
Circuit Conductor Video Game Design Project

James Kaleta

CS 470 – Project Write-up

December 15, 2008
Table of Contents

1. Project Overview ..1

2. Project Requirements...5
3. System Design ………………... 7
4. Planning and scheduling ...10
5. Summary... 11
6. Tile Map Classes .. 11
7. Game States ..12
8. Schedule ... 12
9. Images and Sound... 13
10. Programming Obstacles.. 14
11. Summary Conclusion... .16
12. Current Bugs and Glitches ..16
Circuit Conductor
CS 495 Proposal/Design Document

James Kaleta

12/7/08
Abstract:
1. Introduction
Video games are something I’ve always found fascinating. In addition to my computer science studies, I’ve dabbled in various art forms and I view video games as an intriguing multimedia cross-section of visual art, sound, music, and interactivity. Having a chance to be in complete control of those disparate elements together in one package on a smaller such project is something that sounds like too much fun to pass up. I therefore chose to go with a video game based on an original idea.
2. Project Overview

My aim for this project is to create a generally straightforward maze game based around the concept of an electron flow traveling through a circuit. The player guides a “spark”, the visual representation onscreen of the head of the electron flow, through the circuit maze. The goal is to get the flow from the negative end of the power source to the positive end, thus completing the circuit. As the wire pathways through which the electron flow must traverse are single lines, the player is effectively restricted to “on rails” movements like a train on a track.
[image: image1.png]X ¥ % + + 4+ ¥ ¥

Figure 1. The player character’s animation bitmaps
Incidentally, the name of the game was selected for its dual meaning: the obvious concept of the electrical conductor, a substance which permits the free flow of electrons, and the less obvious idea of the player “conducting” the electron flow through a maze, not unlike someone operating a train.

2.1 Enemies & obstacles
Present in the maze will be adversaries which, for complete loss of a better name, I’ve taken to calling “bad sparks”. These evil counterparts run around the maze and can destroy the player with a single touch.

[image: image2.png]

Figure 2. Tentative bad sparks animation bitmaps

Parts of the maze will also be made up of obstacles:

· Resistors – slows the player down

· On-off switch – can’t be crossed when in off position
· At least one other
2.2 Bonuses
The most common non-harmful element in the maze will be the lamps/light bulbs. Initially unlit, the player can travel through one to light it up.
[image: image3.png]

Figure 3. The bulbs in various states of illumination

By lighting up certain numbers of bulbs, the player can receive additional abilities. These will be indicated by a row of icons at the top of the screen that are each highlighted as they become available and enabled with a keyboard letter. As long as the player has enough bulbs lit they can use these abilities consecutively (though each use drains the bulb meter):

· At least 3 bulbs – (S)peed-up gives the player temporarily increased speed. Can be used simultaneously with any of the other abilities.

· 4 or 5 bulbs – (D)efense gives the player temporary invincibility but will not harm enemies in collisions. Defense and Force Field cannot be used at the same time.

· 6 or more bulbs – (F)orce Field gives the player a one-time shield against being hit by a spark. Unlike Defense, this will destroy the first spark that touches the player and has no effective time limit.

3. Project Requirements
3.1 Basic necessities
· A controllable player character
· Light bulbs
· Three keyboard-activated power ups
· One type of enemy
· Three types of non-enemy obstacles
· Sounds for onscreen events
· Collision detection
· One maze with a beginning and an end
3.2 Optional additions
· The way I originally envisioned it, the player character would leave a glowing trail behind it as it moved through the maze. This was to serve as the representation of the actual electron flow behind the player and double as a quick cue showing the pathways the player had already traveled over (akin to the ball of thread in the Minotaur’s labyrinth or Hansel & Gretel’s breadcrumb trail). Once the player completed the circuit, it would light up.
· In addition to the sparks, I’d like to add a “power surge” character. If a certain amount of time has passed and the player still hasn’t completed the circuit, a surge will be triggered from the power source as something of an incentive for the player to hurry up. This will be an invincible, snake-like character that traverses the maze by making pseudo-random turns at intersections.
· More obstructions in the maze for the player to work through.

· Some variety of parallax scrolling background.

· More levels. Possibly a bonus one unlocked for players who light all the bulbs.

· Background music. If time and resources permit, I’d even like to compose some BGM myself with a standard music notation-friendly processor like NoteWorthy Composer or possibly JFugue, an open-source Java API for music programming.

· There may be some kind of point system.

3.3 Functional specs

1. The game will have a title screen that allows the player to start the game, select options, or quit. The player can additionally pause the game during play or opt to quit with Esc. The options screen will allow the player to select the number of lives before starting.

2. The number of lives remaining will be displayed at the top of the play screen.

3. There will also be an indicator showing the player how many light bulbs they’ve lit up during that particular level. This will be a visual reference so they can assess at a glance which power-ups are available to them.
4. The game ends either when the player completes the circuit on the last level or loses all their lives.

3.4 Game mock-up
Retro, vector graphics-inspired visuals are to be used to create a simple yet stylish look. I plan to make reasonable facsimiles of these using bitmap images rather than employing the more expensive method of having the game engine draw and recalculate individual points every time one of the game objects moves.

The first level’s maze will fit one screen but later maps may be considerably larger. The game objects may either be resized to accommodate these or scrolling may be employed. In the latter case, possibilities include having a smooth scrolling field centered on the player or dividing up the mazes into single-screen “rooms”.

[image: image4.jpg]

Figure 4. Mock-up of the game’s first level
4. System Design

After initially considering DirectX with C#, I decided designing the game with an object-oriented approach using Java would be best given my greater familiarity with it and the already time-consuming problem of learning to program a game from scratch for the first time.
4.1 Data structures
Arrays will be used for things like storing tile map and enemy character information. I also plan to use a hash table for loaded image data. Additionally, I may need a lookup table to keep track of distances between intersection points in the mazes (see the paragraph on enemy AI in the next subsection).

4.2 Algorithms
To prevent the problem with flickering images often encountered when displaying animation, I will be using the standard double buffering method (draw to memory first and then render to the screen) with Java’s BufferStrategy class. BufferStrategy actually makes this very simple so it may not even be worth mentioning here.

My current train of thought on how the enemy AI should work: each intelligent enemy will try to take the shortest path through the maze to reach the player. As the player and the intelligent enemies are all moving, this path will differ constantly throughout the game. I could use a table holding the distances between a given intersection and all adjacent intersections. The enemies would consult this table, calculate the shortest distance to the player, and move in the necessary direction.

4.3 Game state diagram

[image: image5]
Figure 5. Circuit Conductor state diagram

4.4 System architecture
I envision the system architecture to basically work as follows:

After the title screen starts up, the player can choose to go to the options screen, quit, or start the game. Once the player chooses to start the game, the sprites for the first level’s game objects and map are loaded and initialized. From there, the game loop is entered. The actions and status of all the game objects are updated. Appropriate action is taken for all objects (removal from playfield, change in appearance, sound effect triggered, etc.). The buffer is drawn to and then displayed. If conditions for the ending of the level are met, the next level and its game objects are loaded. If the game over conditions are met, the player is notified of such and the loop is exited. If none of these conditions have been reached, the loop continues onward.

The moving entities onscreen, possessing many attributes in common to one another, will all be descendents of some more generic character/game object class.
5. Planning and Schedule

As this is my first time attempting to create a traditional graphics-based video game from the concept on up, a certain amount of time has been set aside to research the general design of video games. I’ve been finding online tutorials to be a great source of information for understanding the structure of video games as well as dummy code to use as a basis for running quick design & animation tests.
Some of the bad sparks will have a measure of AI while others will mindlessly rebound back & forth at varying speeds over a single wire. As the bad sparks are obstacles in the maze, the number & variety of each appearing in a given level will depend on the designs of the mazes themselves, most of which are yet-to-be finished. A more intricate maze can support a number of smarter bad guys and supply more avenues of escape for the player but a simpler one would be much more frustrating unless the number of intelligent adversaries was dramatically reduced. I therefore expect the maze design to take up a substantial amount of time.
I also foresee another sticking point will be learning to optimize the game’s performance, particularly with regards to graphics.

Keeping all of this in mind, I feel prototyping will be a good approach. I’ve more or less already been engaging in it during the time leading up to this proposal to get a better handle on the relevant subject matters.

There are 11 weeks left in the semester, not counting Finals week. I believe that I can put in an average of 16 hours a week into the project, amounting up to 176 hours in all. My estimate is that each phase will take the following amount of time:

Requirements: 25.5 hours

Design: 25.5 hours

Implementation: 48 hours

Testing: 55 hours

Write-up: 12 hours

Presentation: 10 hours

[image: image6.emf]14%

14%

32%

7%

6%

27%

Requirements

Design

Implementation

Testing

Write-up

Presentation

Figure 6. Estimated effort for project development

6. Summary

I expect to learn a great deal in designing and implementing a single project of this nature from the ground up. More than I would in an average semester. In fact, the amount of time I’ve already put into preparation has been educational and, dare I say, fun. I’m very much looking forward to getting some real work done. Some minor requirements and one or two somewhat larger design issues are yet to be pinned down in detail that I’m satisfied with before starting on them. But I’m much more confident at the present time than I was when I came up with the inklings of this game idea several weeks ago.
The TileMap Class
The TileMap glass has three basic purposes. The first is to store TileMap data. The second is to load the Tile Map images and paint the appropriate images at the correct point on the screen. The third is to take in coordinates and velocity of gameobjects to reverse engineer the particular type of tile the game object is traveling over and restrict the game objects movement in the appropriate way.

The TileMap data is stored in a two dimensional integer array with each entry determining a different type of tile to be painted to the screen. The x and y coordinates of each tile that are to be used to paint the tile on screen are based on that particular tile’s x and y indices from the data array.
The blocked x and y functions in the class essentially take the velocity and position of the gameobject and reverse engineer from that the tile type the game object is traveling over. This information is then used to determine whether or not the gameobject is trying to move is valid for that particular tile. There are two blocked classes one for each axis, the x and the y, in order to facilitate sliding along the walls of the maze. For example when a player turns a corner in a maze, they usually hit two keys at a time to move in a diagonal direction and this will cause them to slide around the corner because only either the x or the y axis movement will be blocked. If both the x and y were handled by one blocked class then it would prevent the movement of the player if more than one key on one axis is pressed.

GameState
The gamestates in the project were implemented using three basic components. The first is the gamestate manager which is used in the top level game loop and contains a stack of gamestates. The second is game states interface. The third is the subclasses that implement the game state interface such as the title screen and the levels which are used in the game. While the game loop is running the gamestate manager will simply call the update handle and paint methods of which ever gamestate happens to be at the top of the stack at that particular time and the details of those will be left up to the classes which implement the game states interface. Once one game state is running and the end conditions are met it will simply pop itself off the stack and push the next game state after it onto the stack so it can run through its procedures.

Schedule
The first week of the project was mostly devoted to reading up on the subject of video games and how they are implemented in general. The next several weeks were devoted to getting various bits of pieces of the project completed in incremental steps. So for example I would try to get an image painted on the screen at first, then have a moving images painted onto the screen and followed by having a player controlled image being shown on screen and then an animated image controlled player on screen. Because of this it was hard to separate the design implementation and testing into distinct phases and they all blended together. Work on getting a functioning tile map and getting the game objects to behave exactly as they were specified in the proposal took up much of the next few weeks.
At some point in mid October my CPU fan died, it took about a month to get a replacement fan. To try to speed up repair I tried to get the same exact model fan but the manufacturer was nonresponsive for two weeks. There wereno good replacements in town, so I did some research and found another model which took two weeks to be delivered. This didn’t slow down my work considerably at first because I decided to spend the first week lying down with my code and making notes and comments in the margins in order to plan my next set of changes for the project. By the end of that week I was feeling fine physically and my chest pains and aches pretty much disappeared. After that I decided to head out to campus and try to get work done there and while I did several hours of work in the computer lab, I found the chairs to be very uncomfortable and didn’t continue going for very long. After that I decided to go to my brother’s house to get more work done but after sitting in his ergonomic chair I found it uncomfortable. Between that and the need to try to finish my work before I got home every night and ignoring my symptoms getting worse, I was left bedridden for the following week without the ability to check or write up anything on my code print outs. The Friday of that particular week I got the computer fan installed and I spent several hours online and adding to my project. After getting up from the chair that evening, I felt a jolt of pain. It was the worst of this entire ordeal and that caused me to go the Providence emergency room later that day. The chest pain was diagnosed as anxiety although was described as muscular/skeletal in origin before. So after that I spent the next 3 weeks bedridden. In total, I missed probably a month’s worth of work on the project as a result.

The proceeding two weeks leading up to the presentation was spent mostly on preparing the actual presentation and slides. That led me to not getting a number of additional design elements to my project completed, including scrolling stages and enemies with some kind of AI component.

Had the injuries occurred in earlier in the semester I would have just dropped the class to allow my injuries to heal completely. As it happened late in the semester, after I had my basic infrastructure running, I felt that it wouldn’t be a good idea to quit only to do the same thing all over again the next semester.
Because of the latest injuries, I have only been able to work at the computer for 10-15 minutes at a time and sitting or standing longer than that can be uncomfortable and can result in my symptoms coming back. Consequently, I have been lying down a lot and trying to get work done. The work that I have been getting done in the last few weeks would not have been possible without my brother’s help typing up the final write-up (as dictated via mp3 player) for me. This semester has been by far my toughest and I don’t want to repeat it any time soon.

Images and Sounds
All the sprites in the game were drawn in Adobe illustrator and saved as bitmap files to simulate the pseudo vector graphics look of the game as outlined in the proposal. I simply drew each game object multiple times and overlapped each drawing one over the other with varying levels of opaqueness and thickness in the lines. This helped simulate a glowing look and for the game objects themselves an outer object was added to help bring out that feature more. The tiles were drawn in a similar way without the outer glow. (Adobe Illustrator 9) it was used for its familiarity to myself.

All the sound effects in the game were created using a particular utility called sfxr. This retrogame sound effects utility was extremely useful in that you could modify the basic raw sound forms the saw wave, square wave, the white noise and adjust the decay the parameters such as filter. A helpful feature of this utility was the ability to randomize these features to choose from a number of preset settings, such as jump, start, and laser sound effects and other commonly used sounds in video games. All sounds are in wave format. In addition when I had some free time very early in the semester I had a chance to compose title theme for the video game using Noteworthy Composer and some sound fonts.

· “A Twelfth Dimensional Twilight” by James Kaleta
 Programming Obstacles
As with any projects there were several notable challenges that had to be overcome in order to implement the design as outlined in the proposal. Several of these come to mind are:

When trying to determine how to restrict game objects on the maze I cooked up several different schemes which could be potentially used to do so.

· Based on the idea of open tiles and blocked tiles, an open tile being a game object that can travel over safely, and a blocked tile being an object that can not be traveled over. I cooked up the idea of surrounding all the wire tiles with blocked tiles and then extending their area of effect so they overlapped into the wire tile area and they would enclose each wire tile area so that area of movement would be effectively reduced down to certain portions of the wire tiles. The problem with this for me is that you couldn’t have two vertical wire tiles side by side or two horizontal wire tiles side by side. They each have to be separated by a blocked tile in order for the movement to be restricted in the manner that is needed.

· The second scheme I came up with to restrict the wire tiles was to maybe make it within each wire tile there was a tinier block segment which would restrict the movement of the game object by simply surrounding the wire tile essentially it would be miniature blocked tiles inside each wire tile which wouldn’t be blocked. So these effectively surround the area of movement, keeping the game object from moving off the wires but I rejected that idea as being to laborious it would require that every wire tile painted on the screen there would need to be multiple blocked within each. It seemed to me that there would be better ways to do that.
· The third scheme I used in this project was to get rid of the open and blocked tile paradigm and simply look at the wire tiles I had drawn up and finally realizing for each tile, you can only move in a very limited number of directions anyway. I made it so for a game object traveling over a particular tile, the tile map class would determine what tile the game object was on top of and then only allow the movements for that particular tile to be made. This method worked out simply and effective to solve the problem.

A second problem I had with tile map classes involved all the different type of x and y coordinates that needed to be kept track of while the object movements are restricted and while the tiles are being painted to the screen. One choice that I made early on to simplify the tile map designs was to simply initialize the data array with brackets so that I could have a simple visual cue so I can tell at a glance could tell what type of tile and the position of it being painted to the screen. While I was implementing the design it had lead to some problems because of the fact that I normally don’t initialize the data arrays in that way. It turned out the array data was being held in a mirror image pattern compared to the way I had assumed. Compounding those problems was the fact that the data array’s x and y data or row and column indices were used as a basis for x and y coordinates on screen where each the respective tiles are painted. Another problem was the tile map class takes in data from a game object which include games objects x and y position on screen as well as the purpose for aligning each game object on the wire tiles. There has to be a translation of the game objects x and y coordinates to get the center position of each game object which can then be used to detect whether the game object at the proper place on a particular wire tile. So keeping track of all the different x and y coordinates for the data array, the tile for the data being painted, the game objects x and y coordinates, x and y coordinates for the center of the game objects, keeping track of those things seem to be a chore and had to do some mental gymnastics to keep the data straight. What would have helped is more judicious labeling of the variables that were used to represent them.

Yet another problem that I had with the tile map class which there was a visual glitch that had each tile being painted to the screen was being done so in a way so that a black border in between each tile that made it appear as though there were vertical and horizontal grid lines separating each tile which was not the intended effect at all. This particular problem lasted for a while as I got done with other things. I thought that visual glitches would be easier to debug. I finally realized what the problem was after checking to see if there were border lines around my tile bit maps and there were not. I realized that I could simply use one of the graphic classes draw image methods to simply draw a portion of the tile doesn’t have any type of border around it and take that and scale it out a tiny bit, that would essentially eliminate the border when drawn to screen. For example each tile is 55 by 55 pixels in size but I have the draw image class take a portion of the tile bit map that instead of starting at 0 to 55 and I would start with 1 to 54 that would effectively cut out any border that might exist in the tile. That erased the visual glitch and gave the seamless look that I wanted once they were painted on screen.

 One final problem that bothered me was much simpler in essence was the creation of the power up manager class. At first I made it so all the power ups were being controlled effectively through that class. I was having a problem determining whether speed should be an attribute in the power up class or it should be an attribute of the player class which is traditionally where it would be. As I made the design choice to lump in speed with the defense class with the forcefield power ups for the sake of consistency. As those were the three factors effected by the power ups it was more efficient to have these three lumped together in one class rather than having them separated for example speed in the player class and having defense and power up only in the power manager class. Eventually I gutted up the power management class so it mainly keeps track of whether the power up is activated or not and leaves implementation details to the power up class.
Summary and Conclusions
Overall I would have to say that this was a most difficult and rewarding semester. Due to the obvious problem of my injuries made the work much more strenuous then it should have been. Especially during the last month, it felt like I was pushing myself too hard to finish up. On the other hand, this project did show me that I was able to put together a piece of software from scratch, a type of software that I have never designed or written before and essentially realize in a space of relatively short time in simply by just researching what would be needed, determining what would be required from that, having a defined structure before hand, then just going in and implementing the project and making it work. On that level, it was a very educational endeavor. With the skill set I have developed over the last couple of years being able to put something together that I had no idea how it worked beforehand and make it work is a valuable thing.
Something else this project taught me was the ability to get plans done away from the computer. All too often programmers take the approach of staring into the code for a while and eventually stumble upon a solution through some sort of Zen meditation process but that I realized that being able to step away from the computer and looking at the work you have done, seeing where the changes can be made, and putting together a solution to your current problems conceptually before implementing them are all useful in problem solving and I hope to use that process on future projects.
Current bugs and glitches
This is a list of current problems with the program that I am aware of:

· On occasion the player game object is allowed to make a move on a tile that it should not be allowed to, causing the player to get stuck in the middle of a tile off of the wire.

· Another problem is the power up and speed up, it is possible for a player to be off center when speed up becomes active thus making it impossible for him to turn around corners or move into intersections. This is caused by the fact that tile movement restrictions is setup so a player has to be perfectly in the center of a tile to make a turn or at a corner or intersection since the tiles are being drawn to 50 pixels in height and width a player has to be able to move into the center position at either x = 25 or y =25. Since the player speed is normally 5 that is not a problem but the speed up doubles the speed to 10, so it can make it so a player that happens to be in that position 0, 10, 20, 30, or 40 within a tile then he will not be able to reach that particular 25 which is the center of the tile which is needed to make the turns.

· Finally, while cleaning up the code, I managed to make the noob mistake of screwing up something that was working previously. In this case, the defense and speed-up functionality.
[image: image7.png]

Title

screen

Game loop

Options

screen

Pause

Player reaches exit,

levels remaining = 0

Player

dies

Game

over

Lives remaining > 0

Lives remaining = 0

Defenseless player runs into bad guy

Player reaches exit, levels remaining > 0

Player quits

Player starts game

Exit

game

Player quits

17

_1283293130

