Software Design Final Write-Up
Ludus 1.0

Prepared by: Chris Ochap

2009/04/30
Abstract

Online gaming has become very popular in the last few years, especially with the gain in momentum from poker games like Texas Hold’Em. There are several programs on the market that are marketed as “assistants” or “helper” programs which can read certain game table information, such as cards & pot amounts, and recommend plays to make based on thresholds set by the user. Typically, these are broken down into aggressive, normal & tight play styles. However, most software available on the market is limited because it/they only make recommendations. Ludus allows a user to decide if they want recommendations, or if they would like to automate play. This can come in very handy for a player who isn’t interested in waiting for favorable hands to be made available.
1. Introduction
Ludus is the subject for the Computer Science Department Software Engineering 470 class Spring Semester 2009. Ludus is an automated poker playing program that monitors multiple game windows simultaneously and can execute play decisions on behalf of the user using card probabilities and play rule sets which are governed by numerous user definable thresholds.
This software project really just started out as a pet project given to me by a former employer who noticed I had to much free time on my hands while at work and coupled with his enthusiastic interest in poker type gaming.

Initially, it was geared towards being just a poker “assistant” program that he was free to use and have me tailor to his needs and, being the frugal gentlemen that he is, a way to avoid paying money for software that could be cultivated in-house. As certain parts of it became more functional, the scope of work gradually expanded into a full fledged, optionally automated, service based, poker playing system. Because it is very modular and much of the design time put into it was geared towards establishing stable methods for monitoring events occurring in other applications, adding logic and implementing play for games that require different logic, such as Blackjack or Chess, can be integrated fairly easily.

2. System Overview
2.1 System Description

Ludus is an automated poker playing system that uses several different methodologies to monitor game clients & derive play decisions on behalf of the user. The system involves four separate services, numerous static and OO libraries that each plays a distinct role in the software’s operation. Although the software can support any gaming client, that I have seen, there is a lengthy (4-8 hours) process of mapping out game element coordinates within a new client. These attributes are all stored within and XML configuration file that are read upon service startup.
2.2 System Architecture
The software is organized in a highly modular fashion. This allows changes to be made easily to numerous pieces of the system without requiring major refactoring because the communication interfaces / objects will remain the same. The heart of the system relies on a collection of game objects stored within each service and message objects that are passed between the services via .Net remoted interfaces. Each game object will be a virtual representation of a specified gaming window. So, the elements of a game window for Texas Hold’Em on http://www.partypoker.com includes 10 players (each has a username & bankroll), 3 to 5 table cards, 2 personal cards, 3 control buttons (fold, check, etc) & a table pot amount. The values of these game elements all must be kept track of in real time so a valid play decision / recommendation can ultimately be reached and perhaps executed.
2.2.1 SnapShot Service
This service has two primary responsibilities. The first is to maintain accurate state information about any game window being monitored while sending out heartbeats, in an asynchronous fashion, to the other services while filtering out any unnecessary or redundant data like repetitive calls to certain API’s by a game client in its efforts to display data to the user. The game state information that is obtained and broadcasted out to the other Ludus services is used to populate and update collections of predefined objects which are a virtual representation of all game tables. The second is to ensure that any running process, which has to do with a gaming room, is properly monitored with the methods described below, which I will go into more detail about. This service is written in managed C++ which allows easy access to most native API’s while still allowing easy access to managed .Net objects / libraries.
· The “SnapShot” module essentially uses multiple polling based mechanisms, each running from within their own threads, to enumerate any top level windows. Using numerous native Win32 API’s, a games collection skeleton can be created / maintained. At each polling interval, all running processes will be enumerated. If a process if found that matches a gaming client, such as one available from http://www.partypoker.com or http://www.fulltiltpoker.com, all of the process threads are then enumerated. For each thread that is enumerated, there could be multiple gaming windows open or visible. The handles, which are static, to any of these visible, top level windows, are then recorded and used to construct an empty game object within the games collection maintained by this service. Using the handle to the visible gaming window, one more enumeration is done on its child windows (buttons, textboxes, or anything that is some type of a control within in the window) can be done to populate some of the control elements of the game window. Control elements include play buttons & bet amount textboxes in most gaming clients. Typically, any element within a gaming client, or application window for that matter, that allows some type of user interaction, can be enumerate and queried in several ways identically to how this module functions. We also record their relative XY coordinates within the game window which will be of great help to other modules within the system and is the method used for indexing any game element throughout the entire Ludus subsystem. So at this point, we know what our play options are for any given window, but we still don’t know what cards are on the table, what cards are in our hand or the name / bankroll amount for anyone we’re playing. Game state information is incomplete at this point.
· The “Photograph” module is a primitive, yet very effective way of discovering what cards are being displayed on the table. It essentially uses the same API’s that are utilized when taking a screenshot, except it does it on very precise segments of the screen. These screenshots are then iterated through on a pixel by pixel basis, adding up the RGB values for each pixel to arrive at a sum, or primitive hash. This tally is used instead of an actual hash algorithm because there is less resource overhead involved and must be done continuously at close intervals for every game window currently being monitored. The hashes for known images, or cards, are what make the mapping process for new gaming clients so lengthy, but once they are known, they are stored in XML format and easily used to identify images on the screen.
· The “Trampoline” module fills in the missing game state information that is not available via the “SnapShot” or “Photograph” module. The core of this module is built on top of the Microsoft Research Detours libraries (http://research.microsoft.com/en-us/projects/detours/). There are three pieces to this module. The first piece, written by Microsoft, performs a re-write on a process as it is loaded into memory. This re-write inserts what are known as “trampolines” into a process. These trampolines allow an applications API’s calls and their arguments to be evaluated in between when an API is called by a given process and when it executed by the underlying OS. This API “purgatory” must be dealt with very delicately. Manipulating any argument values for a called API, within anther processes address space can have a very bad effect on the trampolined process if not done politely and quickly since it is a synchronous operation. The second piece of this module is the named pipe client which reports back any API’s and their arguments back to Ludus. A string is constructed that contains process ID, thread ID, handle ID, API called & any pertinent arguments including relative XY coordinates if it’s a text output API. The relative XY coordinates must be calculated before they are reported back which does add some overhead to the task. Some text output API’s are drawn within a child window of the gaming client, so the coordinates used when the API is called are not relative to the parent window. This situation has to be corrected before the called API arguments are reported back to Ludus. Correct coordinates are obtained by first resolving the absolute screen coordinates and subtracting the parent window coordinates from those XY’s. Then a string is placed in a buffer and communicated back to, the third piece of this module, a named pipe server, spawned within its own thread, which parses the buffered string & updates the master game collection objects and its subordinate elements as needed. This is the only service within this project that uses named pipes as an IPC. This choice was made because of the speed at which a multi-instanced, or overlapped, named pipe server can operate in comparison to other IPC’s, even though is not as elegant as remoted interfaces. A single game window can call API’s that we’re interested in monitoring, hundreds of times a second, the only other IPC capable of keeping up that pace would be a memory mapped file. Using memory mapped files for an IPC requires dealing with access contention issues that would introduce a level of complexity not needed to achieve our goal. Named pipe client/server connections are essentially stateless and if for some reason the client can’t make connection with the server, a very small delay, measured in milliseconds, would be experienced and it would simply abandon the attempt and try again, over and over. Now we have all the information needed to populate all required elements such as table cards, personal cards, pot amounts & player bankrolls within any of our game objects contained in our games collection.
· The “Impersonation” module handles spawning a process that is destined to have trampolines inserted, as the currently logged on user. By default, this service runs as “Local System”. So when it spawns a process that is to be monitored, the system credentials of “Local System” are used. That doesn’t sound too bad, aside from letting a gaming process, many of which have been blamed for silent spyware / malware installations, run with the most trusted identity on the OS. There are some functional limitations that are imposed if user impersonation isn’t used. Within Windows operating systems, there is registry or “hive” information made available to a process depending on what user it is running as. Most pertinent to this software would be proxy settings that IE uses to find its way out to the Internet in environments that are firewalled or proxied. If a non system user opens IE to get out to the Internet, IE can use any defined proxy settings that are contained in the registry, to successfully negotiate access through the proxy and out to the Internet. Gaming room software, typically, uses IE related Internet / proxy settings to correctly navigate out to the Internet. If a gaming room process is spawned as “Local System”, it doesn’t have information needed to find a correct path to the Internet. There are several solutions to this problem, but the cleanest one is to simply identify the user who is currently logged in & spawn the gaming room process as that user. This module is still currently under development.
· The “Debugger” module is of little use to the end user, but facilitates dumping any data reported back to the “SnapShot” service into a plain text file that can be used to drastically speed up how long it takes to map out a new game client. When debugging is turned on, any API’s reported from the “Trampoline” module and any parent or child windows that are visible which have been enumerated from the “SnapShot” module are queued and flushed to disk at a specified interval. The “Photograph” module has no debug facilities since particular segments of the game client must be captured and written to .JPEG files manually.
· The “Messenger” module handles broadcasting messages and receiving / parsing messages that are sent out by other Ludus services. All messages are identified by message object type, which are really just serialized .Net objects. All Ludus IPC is done async.
2.2.2 Logic Service
This service has two responsibilities. It has to assign a rank any of the possible combinations of player & table cards. This rank is analogous to how “good” a hand is. It must also process the play profile currently assigned to the game and arrive at a decision / recommendation. This service is written in managed C++ which allows easy access to most native API’s while still allowing easy access to managed .Net objects / libraries.
· The “Probability” module is written in C# and is an adaptation on an existing hand evaluation engine (http://www.codeproject.com/KB/game/pokerhandevaldoc.aspx). It will be ported to managed C++ so functions that are declared “inline” will be honored.
· The “Logic” module is written in C# and essentially evaluates what play actions are available in the game (fold, check, raise, etc), then uses heuristics defined by the play profile currently linked to the game to return a play decision / recommendation.
· The “Debugger” module is of little use to the end user, currently. But is used to have the service dump information about operations it has made to a plain text file that can be used for later analysis.
· The “Messenger” module handles broadcasting messages and receiving / parsing messages that are sent out by other Ludus services. All messages are identified by message object type, which are really just serialized .Net objects. All Ludus IPC is done async.
2.2.3 Delegate Service
This service has one responsibility. Once a play decision is made, this service handles executing that decision within whatever game window needed. This service is written in managed C++ which allows easy access to most native API’s while still allowing easy access to managed .Net objects / libraries.

· The “Mouse” module uses native Win32 API’s to control mouse movement, click actions and positioning. One thing noteworthy about this module is that it cannot merely move the mouse from position A to B, then perform a single / double click in a specified position. In a previous revision of this software, the mouse would move from wherever it was currently resting, to a specified XY coordinate within a control (button, textbox, etc) and execute a click action. After a few minutes of play, the gaming window started presenting captcha dialogs stating it had to verify that the player wasn’t a “bot”. This problem was resolved by randomizing the XY coordinate that the mouse would move to, within the boundaries of the control, before performing the click action as well as curving the motion of the mouse as it moves to its target.

· The “Keyboard” module uses native Win32 API’s to control keyboard input into dialogs of a gaming window. The need for this functionality wasn’t a requirement of the client, but will be needed in future versions. It isn’t implemented yet.
· The “Sound” module is a very simple. It currently just plays an audible alarm when the “Logic” service sends a notification that a decision / recommendation could not be reached.
· The “Debugger” module is of little use to the end user, currently. But is used to have the service dump information about operations it has made to a plain text file that can be used for later analysis.
· The “Messenger” module handles broadcasting messages and receiving / parsing messages that are sent out by other Ludus services. All messages are identified by message object type, which are really just serialized .Net objects. All Ludus IPC is done async.
2.2.4 Channels Service
This service has one responsibility. Facilitate communication between other Ludus services.
· This service instantiates a remotable object that the other Ludus services bind to so they can participate in and application layer “chat room”. The IPC / RPC this service provides is completely layer 3 routable, supports message queuing if a recipient is to busy to process the message object.
· This service is built on a library purchased for $150 from http://www.genuinechannels.com . It is an IPC / RPC library capable of many different methods of communication, but for this project, only one, called the “Broadcast Engine” is used.
3. Project Requirements
The requirements set forth by the client were general to say the least. The client had a general idea of what he wanted the product to do, but since there were many unknowns as to how the software would actually achieve this; a prototyping methodology was used in its development. Small milestones were used to determine the fitness of the software and further development was built on those. In several cases there were situations where broad re-factorization had to occur because of facts not known beforehand.
3.1 Functional Specifications

· The client had no preference as to whether the software was GUI or service based. I elected to make it service based since the long term goal would be that different pieces of the software would run on separate machines to facilitate a “clustered” design (multiple PC’s with “Delegate” and “SnapShot” services using a centralized “Logic” service on a more powerful PC).
· Since the project is service based, a GUI wasn’t needed for the software to work, but was needed to allow the client to configure operation of the services.

· The software must allow the client to choose whether a game is monitored, played or ignored.

· Although it wasn’t a requirement of the client during initial planning, the ability to be able to set certain heuristics for game play was quickly identified as a requirement once certain project milestones were met. Play profiles were added as a functional requirement to this project (by me) very late in the design process, but were fairly easy to add.
3.2 System Specifications

· Windows 2000 SP4 or later.

· OS must be 32-bit because of “Microsoft Research Detours” libraries that were used.

· 1GHz or higher x86 based CPU recommended.

· 512MB or higher of system memory recommended.

· .Net 2.0 is required on any PC running any part of Ludus.

4. System Design

4.1 User Interface Design

· All current game state information that is of use to the user, such as if a game is being monitored, played or ignored, is obtained from heartbeats sent out by the Ludus services. Because all state information is maintained by Ludus services, the user interface can be opened and closed without any loss of state.
[image: image1.jpg]‘Synchronizing with Ludus services...

': start 22 Ludus (Running) - Mic. I Computer Management & L%y, 3:32aM

· After the user interface has finished loading, the primary display shows a tree view of what gaming processes are currently running and available for monitoring / play. Only processes that have been mapped out, or have defined attribute maps, will be displayed in this view.
[image: image2.jpg]Fle Processes Actons Profies He

N orenTable /

= PanyGaming exe

Play money 4069850 - NL Hold'em -0.10/0.25
Seat Open

seat open f

Seat Open

Seat Open
545

Yourbum,
L . S

Diesle: st wins e main pot (1,195 wih 2 par
of Kings
Deale: Hand #11677163461

This hand= 57,412,372.,67
Lesthand= 57 ,412372.6:

Table Options

· The “Processes” menu lists all game clients that have associated attribute maps. This list is stored in XML format and read upon init by the user interface as well as the “SnapShot” process when it is started.

[image: image3.jpg]e

This hand= 57,412,386,01
. Lsthand= 57,412 384.6:

Fie [Processes | Actions _Profies He

SR | Recedtexe

T Holdrem - Logged In As forereaiot
'em - Logged In As forereal0l

Patcaniere ekt Cometn A et
| e [seatopen

Pokerstars.exe [=

Jem - 0.10/0.25 -
Piay money 4069558 NL Hold'em _0.10/0.25 - =%

. Open Table This hand= 57,412,385,065
Lzt hand= 37,412,383,560

Seat Open

Seat Open 4 Seat Open

· The “Actions” menu contains options to “Play”, “Monitor” or to select a play profile to apply to a selected, or highlighted, game. When a game is set to be monitored or played, the selected action is visually highlighted so it is easily known to the user. If the user interface is closed and re-opened, this state information is populated by Ludus service heartbeats.
[image: image4.jpg]Actons | Profles _Help =

) Monitor
e e
= PartyGaming.e; | b Seat Open

Piay money 4069850~ NL Holdem 0 10/0.25
money 4069358 _ NI Holdem _0.10/0.25
oney 4070083~ NL Hoktem~010/0.25

Total pot
wh © gorayn
132,63

Seat Open Seat Open

Seat Open Seat Open

Seat Open

& Quick Deposit

I

Opan Tabla This hance 57.412.383.2
ey Lasthande 57,412391.6:

bogyyk
102.96

· The “Profiles” menu opens another dialog that provides an interface for the user to define a custom “Play Profile” that can later be linked to a game. Heuristics for play actions allowed, minimum probability that a hand (pre-flop and post-flop) can have for an action to be allowed as well as maximum dollar amount allowed to be bet are defined in each profile.
· Any changes made to these profiles are stored in an XML file that is also read by the “Logic” service. Since one or more of these profiles may be currently linked to one or more running games, if a change is made, the “Logic” service needs to re-parse the XML file where these settings are kept. If a profile is deleted that is currently linked to a running game, the games link to that profile is set to null and monitoring / playing stops until that game is re-linked to another profile. This is done any time a change is committed within the profile editor.
[image: image5.jpg]Fie P Actions Profi

= FulTitPoker exe
Play Chip 330 - 3/10 - Pot Limit Hold'am - Logged In As foreresi0l
Play Chip 34 - 5/10 - Pot Limit Hold'em - Logged In AS forereai01
Play Chip 348 - 3/10 - ot Limit Hold'em - Logged In As forereai0l
& PartyGaming exe
Play money 4069850 - NL Hold'em -0.10/0.25
Play money 4069955 - NL Hold'em -0.10/0.25
Piay money 4070083 - NL Hold'em - 0.10/0.25

schullersss
11920

Type here to chat

Click here to lesrn sbout usin

4069850 -

NL Hold'em - 0.10/0.25

Donéréss
597.87

lostpearl
23

our own imsgs on our new poker tzble.

[

X

babarseg

ST

J

igorayn
132,62

Menu~

08~

bogyyk
101.86

WY start

· The “Actions” menu is also available via a position dependant context menu. If the user tries to right click on a process node like “PartyGaming.exe” and not an actual game window, the context menu as well as the actions menu is disabled.

[image: image6.jpg]Fie Pr Heb

=/ FulitPoker.exe
Play Chip 330 - 3/10 - Pot Limit Hold'am - Logged In As foreresi0l
Play Chip 34 - 5/10 - Pot Limit Hold'em - Logged In AS forereai01
Piay Chip 345 - /10 - Pot Limit Hold'em - Logged In AS forereal0l
& PartyGaming.
Play money 4069850 - NL Hold'em -0.10/0.25
Play money 4069958 - NL Hold'em -0.10/0.25
Piay money 4070083 - S
Monitor

chullersss lostpearl

125.19 2350

· When a play profile is applied to a selected game, or the options to play or monitor are selected or de-selected, all services must notified and can take a couples seconds to take effect, so the user is presented with a progress bar to indicate this.

[image: image7.jpg][

T —
Synchronizing configuration with Ludus services...

Fle Processes Actons Profies He

Ty ey TS L e 000 S
|| oy onerdomass” . an 010023

Seat Open

Seat Open

This hane= 57,412,388,5¢
Lst hand= 57,412 388,8:

| seat Open

S v rmm W
D i anie 57412305050 Y

Seat Open

Seat Open

Desler yoUNgoIone Vil

Deale: Hand #1167725443;

4.2 Data Structures

· At the center of each of the Ludus services (except for “Channels”) is a collection of nested hash tables. At the first level, there is a hash table that contains a process object whose key is the system PID’s assigned to the process. Within each process object, there is a hash table that is used to store game objects. A game is identified by a top level window that is visible to the user and its system assigned handle ID is its key within the hash table. Within each game object, there is a hash table used to store individual game elements which are indexed by hashing the relative XY coordinates of the element within the parent window. These objects contained within each level of hash tables are maintained by heartbeats sent out by each of the Ludus services (except for “Channels”).
· The “SnapShot” service reads in attribute maps which define what gaming clients are supported for monitoring / play. Each gaming client displays game elements at slightly different locations in the visible game window. The “SnapShot” service also acts as a filter for the large amount of information that is constantly being reported back to this service from the trampoline, photograph and child window enumeration modules. The “SnapShot” service only broadcasts heartbeats for valid element information that it finds or is reported to it. An example of the structure of these maps is shown below.
[image: image8.jpg]<Process Name="PartyGaming.exe">
<Exe>C:\PartyPoker\PartyGaming. exe</Exe>
<ExeArgs>-P=PartyPoker</ExeArgs>
<Layout Type="Hold">

£alsen
:430:539:538</Play>
$490:667:538</Play>
$490:795:538</Play>

<Play Button=’

<Play Buttom

<Play Button

<Table>
<Cazd ID=MO7>245:187:264:235¢/Cazd>
<Card ID="17>309:187:328:235</Card>
<Card ID="27>373:187:392:235¢/Card>
<Card ID="3">437:187:456:235¢/Card>
<Card ID="4">501:187:520:235</Card>
<Pot>362:110:433:137</Pot>

</Table>

<Player Position=non>
<BankRo11>455:73:555:89</5ankRo11>
<Card ID="0">484:36:503:84</Card>
<Card ID="17>507:36:526:84</Card>
<Dealer>449:123:457:131</Dealex>
<Name>455:59:559:75</ Name>

</Player>

800:566</51ze>

· The “SnapShot” service must also know how to identify images on the screen, most importantly, cards. Since pixel RGB tallies are used to identify cards on the screen, a lookup table is generated from values read in as part of each attribute map. The photograph module reports the XML element attribute ID (“2c”, “5d”, etc) if a given pixel hash is found. An example of its structure is shown below.
[image: image9.jpg]<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup
<Lookup

ID="2c">18446744069450355302</Lookup>
ID="2a7>18446744072110186988</Lockup>
ID="2n7>18446744072005384658</Lockup>
ID="257>18446744069232845995</Lockup>
ID="3c7>18446744069354165936</ Lackup>
ID="3a">18446744072082613850</Lockip>
ID="3n">18446744071977811520</Lockup>
ID="337>18446744069136656629</Lockup>
ID="ct>18446744069457066188</Lockup>
ID="4d">18446744072156085450</ Lockup>
ID="4n">18446744072051286120</Lockip>
ID="s7>18446744069239556851</Lockup>
ID="ScU>18446744068250147203</Lockup>
ID="SA">18446744072059073378</Lockip>
ID="SnT>18446744071954271048</Lockup>
ID="Ss">18446744068032637896</Lockup>
ID="6cT>18446744062040931256</Lockup>
ID="6a">18446744072004779106</Lockup>
ID="6nT>18446744071899976776</Lockip>
ID="6s">18446744068523481949</Lockup>
ID="7cm>18446744069545534538</ Lackup>
ID="7d">18446744072299568412</Lockip>
ID="Tn">18446744072194766082</Lockup>
ID="73">18446744069631025231</Lookup>

· The “Logic” service, as well as the user interface, read in play profiles which are stored in XML format, upon init and possibly numerous times afterwards depending on what choices the user makes. An example of its structure is shown below.
[image: image10.jpg]<Profile Description:

"loose larry">
cruems

ntruem Chance=n70m
n"truem Chance="gO" Amoun:

<PreFlop Enable:
<AllIn Enabl:
<Raise Enabl
<Bet Enable=’
<Call Enable="true" Chance
<Check Enable=ntruen />
<Fold Enable=rtruen />
<PostBS Enable="true" Amoun
<PostSE Enable=rtruen Amoun

</PreFlop>

<PostFlop Enable=tcruens
<Al1In Enabl Chance="70" Amoun:
<Raise Enabl Chance="60" Amount="10" />
<Bet Enable=ntrue" Chance="50" Amount=ni07 />
<Call Enable="true" Chance="40" Amount=rion />
<Check Enable=ntruen />
<Fold Enable=ntrue" />

</PostFlop>

107 />
10 />

Truen Chance="50" Amount="107 />
"10%. /5

2om

</Brofile>

5. Software Development
5.1 Testing and Re-factoring

The vast majority of my time was spent testing and re-factoring. Although there were many situations where small bugs were found, they were usually not difficult to remedy. Organizing all the data in a sensible fashion was by far the most difficult part of this project. It’s not hard to programmatically take a screen capture or move the mouse to a certain location and click, but synchronizing and organizing all needed information into a functional system was definitely a learning process. I know that re-factoring isn’t a design methodology that is looked up on favorably, but without the expert guidance of someone who has written this type of software, it was the only route I could take.
5.2 Prototyping

The client didn’t really have much input once the project began. He had already explained what he wanted the software to do, every design iteration that resulted in re-factoring or even re-design wasn’t because he brought up a new requirement, it was because I had chosen to enhance something that had already been written so I could facilitate a need I would have in the near future. It was very hard to lay out a solid development plan for the software. There were many unknowns.

Attribute maps was the first major change that I knew had to be made so I wasn’t hard coding numerous variables into the software. The majority of my development time had gone into make Ludus functional with http://www.partypoker.com . My assumption that “…most game clients worked similarly…” was *VERY* faulty. Some very important pieces of the “SnapShot” service had to be completely reworked when I went to add support for http://www.fulltiltpoker.com . I’m confident there will be more re-factorings once I go to add support for even more clients.
Play profiles was another one that I blatantly ignored until late in the development of the software because I was heavily focused on service IPC / RPC. To speed up development, the choice to purchase the Genuine Channels package from http://www.genuinechannels.com was made. This choice was probably the only reason the software was delivered on time. However, even though this choice did speed things up quite a bit, because all I really had to do was implement library interfaces and define message object types, I ended up doing a major re-work of all Ludus IPC / RPC to integrate the use of this library and removed a huge amount of code that I had written previously.
6. Results
The software is functional and the clients requirements were met on the timeline we planned. The client was satisfied with the software and its design and is looking forward to future versions. He has a poker playing assistant that does what he wants it to do based on the play profiles he comes up with.
6.1 Future Plans

This software, honestly, will never be done. There are so many paths to take its development down, I can’t even count how many directions I think about taking it in the future.

· Removing all GPL’d and free for evaluation use code (Detours library and port from Poker-eval library). These are two very important pieces of Ludus and will be quite difficult to replace.
· Integrate AI algorithms into the “Logic” service.
· Develop “bluffing” algorithms based on tried and true methods that expert poker players use.
· Add support for other games such as chess and checkers.
· Add support for other poker gaming rooms (to many to list).
· Port major pieces of the “Logic” and “SnapShot” service to native C libraries for speed increases.
· Add support for profiling other players.
· Remove many of the polling mechanisms present in each Ludus service and replace with something as close to event driven as possible.
References

Links used for API hooking / Trampoline module:

http://research.microsoft.com/en-us/projects/detours/
Links used for Probability module:

 http://www.codeproject.com/KB/game/pokerhandevaldoc.aspx
Links used for service IPC / RPC:

 http://www.genuinechannels.com
