

QuadBoom

Or: How I learned to never rely on even
professional-grade software to make basic sense

And then how I dealt with it anyhow

Overview

GOAL
● Implement the basics of Puyo Puyo on the Xbox

360 game console.
● Not developed for a client or assumed target

audience.
WHY?
● Because it was a fun and interesting challenge

working in a new environment.
● Also, the game hadn't been done on the 360 when I

started...
– But has now. Oops.

Game Summary

The game keeps itself pretty simple:
● Pairs of pieces of various colors drop into a 6*12

field. How they fall is manipulated by the player.
● Anytime four pieces of the same color are touching,

they are removed from the board – pieces above
the removed pieces falling to fill the gap.
– This can result in chains of pieces being removed.

● Gameplay can be single-player, though typically it is
versus.
– Pieces one player removes get placed as difficult-to-

remove 'trash' tiles into the other's field.

Data Representations
● The game, for play purposes, has just one

unique data object: The actual tiles, known as
Drops, given the class "DropObject"
● Among other contents of the DropObject:

– The location of the Drop on the field
– The Drop's color (and what graphic represents that color)
– What the drop is doing

● The game also heavily uses Enumerations – in
fact, both the color and motion of a Drop are
stored as Enumerations.

Other Structures
● The game uses two basic types of graphical

structure to draw the screen:
● The actual graphics are stored as two-dimensional

textures, which are easy to manipulate.
● Rectangles are used to specify where each texture

is drawn – this allows for automatic, optimized
scaling of items. (Vectors and an integer can also
be used for scaling, but does not allow for different
scales in two directions.)

Active Search
● The game needs to be able to run a basic,

looping search at the end of every move to
verify if there are groups of four...
● And then run it again after those groups are

cleared, to determine if a chain occurs.
● There's many ways to do this, and I've prototyped,

but not tested, a few.
– Currently favoring a union-graph structure – put each tile

in a group of one, merge adjacent groups of the same
color, and if the size exceeds 4 after the search is done?
QuadBoom!

And then the problem...
● Microsoft XNA Studio is the only (official) way to

code for the Xbox 360 (at least, for Microsoft
Indie Games). In this case, I used it with
Microsoft Visual Studio 2008.

● The problem is... XNA isn't exceptional in its
consistency, especially with draw position
handling.
● I have been stuck for four weeks trying to get it to

accept that the same screen coordinate, drawn
twice, doesn't draw in two different locations.

System Architecture
● The game's initial logic opens a general class,

ScreenManager.
● The ScreenManager in turn operates a

GameScreen metatype, which is the parent class
for specific screens such as:
– The background
– The actual gameplay
– The pause menu
– Etc. Etc.

● Notably,this design can run screens on top of one
another simultaneously – so the pause menu can
run atop the gameplay screen, atop the
background.

Prototyping
● Prototyping has been the game model from the

start... Far finer than I'd initially planned.
● Get the ScreenManager sample working, make

sure I understood it.
● Get a nicer background in place. (This one, in fact!)
● Get the game to render the Background
● Get the frames rendering
● Get the icons moving
● You get the idea...

Conclusion
● Microsoft programming resources are a pain.

● What else is new?
● I am capable of learning a new programming

language (if one simliar to one I already know)
and programming environment (not similar to
existing ones) in a short timeframe.

● I am not so good at estimating the time it'll take
to finish assignments, unfortunately.
● Single-player should be done by the final code

demo date! (See previous statement)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

