QuadBoom

Or: How | learned to never rely on even
professional-grade software to make basic sense

And then how | dealt with it anyhow



Overview

GOAL

* Implement the basics of Puyo Puyo on the Xbox
360 game console.

* Not developed for a client or assumed target
audience.

WHY?
 Because it was a fun and interesting challenge
working in a new environment.
* Also, the game hadn't been done on the 360 when |
started...
- But has now. Oops.



Game Summary

The game keeps itself pretty simple:

« Pairs of pieces of various colors drop into a 6*12
field. How they fall is manipulated by the player.

« Anytime four pieces of the same color are touching,
they are removed from the board — pieces above
the removed pieces falling to fill the gap.

- This can result in chains of pieces being removed.
« Gameplay can be single-player, though typically it is
Versus.

- Pieces one player removes get placed as difficult-to-
remove 'trash’ tiles into the other's field.



Data Representations

 The game, for play purposes, has just one
unique data object: The actual tiles, known as
Drops, given the class "DropObject”

 Among other contents of the DropObject:
- The location of the Drop on the field
- The Drop's color (and what graphic represents that color)
— What the drop is doing

 The game also heavily uses Enumerations — in
fact, both the color and motion of a Drop are
stored as Enumerations.



Other Structures

 The game uses two basic types of graphical
structure to draw the screen:

* The actual graphics are stored as two-dimensional
textures, which are easy to manipulate.

 Rectangles are used to specify where each texture
Is drawn — this allows for automatic, optimized
scaling of items. (Vectors and an integer can also
be used for scaling, but does not allow for different
scales in two directions.)



Active Search

 The game needs to be able to run a basic,

looping search at the end of every move to
verify if there are groups of four...

 And then run it again after those groups are
cleared, to determine if a chain occurs.

 There's many ways to do this, and I've prototyped,
but not tested, a few.

— Currently favoring a union-graph structure — put each tile
in a group of one, merge adjacent groups of the same

color, and if the size exceeds 4 after the search is done?
QuadBoom!



And then the problem...

* Microsoft XNA Studio is the only (official) way to
code for the Xbox 360 (at least, for Microsoft
Indie Games). In this case, | used it with
Microsoft Visual Studio 2008.

 The problem is... XNA isn't exceptional in its
consistency, especially with draw position
handling.
* | have been stuck for four weeks trying to get it to

accept that the same screen coordinate, drawn
twice, doesn't draw in two different locations.



System Architecture

 The game'’s initial logic opens a general class,
ScreenManager.

 The ScreenManager in turn operates a
GameScreen metatype, which is the parent class
for specific screens such as:

- The background
- The actual gameplay
- The pause menu
- Etc. Etc.
* Notably,this design can run screens on top of one
another simultaneously — so the pause menu can

run atop the gameplay screen, atop the
background.



Prototyping

* Prototyping has been the game model from the
start... Far finer than I'd initially planned.

» Get the ScreenManager sample working, make
sure | understood it.

* Get a nicer background in place. (This one, in fact!)
« Get the game to render the Background
e Get the frames rendering

* Get the icons moving
* You get the idea...



Conclusion

* Microsoft programming resources are a pain.

e \WWhat else is new?

* | am capable of learning a new programming
language (if one simliar to one | already know)
and programming environment (not similar to
existing ones) in a short timeframe.

* | am not so good at estimating the time it'll take
to finish assignments, unfortunately.

« Single-player should be done by the final code
demo date! (See previous statement)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

