Battletech: A Game of Armored Combat

By: Steven Rychetnik

CS470

1. Introduction

For my semester project I decided to implement a replication of the table-top hex-grid based game, Battletech. My vision was to faithfully recreate the game play mechanics into my implementation. I chose to work with Java and NetBeans for this project.

I have a long history with Battletech. It was a game that I played with friends for many years, and it holds many memories for me. There have been many variations of software based Battletech games, and I have played several, but I have not found one that recreates the feel of the table-top game to my satisfaction. Thus this project was my attempt to implement the game the way I felt it needed to be implemented.

2. Overview

Battletech is a turn based, multi-player tabletop game that is played with two six-sided dice, statuettes that represent the players units, and a hex grid representing the field of battle. The purpose is to move and engage the opponent with your battlemech, or mech. A mech is a 30 meter tall, piloted, walking tank. It is armored, has weapons systems, and the pilot rides within the cockpit. This game universe places mechs as the ultimate weapon on the field of combat. A player may control one or more mechs during the course a game or tournament. The game is played in a series of phases, and each player will make tactical decisions during each phase, on a turn by turn basis. When all the phases are complete, the next round commences.

I feel overall that I was successful in programming a large portion of the building blocks required by this game. I experienced many challenges during this project, and I learned a fair bit about the NetBeans environment, and GUI building. I fell short of my goal in having a functioning game, but the core elements are there. I would like to keep plugging away at this, for I still think this would be a great game when finished.

3. The Process

After going back and re-reading the rule book to familiarize myself with the game, I figured that the best plan of attack would be to implement this game in Java, and utilize the object oriented nature of Java in the planning of classes. One element in the game play is a record sheet that keeps track of the important elements during a game. This record sheet gave me a target for some of the design work. Additionally, part of the Battletech game universe is mech construction. As a player, I can custom design a mech from the ground up. There are many implemented rules for this process. The custom creation portion of the game really appeals to me, so I wanted to include that functionality in my program. I was unable to get that far as yet, but it gave me the inspiration for how I was to code parts of this game.

3.1 The Battlemech

Treating each individual part on a battlemech as a separate class, I was able to implement a Composite Pattern with the Battlemech object. On the record sheet, we maintain slots, called critical slots, that are where components get placed on a battlemech. This part of the battlemech is known as the inner structure. The armor then is hung over it for protection. In my implementation, I used the inner structure in much the same way as the record sheet. I created some arrays for each location that were sized to the correct number of slots to match the record sheet. The torsos and arms all have 12 critical slots, and the head and legs have 6.

[image: image1.png]T Critical HitTable IS

Shoulder 1. Shoulder
Upper Arm Actuator 2. Upper Arm Actuator
Lower Arm Actuator Head 3. Lower Arm Actuator
1'3 Hand Actuator 4. Hand Actuator
. Life Support 5.
. Sensors 6.
. Cockpit 1
: Sensors g
Life Support 4
5
6

CORWLWNA O LN

Center Torso .
. Engine Right Torso

Engine
Engine
Gyro

. Gyro

Gyro 1'3
Gyro
. Engine

. Engine
. Engine

—_

1-3

4-6

DUTBRWN = DT WN -

4-6

1.
2.
3.
4.
5.
6.
1.
2.
3.
4.
5.
6

oUnwpS DOAWLN

Engine Hits .
Left Leg Eyro His Right Leg
. Hip Sensor Hits - Hip
. Upper Leg Actuator Life mm . Upper Leg Actuator

. Lower Leg Actuator . Lower Leg Actuator
. Foot Actuator . Foot Actuator

Combat Value
Cost

At this point I figured that I needed to implement a superclass for all the components to be based off of, so I created the Part class. This master Part class holds all the variables and accessor methods that I felt were appropriate for the components. This let me customize the few specific parts, such as the engine and gyro, but leave the rest. All the parts can affect the performance of a given battlemech if they take damage during a game, so a common set of methods made the most sense. With the Part superclass planned, I proceeded to create all of the parts themselves. The default parts are also already part of the inner structure class, and when creating a new unit, you just have to add the weaponry.

3.2 Weapons

Taking the Part class a step further, all of the weapons in the game are also based off of the Part class. To reflect the added requirements of the weapons, I extended the Part class into a new superclass called Weapon. All of the specific weapons are subclasses of Weapon, and as each is instantiated, I assign the appropriate values. If the weapon has a particular need, such as the missile systems, I add the appropriate methods to that class, otherwise the inherited methods are sufficient. In a way I have a Factory Pattern in place for weapon generaion. At least the flyweight portion regarding the objects.

3.3 Data

As of now, my data requirements are minimal, so the record keeping is part of the objects themselves. For example, if a weapon system requires ammunition, I have that variable as part of the weapon itself. If I trigger that weapon to fire, it will decrement the ammo value until there it reaches 0. Ammo in the game technically requires a critical slot, and down the line I will have to implement that, but for now keeping it within the given weapon system is sufficient.

3.4 Pulling it all Together

With an inner structure, parts, and weapons defined, I wrapped that all into a MechBody class that holds the inner structure, armor values for the locations, and a heat scale that keeps track of the heat level generated during gameplay. The MechBody also provided accessor methods to the inner structure. Thinking back on it, (and using something I picked up in CS304) I have several violations of the Law of Demeter in my code.

3.5 Heat Scale Defined

I think this part came out great. As part of the recordkeping, tracking heat is very important. In my implementation, I made the heat scale as a separate class that properly keeps track of the appropriate modifiers for the game.

[image: image2.png]Heal Scale

I implemented this as a fall-through switch statement. Then it is up to the game logic to query the MechBody for the conditions, and the methods defined get the modifiers.

3.6 The Player Mech

To facilitate a player having more than one battlemech on the gameboard, I created the PlayerMech class that contains an array of MechBody objects. Currently the game is hard coded to just the first array position. To access a mech, we return the object reference from the array in the PlayerMech object, and perform the required actions.

4. Game Interface

With the battlemech defined, the GUI came next. After a few iterations, I settled on this:

[image: image3.png]4] Battietech TableTop

File Help
— A0 9~ G o 7= GG G 9 G G 7 9 G
i 1 s e e G G G G e G G G G G G G

0 O CO e O O e O e O CO o O O O O O O O (R €
Tomage: 315 10 O OO CO OO o O O O O (O (W (D (W € O}
o 3 E s OO OO O T o O e O o O CO e O O CO (e CO o (o C i O
E0 s O e OO e OO OO O OO C o O O O o C e CW e O O €1
LektLs 6 s Xz o 7o s 7 s 7o e 76)2) s) e 7o)) e)
- E o O T e O o €3 o O3 e O C e C e C o O O O (R (O O
1 e s e P e G G e G e P e e e G G
LeftT: 8 (4) 2 7 1 4 2 8 5 6 0 7 4 8 6 7 5 8
Ceonter: 10) E0 s OO O e O OO o OO o O30 €3 s O3 €O o € o O O O e O o € O
E0 o OO OO OO e 3 OO e O30 o €20 OO OO C1 s € o € o O O O
FELZE B 9 5 3 3 2 6 9 8 8 3 2 1 4 6 9 8 5
Rt &5 & O O CO O o O C e O O O (O (O CD (€ €
T 6 s e e e s e 7 7 e 7o 7o s 7o e) o)
20 n OO e O OO e €2 o OO o OO o € o O O O o O e (W (W C €
HestLevel 0(0) E e OO OO OO OO o OO OO o O o O3 O € e O o O e C e O (O €
s e s) a 7o 7z 7o 7o 7o)1)) 7o) e 7
swe 25 7 s e 7 s 7 s s s 7o) e) s 7o) e
w o 0 O e O O e O3 e O o C o CO o O e C o O CO O (B (W O}
0 O C e OO e €2 3 OO €2 CW e O OO o C o O o C o O e C o €1
Lo 3 7 1 2 2 6 0 7 3 9 3 5 0 7 2 3
o oo 20 O30 O OO CT0 o O3 o O 3 o O €0 OO o O o C e O o O o O O}
E0 s OO O3 €O €O o O OO o OO o €2 o €2 s € e O o C s O O o €
Moo 4 8 3 7 6 8 5 5 1 4 7 7 5 3 1 6 5
6 s 77 s 7 e 7o 7o s s e 76 7o))
0 e 7z s s e 77 e 7 e 7o 7o 7o) 7 e) e
Youroled s E3 o OO OO OO e OO o OO C1 s OO e O o O 0 O o € O o O o €1
it E0 o O O3 e O 1 OO o OO s O3 OO €2 e OO O O € O o € O
o 1 e e 77 e 7)6 s) e e 7o e s s
Nz 3 s s 4 4 0 2 3 1 a 5 s 7 s s 4 2
0 e 77 7 7o 72 s 7o)6 7o e) 7o) o) e)
[rhase | 0 O 1 e O3 OO OO o O C o O OO e C o O o (W e O C o C O]
0 s e)1 s 7o s 7 e 7 e)) 7o) e
(o O O (W O O O O OO (D O (D C (O (B (B €
1 s P e G G PG PG G G PG G e G s G
C0 OO OO O e OO o OO o OO O O O O o CW e O C o (W O
2 OO O O o OO o OO O30 s OO OO €O O3 O o OO O o € O]
0 OO OO OO OO C o OO 3 OO O e €O O C e O e (W C O3
s e 7 e s 7 e) e e 7 e e e e
E o C o OO C1 s €1 o OO o O3 O o C1 s € O o €3 o O o OO € o € O
£ O o 3 2 OO e O3 o € O30 o € O3 €3 €3 O3 O3 O3 (e
Game Messages.
: Intve Torso Tt Center

This is an alpha level interface. For the most part I am experimenting with the layout and information levels. I believe that I have the methods for the battlemechs abstracted away from the GUI enough that you could replace the GUI easily. This is where the rubber starts to meet the road.

4.1 Dice Rolling

To facilitate the random element in this game, I needed to create a method that could give me a dice roll that fit within the domain of the game itself. The random part here is the two six-sided dice that are used for just about everything. I created a DieGenerator that is part of the main UI and can be triggered at any time. The button is represented by the picture of two six-sided dice. Within the generator itself, we fire-off two calls to the Random generator, and then proceed to add those valued to get the simulated rolling of 2 6-sided dice.

4.2 Game Phase

Part and parcel to this game is the phase of the given turn. There are seven phases that must be played through. To keep track of this part I put a PhaseEngine class into the main UI, and this restricts the actions that the player can make. So given the phase of the game, certain actions can be accomplished. As an example, after the first phase, Initiative, when the Movement Phase is reached, a sub-window becomes visible that lets the player know the available amount of movement that their battlemech has.

[image: image4.png]Movement
Wakk: 7
Run: 10

Modier: 0
Avalable: 10

After the movement phase is complete, this area changes to the torso twist function of the Reaction Phase. This part will let you correct your firing arc in case you are out of movements points, and your enemy is in your left or right firing arc, and you want your opponent in-front of you.

[image: image5.png]s
Tz o
o
s
Torso Tt s
a
i
Lt .
o
Carta .
Right 2

Phase: Reaction

Torso Twist : Center

After the reaction phase, we can proceed to fire any or all of the weapons. Currently I keep the buttons grayed out until this phase, and they become grayed out again after being fired, or when the phase is complete.

[image: image6.png]Heat Level: 0(0)

49044

Qoooo

LR

[image: image7.png]Qoooo

LR

The remaining phases do not change the UI as yet. The Physical Phase will eventually have some buttons for punching and kicking. The Heat Phase enforces the heat rectification, and the End Phase is the wrap-up for miscellaneous events.

4.3 The Hex Grid

To implement the Hex Grid, I had to do some fancy footwork. This was all done as a AWT Canvas extension called GameCanvas. In essence, the grid is just a 2d array, but when drawn to the screen, we shift the odd numbered columns down. This then proceeded to force the issue of how to navigate between the hexes. With 6 directions available, I needed to be careful to traverse the grid correctly. Mostly it involved some trial-and-error in control. The up-down direction was easy, it's the left-right motion that became the challenge. To move up-right, depending on the column, either we just move right, or we also move up a value, and over. I believe that every odd column is just a x-axis value change, but the even column requires a x-axis and a y-axis change.

I also ran into a problem where I couldn't get the canvas to steal focus at the right time, so you have to click on the game canvas when it is time to move your piece around the board.

[image: image8.png]

Within the GameCanvas class I also defined the red triangle that represents the battlemech on the field. The arrow will point in the direction that the mech is facing. The numbers in the hexes are a test run for a terrain generation system. The terrain is an important element to the game play, and depending on the terrain will depend on the modifiers that muse be accounted for. There are level values for height, and when you go from one level to the next, sometimes a piloting skill check must be made.

[image: image9.png]lderner
A

A
A

4.4 Battlemech Selection

I started to attempt an implementation of a mech selection tool:

Unfortunately I was unable to work out the Swing mechanics in time, but ideally when you start the program, this is the first main window that you interact with. Once your mech is chosen, then the main UI comes online and your selected mech is displayed.

4.5 Battlemech Status

The final part of the main UI window is the record keeping of the player's battlemech.

[image: image10.png]

This is the current iteration of the status window. As of right now I wanted to display the player's name, the name of the chosen battlemech, the armor values, the heat level, and the weapons of the chosen mech. A few things occurred to me: first, energy weapons do not have an ammo count, so I should either hide the ammo value, currently 0, or give it an infinity symbol. Second, The weapon nicknames are not intuitive for a beginner, so maybe a bit longer of a nickname would be better. I want a more compact armor display. Maybe a stick representation of the mech, and the armor values would be placed in the correct areas. Additionally, having a representation of the critical slots would also be good. In this case, I would do tabs for the status window and critical slot table.

5. Work

I did all of my programming within the NetBeans environment. The environment makes short work of adding swing elements into a GUI, and reduces the overhead of things I have to remember. That left me free to focus more on the mechanics of the Parts and Weapons, and MechBody classes.

I suffered in my time management due to major personal matters that kept my attention away from this project. Had that not been the case, I would probably have moved up to a beta version of the program. I put many, many hours into this program, but those hours were spread out, or grouped in spurts of available hours.

6. Conclusions

This project is something near and dear to my heart, and if pains me that I was unable to accomplish more. I am going to continue to plug away on it for while yet, and I do hope to have it where I originally intended, as a network-based multi-player. The hardest part was trying to define how the GUI should look. I want to recreate the table-top game, but also remove some of the elements that don't need to be micromanaged. The CPU is perfect for the micromanaging. Let the player focus on the fun of the game. Additionally you could strip out the turn based element altogether, and have a real-time strategy style game.

Regardless, I know that this project challenged my knowledge in both Java and NetBeans, and I walk away with improved understanding.

