Project Report: Double Entry Accounting Program

for

Dr. Kenrick Mock

Professor of Computer Science

University of Alaska Anchorage

by

Cameron Taylor

30 April 2007�Contents

abstract	� PAGEREF _Ref164541822 �
iii
�

1.	Introduction	� PAGEREF _Ref164574795 �
1
�

2.	Requirements	� PAGEREF _Ref165827155 �
1
�

	2.1	Immediate Requirements	� PAGEREF _Ref165829340 �
1
�

	2.2	Desired Features	� PAGEREF _Ref165830799 �
3
�

	2.3	Future Requirements	� PAGEREF _Ref165833443 �
4
�

3.	Design	� PAGEREF _Ref165861276 �
4
�

	3.1	Data Structures	� PAGEREF _Ref165861286 �
4
�

	3.2	System Architecture	� PAGEREF _Ref165861295 �
4
�

	3.3	Data Architecture	� PAGEREF _Ref165864627 �
5
�

4.	Schedule	� PAGEREF _Ref165861306 �
6
�

5.	Conclusion	� PAGEREF _Ref165865811 �
8
�

Glossary	� PAGEREF _Ref165834375 �
9
�

�
abstract

The purpose of this project was to develop a double entry accounting program, suitable for use in personal accounting. The program was developed as a standalone desktop application using Java. This was intended as a “Version 1” project for continuing development, with new features to be added in new versions. Features present in Version 1 include: Double Entry Accounting, built-in support for Asset, Liability, Expense, and Revenue accounts, a Journal View for viewing transactions, an Account View for viewing account balance sheets, and support for user-defined account types.�1. Introduction

There are two types of accounting: single entry and double entry. Both types of accounting are used to keep a record of changes to the values of accounts, but they use different procedures.

In single entry accounting, each account is managed separately and changes to one account do not necessarily affect other accounts. For example, if you have a checking account and a savings account, and you transfer money from checking to saving, you are responsible for ensuring that the transaction is recorded in both accounts. This is easier with the assistance of accounting software, but it is still possible to accidentally record the transaction in only one account.

Double entry accounting requires that every transaction must affect at least two accounts, at least one having a debit entry, at least one having a credit entry, and the sum of the debit entries must equal the sum of the credit entries. This makes it more difficult (and impossible with appropriate software) to accidentally record only half of a transfer.

Single entry accounting is easier than double entry accounting to understand and use without training. As a result, most readily-available personal financial software operates using single entry accounting, and is therefore subject to the limitations of that system. On the other hand, most double entry accounting software is intended for business use, rather than personal use, and is both expensive and overly complex.

This project is intended to meet the need for a simple, inexpensive, double entry accounting program suitable for personal financial management.

2. Requirements

The requirements were divided into three groups to minimize feature creep. Immediate Requirements were those required in order for this project version to be considered complete. Addition of new features to this category was prohibited. Desired Features would have been implemented had there been sufficient time after completing the Immediate Requirements. Because there was not sufficient time for them, they will wait until a later version. Future Requirements will be required in a later version, but were not expected to be completed in this version. They were included as a guideline to prevent the project from being developed in a manner that would preclude their later addition.

2.1 Immediate Requirements

These features define the core capabilities of the application; therefore, their completion was required in order for the project to be complete. Also, to prevent feature creep from derailing the project, completion of these features was required before any of the features listed under Desired Features could be added.

All of these features have been successfully implemented; the first four—Double Entry Accounting, Four Basic Account Types, the General Journal, and Ledger Pages for Accounts—have been fully completed, the last one—User-Defined Account Types—is functional but not complete.

2.1.1 Double Entry Accounting

“All transactions must affect at least two accounts, and for each transaction total debits must equal total credits.” The input validation for journal entries ensures that this requirement is not violated.

2.1.2 Four Basic Account Types

“There will be four basic account types: asset, liability, expense, and revenue.” They are created and stored in an immutable list when the program loads. These account types are also protected from deletion by the user.

2.1.3 General Journal

“There must be a General Journal in which to record and view transactions.” A screenshot of the journal display is shown in � REF _Ref165862853 * MERGEFORMAT �
Figure
1
�. Information shown in the journal display cannot be edited directly; edits and new entries are made using a separate dialog window.

�

Figure � SEQ Figure * MERGEFORMAT �
1
� – Screenshot of the General Journal

2.1.4 Ledger Pages for Accounts

“Each account should have a ledger page for viewing only debits and credits to that account.” A screenshot of the ledger’s account page is shown in � REF _Ref165862800 * MERGEFORMAT �
Figure
2
�. The ledger page display is read-only, all edits are made using the journal.

�

Figure � SEQ Figure * MERGEFORMAT �
2
� – Screenshot of the Account Page

2.1.5 User-Defined Account Types

“It must be possible for the user to define new account types.” This feature is usable, but not complete. There is no GUI for adding account types, although user-defined account types can be deleted from within the ledger view, if they do not have associated accounts. Adding account types requires editing the program’s configuration file. The location of the configuration file is system-dependent, but should be of the form: [settings_path]/.deap/properties.txt

To define an account type, add the “account_type” property to the configuration file. For example, the line “account_types=Equity, credit” will add “Equity” as an account type, and “account_types=Equity, credit; Contra-Asset, credit” will add “Equity” and “Contra-Asset” as account types. All added account types must be in the same entry.

2.2 Desired Features

There wasn’t enough time to implement these features. They are still pending for future development.

2.2.1 Support for Multiple Currencies

At least U.S. dollars, Canadian dollars, and British pounds should be supported. Ideally, the currency support code should be general enough to handle any currency.

2.2.2 Ability to Export Records to HTML

It may be useful for reporting purposes to be able to export journals and ledger pages to HTML. Other file formats might also be useful.

2.3 Future Requirements

These features will be required in a future version, but they were projected to be too time-consuming for inclusion in this version. The project was designed with the intent that the future addition of these features should require a minimum of changes.

2.3.1 Fault Tolerance for File Saving

The file management subsystem should be capable of recovering from a power failure or other catastrophic system failure at any point in recording a transaction without corruption of data, and without loss of data except for, at most, the transaction being recorded at the time of the failure. The current file management subsystem was designed specifically with this requirement in mind, so that expansion—rather than complete replacement—of the current system will meet the requirement.

2.3.2 Ability to Group Accounts

It should be possible to group related accounts. Entries will still have to be made to the grouped accounts individually, but reporting features will be able to operate on all the accounts in the group at once.

3. Design

The project was developed using object-oriented principles and design patterns in the Java programming language.

3.1 Data Structures

Accounts and journals each have an associated list of entries. The lists are implemented using TreeSets from the Java Collection Classes, to provide for high search efficiency.

3.2 System Architecture

The program was developed using the Model-View-Controller (MVC) design pattern. Classes are divided into four major packages, finance, gui, gui.dialog, and fileio. There are also two minor packages, utility and manual.

3.2.1 Package finance

Package finance contains the classes used for internal management of the financial data. Class Account stores information about an account, and an AccountEntry list of debits and credits. Class AccountEntry stores an amount, whether the amount is debited or credited, the Account affected, and the JournalEntry in which the transaction is recorded. Class JournalEntry stores the date and description of the transaction, and an AccountEntry list of debits and credits. Class Journal stores a JournalEntry list of transactions. Class Ledger contains an Account list of all accounts. Class FinancialDatabase manages all the financial information and interfaces to the file system. This package also includes the classes AccountType and Amount, and the enum BalanceType.

3.2.2 Package gui

Package gui contains the user interface classes. Class Main is the application entry point and the main application window. Classes AccountComponent, JournalComponent, and LedgerComponent provide the graphical representations of their associated classes in the finance package. This package also includes the classes ActionHandler and BasicFileFilter, and the interface Constants.

3.2.3 Package gui.dialog

Package gui.dialog contains dialog classes. Class AccountDialog provides the dialog for creating and editing accounts. Class JournalEntryDialog provides the dialog for entering and editing journal entries. Class HelpDialog provides the help window. Class AboutDialog provides the basic “About” information for the program.

3.2.4 Package fileio

Package fileio contains the file I/O subsystem. Class FileManager is currently the only class in this package.

3.2.5 Minor Packages

Package utility contains class Status, which is used to indicate status codes. Package manual contains class Manual, which is used by the help dialog to find the HTML files for the help system.

3.3 Data Architecture

The program does not use an external database, such as Microsoft Access or SQLServer; rather, the program maintains its database entirely in memory, and saves records of changes to the internal database to disk. When a database is loaded from disk, the program clears its internal database and reads the recorded changes, repeating each change as it is read. � REF _Ref165866525 * MERGEFORMAT �
Figure
3
� shows an ER diagram of the internal database.

�

Figure � SEQ Figure * MERGEFORMAT �
3
� – ER Diagram

4. Schedule

My estimated and actual schedules are given by date in Table 1 and shown in a Gantt chart in � REF _Ref165865314 * MERGEFORMAT �
Figure
4
�. Researching the JTable took longer than expected, because it is the primary user interface component used by the program, and there are so many features and settings that must be understood and configured properly.

Implementing the finance classes, designing the forms, and integrating them didn’t really take that much longer than expected, as the schedule might indicate; instead, they were handled in more of a concurrent/iterative manner rather than being sequential as I had anticipated.

Task�Start Date�End Date���Estimated�Actual�Estimated�Actual��Write proposal�Jan. 17�Jan. 17�Jan. 23�Jan. 23��Identify requirements�Jan. 20�Jan. 20�Jan. 30�Jan. 30��Design architecture�Jan. 31�Jan. 31�Feb. 8�Feb. 8��Write requirements document�Jan. 24�Jan. 24�Feb. 8�Feb. 8��Prepare presentation�Feb. 9�Feb. 9�Feb. 13�Feb. 14��Implement classes in finance package�Feb. 14�Feb. 15�Feb. 20�Apr. 3��Design UI forms�Jan. 25�Jan. 25�Mar. 10�Apr. 3��Research JTable�Feb. 21�Feb. 19�Mar. 10�Apr. 3��Integrate UI with finance classes�Mar. 11�Feb. 19�Mar. 17�Apr. 3��Design file system�Mar. 18�Mar. 23�Mar. 24�Mar. 31��Integrate file system into project�Mar. 25�Mar. 23�Mar. 31�Mar. 31��Incremental testing and debugging�Feb. 14�Feb. 15�Mar. 31�Apr. 3��Thoroughly test completed project�Apr. 1�Apr. 4�Apr. 7�Apr. 7��Write documentation / manual�Apr. 1�Apr. 11�Apr. 25�May 2��Prepare final presentation�Apr. 11�Apr. 14�Apr. 16�Apr. 18��Complete final write-up�Apr. 20�Apr. 14�Apr. 30�May 2��Table 1 – Project Schedule

�

Figure � SEQ Figure * MERGEFORMAT �
4
� – Project Schedule Gantt Chart

5. Conclusion

The program has been developed to a functional level. There are still a few interface issues (a table cell’s focus is local to its table, which prevents proper lost-focus behavior when focus leaves the table without first leaving the cell; no error messages are displayed for file errors; etc.), but they can be worked around or do not affect normal functionality. As a result, I classify the release status of the program as “Beta”, but not “Release” or “Release Candidate”. One or two more weeks should suffice to reach “Release” status.

All requirements specified for Version 1 have been met. The “User Defined Account Types” feature is not as easy to use as it could be, but I am content with it because it is a rather special-case feature that lends itself well to being configured once and then left alone.

Most of the project was completed on schedule, with adjustment made for the concurrent rather than sequential nature of the middle part of the project. The documentation has been the hardest part to keep up with, and has been consistently about a day behind schedule.

Glossary

Account: something that has financial value, for example, an asset, liability, expense, or revenue source.

Balance Sheet: a record of increases and decreases to a specific account.

Credit: an entry in the right-side column of a balance sheet; credits decrease the value of asset and expense accounts, and increase the value of liability and revenue accounts.

Debit: an entry in the left-side column of a balance sheet; debits increase the value of asset and expense accounts, and decrease the value of liability and revenue accounts.

Journal: a record in which transactions are entered before being posted to account balance sheets.

Ledger: a book of balance sheets.

Transaction: an exchange of economic value between two or more accounts.

		

		� PAGE �
iii
�

		� PAGE �
1
�

