
STABLEORBIT

COLLIN SCHROEDER

1. Physics

1.1. Force. Given Newton’s 2nd law we can write down the forcing equation for the ith particle
in our system.

(1)
N∑

n=0

~Fn = mi~ai

Using Newton’s law of gravity we can rewrite this as

(2)
N∑

n=0

Gmimj

~r2
= mi~ai

It follows that to compute the force for every particle in the system we must do the following.

(3)
N∑

i=0

N∑
j=0,j 6=i

Gmimj

~r2
= mi~ai

However, since these forces are third law partners we may greatly reduce our computation by
incoorporating this into the algorithm. The sum becomes

(4)
N∑

i=0

i∑
j=0

Or in pseudo code
for i in range(0,N):

for j in range(0,i):
a = computeAccel(body[i],body[j])
bodyAccel[i] += a
bodyAccel[j] -= a

1.2. Integration. Having computed the acceleration due to gravity on all the particles we simply
have to update our velocity and position. We do this by using the Leapfrog Euler algorithm,
a well developed numerical method that is excellent for N-Body integration. Solving differential
equations numerically we first define a time-step dt, the larger this is the faster our simulation
proceeds, however, error is also introduced as dt becomes large. A typical way of observing if a
numerical algorithm is to remain stable is to compute the systems total energy and ensure that it
remains at a constant value within some range δ. To start the Leapfrog algorithm we compute the
acceleration and then update the velocities of the particles with a half step through time.

(5) velocity(t1) = velocity(to) + acceleration(to)
dt

2
Next, we update the position

(6) position(t1) = position(to) + v(t1) dt
1



2 COLLIN SCHROEDER

After the first step the algorithm proceeds as

(7) velocity(tn+1) = velocity(tn) + acceleration(tn) dt

(8) position(tn+1) = position(tn) + velocity(tn) dt

The first step in this algorithm introduces a method to deal with error that is not incorporated
into the typical Euler method. This algorithm proves to work well at conserving energy for long
periods of time on the order of 109 years.


