In the code-behind of the web pages, String arrays and integer arrays were used frequently. The browser’s cookie data types were incorporated in the design, also. In one of the faculty workload form prototypes, an observer pattern was implemented with severally strongly coupled arrays to monitor parent-child relationships with components, but was later dropped in future change revisions due to a conflicting implementation and desired effects.

4.3 System Architecture

The system will be composed of ‘equal size’ pages. These pages can be thought of as objects with different properties. Each page serves specific purposes.


Figure 3.2.1

High-level abstraction

of the System 

Architecture of the

Workload Management

 System.

Upon authentication of the login, the user’s personal information, stored systematically on the database, will be stored via cookies on the web browsers. Based on these cookie variables values, one of three types of forms will appear (faculty, chair, or dean).

The faculty page (as shown in Figure 1.1.2) contains the vital statistics of the individual, which includes name, rank, specialty, etc. There is a dynamically generated data grid based on previous report submittals. These submittals will populate a data grid table with every record having a corresponding link button. If some action is to be taken on one of the reports then the end-user will select the intended link button.
The chair page (as shown in Figure 1.1.7) will present the user with a dynamically generated table of the faculty within their department. The user can view any individual faculty member’s submitted forms. When a faculty member is selected, a dynamic page will display all reports that have been submitted by that faculty member.

The dean page will present the user with a dynamically generated table of the faculty within their college. The user can view any individual faculty member in the provided list. When a faculty member is selected, a dynamic page will load with all reports that have been approved by both the faculty member and the department chair. 

4.4 Algorithms

The difficulty of this project did not reside in algorithms but instead with the design and implementation. Though, the algorithms had to solve several major issues. Algorithms needed to be designed to eliminate the lengthy latency issues involved with downloading the web page. The most important algorithm to this system was that of the server/database interaction. The process for determining values for insertions and deletions and updates to the database The process to update a component could consists of creating entries in a single table, or in some cases two or five tables (specifically for research components.) Further updates were needed for the workload_component table storing specific information about credits reserved for teaching, research, services, administration activity and alternative activities.

To solve other dilemmas we had to devise ways to avoid sending unnecessary information to the end-users. The previous group’s prototype was designed to have an initial 700 KB file downloaded and stored on the end-users’ machines. Our implementation was to download the clients the initial material they will need when necessary and requested (explicitly or implicitly when needed.) When further information and data was required then the data necessary and only that data would be transmitted. Upon near completion of the fifth revision of the faculty form page, by far the largest of the web pages, the page was approximately 225kB in size. A few modifications dramatically reduced the page size to 53kB, and then further to 26kB. Other adjustments will be made when time permits to try and streamline the overall transmittal size to 15-20kB. 

Most of our algorithms involved SQL transaction statements. All the dynamic ability of the web forms was based on the information stored in the database. One tough task with the use of SQL was to repeatedly having to update the ‘percent of component’ field of every component every time a new component was added. An efficient algorithm was devised to complete this task in previous revisions. Redefinition of what the percent field should capture and how it should function are still be considered and have been pushed aside until a definitive definition can be accepted by appropriate parties.

Due to the nature of web programming, there were plenty of places for code re-use. We found ourselves repeatedly recycling source code on our web pages. Due to this action, the number of lines of source code on many web pages grew tremendously. Because our design was structural, we did not have any need for abstract data types and used only primitive data types native to .NET’s programming environment. There were attempts late in the development cycle where code was dramatically condensed with the creation of generic functions that executed tasks that were repeatedly performed in many places. To generate and use these generic functions was time consuming, but the source code became more readable and reusable.

The revisions did, however lead to better design. The previous experiences gained allowed for quicker, more streamline implementations to be devised. In one case, the lines of code dropped from 2400 lines to 1600. The newer code also was more maintenance friendly and had more reuse possibilities.

5. Software Development Process

With few clear requirements for the Faculty Workload Data Management System by our client, we worked with Dr. Kenrick Mock to show him the progress of the system. Meetings with Dr. Mock were set-up on a weekly basis. If there were any programming questions with the use of ASP.NET and C#, we consulted Dr. Mock and asked for his guidance. More on programming issues can be read in Section 5.1. Our hope was for more feedback from the primary constituents. Most of the difficulty of the project can be directly attributed to lack of communication from key UAA personnel. The persistent requests for changes greatly affected the development of other aspects of the system. The dynamic ability of the dean to assign buyout or other activities was placed secondary to redevelopment. These experiences taught us the incredible need to obtain clear and binding definitions. The experiences were valuable and helped focus our efforts to reusability and more frequent communications for feedback on current states of development.
We followed our predecessor group’s prototype for the most part, removing any known prior functional limitations that we were aware of. To get more user input, Dr. Mock had a number of faculty members and department chairs test out the previous CIOS group’s prototype. With this help, we discovered additional features that were desired by our clients. We kept this list of desired features and attempted to complete all of them. More on the desired features can be read in Section 5.3.

We were also concerned with the layout of our web pages compared to the prototype’s design. We approached CS faculty member, Dr. Patrick O’ Leary and department chair of Mathematical Sciences, Hilary Davies to test out a prototype version of our application and check to see if they can find any features they find that are missing. Dr. O’ Leary thought our application was superior in user-interface and features provided compared to our predecessor’s prototype. Ms. Davies, on the other hand, did not have too much time to look at our application prototype, but she did provide us with positive feedback on the parts of the web site she had had a chance to view.

5.1 Programming

Early in the development cycle, we opted to use Microsoft’s .NET Framework and had the tough task to learn three major computer development components: Microsoft’s.NET Framework, ASP coding, and C#. The project was started from scratch and a hefty amount of hours of research were spent on trying to learn the workings of both these languages. We adjusted to using Microsoft’s C# because of its syntactical resemblance with Sun Microsystems’s JAVA, to which we were already familiar with. In contrast, ASP.NET was a completely new language for us. Neither of us had done any sort of web programming before; learning how to use some of ASP.NET’s built-in features was, at times, a tough task. An example was our choice to use the built-in Data Grid widget. The Data Grid provided many ways to bind query tables returned from a database and at times it was unclear about which method was the most efficient and easy to use. The way these query tables were bound decided whether or not it was possible to hide certain columns on the Data Grid. We needed to use certain columns for database querying purposes, but we did not want those columns be viewable by the user.

As our experience with the .NET framework grew, we were quicker in developing more efficient web pages. As mentioned in Section 4.4, the structural design needed to create the web pages, required code re-use on many web pages.

 5.2 Testing and Debugging

A large amount of time was spent on testing and debugging our product. Some web pages we designed took a large amount of time to debug due to the multiple widgets on the page. As the number of widgets grew, the different possibilities of input error to occur multiplied in almost a factorial manner. There was no ideal method to perform this input validation so the large amount of time spent on testing and debugging those web pages was inevitable.

In the early stages of development, there were problems encountered with insertions, updates, and deletions of records from the database. Many SQL queries and non-queries written were very long and tedious. Due to their length, it was quite possible to have a slight typing error. If that were the case, the query would not perform its task and would throw an exception. Then, the query, which threw the exception, would have to be re-analyzed and checked for error. The time spent on debugging these problems was, overall, very consuming. 

5.2 Requirements Challenges

The lack of a SRS document, formal requirements, and use of prototyping presented numerous challenges. The most significant challenge was the addition of new requirements after some faculty members and department chairs had viewed our predecessor’s prototype. Those individuals were asked to give comments on features this prototype was lacking. This presentation was particularly late in the development cycle so every change that was requested was very expensive to implement. Nevertheless, we were determined to make some of those changes and added the following features.

· Provide faculty members the ability to fill in workload components for multiple semesters. For example, a faculty member could be performing a research for two consecutive semesters and instead of having to enter the same component twice, he/she was given the option to select multiple semesters at once. 

· Provide faculty members the ability to either specify the percentage of workload for the each component or to let the system divide each added item that belonged to that component as equal weight. 

· Alter the workload form to allow each component type to be entered on the same page. 

Adding the second feature in the list above was very costly to implement and required approximately thirty hours of development time to implement since the entire workload form was redone from scratch. In the second version of the workload form, there was one main page with the data grid holding total credits the faculty member along with a link to a new page where individual workloads components would be added. After a single component was added, the user would be redirected to the main page with the total credits information and this process would be repeated for each component. We fully implemented and tested this new workload form.

Though, we came to realize that the clients did not approve of this format and wanted everything to be done on the same page. We made some adjustments to the workload form, once again, for allowing the user to reside on the same page after each workload component submission. The page was shown to the clients and once again was disapproved. The method by which inputting was accomplished was not what the client had wanted. This called for the workload form to be re-done. Unfortunately, the way the second/third version of the workload form was implemented, it was not possible to re-use a bulk of the source code. Our development team recreated the workload form for the fourth time from scratch. This version of the workload form was implemented, after 30 additional hours of development. The fourth version of the workload was proposed to the clients, but was also not approved. There was a change of mind about the percent of component field stored in the database for each component. The clients wanted this field to be altered to percent of component per semester. This called for yet another re-implementation of the workload form, version 5. This is the most up-to-date version. 

Because of these setbacks, we were not able to complete the buyout option for the dean page along with the activity report form. Both of these were in the beginning phases of development before we were asked to implement the change requests.

All of these requested features could have been avoided if a SRS document had been created. There is always a danger of misunderstanding the consumer’s needs and that is what had happened in our case. The SRS would have made us aware of many individuals’ needs for the software and the application, and we would have developed these requested features when that part of the software application was being worked on. Having to go back to the same form on five different occasions was extremely costly and disabled us from fully implementing the other functional requirements.

Another challenge was working on this project in parallel between two programmers. In some instances, work done was mutually exclusive. The design of the login page was completely separated from the authentication process. On other occasions, the work was moving at rapid rates and involvement by both programmers was needed so as not to consume time resources later. To solve this problem we used aspects of extreme programming. In tandem, we sat at one computer and while one typed, the other observed potential faults and errors. When semantics were questioned, a brief inspection was done to determine the validity of the logic. Typically this led to discovery of faults and revisions were adopted quickly. When one of us became too stressed or fatigued, the other would take over coding. This process led to fast development and allowed for both of our strengths to be used simultaneously while limiting the number of weaknesses we possessed. 

5.3 Work Breakdown
The Gantt chart in Figure 5.3.1 shows the projected work schedule vs. the actual work schedule. The values in blue represent the projected amount of time per task determined during the planning stage of this project, and the values in yellow represent the actual amount of time taken. The total amount of actual time was more than the project time primarily because of the following reasons:

· Researching the ASP.NET and C# languages to determine their functionalities.

· Testing and Debugging taking longer than expected due to the nature of web programming.

· Requests for providing additional features on the workload form after the CIOS group’s prototype was shown to the clients. Furthermore, more time was spent on testing and debugging the updated workload forms. 

Figure 5.3.1: Projected Timeline vs. Actual Timeline


6. Results

The Faculty Workload Data Management System was nearly complete, excluding additional functionality and endurance testing, ready for use initial orientation for faculty members, department chairs, and college deans. We were unable to implement a web page that would allow end-users to perform statistical analysis on the data collected from workload and activity report forms due to time constraints. The workload was implemented four times from scratch and once with major overhaul, causing the development progress huge setbacks, slowing down development of the other parts of the web application. The buyout option for the college dean and the activity report form were also in the preliminary phases of development. 

6.1 Future Steps

The Faculty Workload Data Management System will need more development and testing before its release. The buyout option for the college dean could be easily implemented given sufficient time. The same would go for the activity report form, which would be fairly similar to the workload form. The statistical analysis page would only require the developers to understand the manner by which data in the database was being stored. Next, SQL queries would need to be written for the statistical data that Academic Affairs has requested to view. 

7. Summary and Conclusions

The Faculty Workload Data Management was developed in Microsoft’s Visual Studios .NET using ASP.NET and C# with the goal to design and implement an ordered web page/data management system for the faculty workload and activity report forms. The existing data management system at UAA is unorganized and consequently it is impractical to effectively make use of the data collected from workload and activity report forms completed by the UAA faculty and chair members. With this project, we created an efficient way of organizing all the data collected in these forms and then saved it in an electronic format via a database. This project improved communication of both these forms to their respective academic components of the university. Along with all this, we are providing the framework to perform statistical queries on the data available in the database, as we did not have time to fully implement this functionality.

This project was, as anticipated, challenging for both of us because of having to adapt to new technologies: Microsoft’s C# and ASP.NET. Additionally, our team had lacked previous experience in web programming. Even with those drawbacks, we were excited to get the opportunity to produce this important web application for UAA. This project gave us plenty of experience in the software development process and provided us with marketable skills using Microsoft’s .NET Framework.


Figure 3.0.1

System Flow Chart



(optional) STATISTICAL QUERIES WEB FORM



STATISTICAL INFORMATION



APPROVE DEPARTMENT FORM



VIEW COLLEGE FACULTY SUBMITTALS



Load dean request forms



Load chair request forms



Load faculty request forms



Load Individual Employees necessary info



Authentication



APPROVE FORM



VIEW DEPARTMENT FACULTY SUBMITTALS



UNIT SELECTION



EDIT/VIEW/NEW



DEAN



CHAIR



FACULTY



INDIVIDUAL’S HOMEPAGE



LOGIN PAGE



Web Form



Modify reports as needed.



Server



Database











PAGE  
20

