Tug of War
A real-time strategy with first person action.

Project Document

By: Earl E. Lamson III

February 1, 2006
1. Introduction
This document details all information needed during every step of engineering the Tug of War project. This document will serve as a reference during the software construction process.

2. Overview

The game Tug of War is described in this section. The description has been broken up into several aspects of the game. We will start with an overview of the world the game is played in. Once the setting has been covered we go into the rules of the game, how it is ultimately played out in terms limited to the game world description. Lastly we discuss how to game will by played from the user’s perspective, shedding light on the human to software interfaces and displaying several mocked up user interfaces.
2.1. Game World Overview

The world of the game will be various landscapes, some with mountains, some with only islands. The landscape should be rectangular and have gravity which pulls objects toward the ground. The landscape will be populated with foliage, rocks, buildings, and game units. All the objects and the land itself should be simple graphically as part of the world’s style. The following are lists of each object types found in the game world.

2.1.1. Non-Game Play Objects and Landscape Features

· Trees will cover a large portion of the land and serve to hinder the movements of game units.

· Grass will cover the landscape accept where roads.

· Roads will connect buildings and offer less resistance to movement.

· Rocks will be strewn sporadically across the landscape and serve to hinder the movement of game units.
2.1.2. Buildings

· Factories convert resources into units, upgrades and new buildings.

· Conveyors help to transport resources to the factories.
· Turrets defend against enemy units.
2.1.3. Units

· Gatherers find and transport resource to the factories.

· Soldiers attack enemy units and defend friendly units.

· Pullers help pull the main object to the goal.
2.1.4. Resources

· Green resources can be used to build defensive upgrades and some new buildings.

· Red resources can be used to build offensive upgrades and some new units.

· Yellow resources can be used to build puller upgrades and some new units.
2.2. Game Play Overview

When the game starts each player has one factory, one gatherer and a goal area. The players start at opposite ends of the land. In the center of the map is the goal object which starts an equal distance from each player’s goal. The map starts with all resources being scatter fairly uniformly across the land. The winning condition of the game is when either the goal object enters a player’s goal or all other players have lost all buildings and units. In order to transport objects around the world each unit can fire conveyor projectiles which attach to the object they hit and pull that object in a specified direction. Each projectile has a limited life span. Resources have to be transported to a factory, once the factory has the resources specified by the blue print the factory is working on, the blue print is constructed. The player will be able to select the blue print for each factory the player owns. Once a blue print is created by the factor the upgrade, unit, or building will be added to a queue until the player, either places the building or unit, or assigns the upgrade to a building or unit.
2.3. User Interface Overview

The user will interact with the software via mouse and keyboard controls. The view of the world changes from either overhead/free mode or first person mode in the context of a controllable game unit. From the overhead perspective the user will be able to select game units, give orders, move the camera around the world, place buildings and units, and assign upgrades. From the first person perspective the user should be able to select a weapon, fire the weapon, look around/aim, move, jump and interact with some game objects via in world user interfaces. The user will be able to escape to the menu at any time. From the menu the user will be able to adjust game settings like, video settings, sound levels, input sensitivity and key bindings.
3. Software Requirements

This section contains the specification for the terms of project success or failure. In order for this project to be considered a success all requirements must be confirmed as implemented in the final deliverable. 
3.1. Function Requirements

The functional requirements of this game have been broken up into logical groups each of which is addressed under its own section heading.

3.1.1. Game Play
1. A box playfield should be generated for each game.

2. Gravity should pull all objects toward the ground of the playfield.

3. Trees should be placed on the ground of the playfield.

4. Rocks should be placed on the ground of the playfield.

5. A specified number of resource of each given resource type should be distributed fairly evenly over the ground of the playfield.

6. The playfield should be bounded by visible walls on all 5 sides with the ceiling not being visible and the ground being a different color than the walls and opposing the ceiling.

7. Each player starts with one factory and one gatherer.
8. A free gatherer is placed in the player’s queue whenever that player runs out of active units and has no units in the queue.
9. A circular goal area is marked on the ground for each player.

10. Players start fairly far apart on the ground of the playfield.

11. The game starts with a goal sphere in the middle of the ground of the playfield.

12. The game detects the end of the game and displays options to start a new game or quit.

13. The game ends when the goal sphere touches the ground inside the goal area and the player that area belongs to wins.

14. Two modes of play should be implemented. The first is command mode, which is an overhead view of the ground that allows the player to select one or more units and give them orders. The second is avatar mode where a player takes first person control over a single selected unit.

15. In avatar mode the player should be able to select different tools/weapons the occupied unit has available. The player should be able to move, jump, aim and fire the current weapon.

16. In command mode the player should be able to select units and see their status such as health and ammo. The player should be able to give orders to selected units, where the available orders change based on what unit is selected.

17. In command mode the player should be able switch to avatar mode only when a single unit is selected.

18. In command mode when multiple units are selected the list of commands should be limited to the commands common to all units selected. When a command is given with multiple units selected, all units receive that command.

19. The player should be able to store a set of selected units in a hotkey. When the hotkey is pressed from command mode the remaining units that were stored are selected.
20. In avatar mode the player may give commands to other units under that player’s control.

21. In command mode the player may place new units from the available queue.

22. In command mode the player may assign upgrade from the available queue.

23. Before the game starts a menu should be displayed to allow the user to configure the game. No main menu or introduction is required though video, sound, and game play settings menus would be nice.
3.1.2. Graphics

1. The playfield should be rendered in 3D with a perspective camera placed above the playfield looking down on the playfield in command mode.
2. The playfield should be rendered in 3D with a first person perspective of the avatar unit selected when in avatar mode.

3. A model should be generated or loaded at runtime for each of the object types in the game world. It will be acceptable to generate only simple geometric models such as spheres, boxes, cylinders, pyramids, ellipsoids, tori and cones.
4. Texture should be generated or loaded at runtime for each model that needs it though it will be acceptable is all models are only lit and colored.
5. Vertex lighting can be used, but better lighting model will be acceptable.

6. The GUI should be rendered on 3D surfaces so they can be both overlaid on the screen and placed on objects in the game world.

3.1.3. Sound

1. Sounds should be loaded from file at runtime.

2. At least game sounds (firing gun, game start, and game finish) should be included in the game. Though GUI sounds, and music would be nice they are not required.

3. All sounds should be at least stereo if non-positional sounds are used, and mono when used as positional sounds. Though positional sound would be nice they are not required.
3.1.4. Extensibility

1. At least an in game console should be provided to give commands to the system and make queries on the game world and game system.

2. In game script editing facilities (optional).

3. Scripted AI with player definable behavior scripts.

4. Scripted world generation.

5. Scripted game play.
3.1.5. Deployment
1. An installer should be used to package the game install into a single executable file.
2. The game should allow un-installation via the operating system where it will remove all game files as well as any registry settings. Must be a clean un-install, I’m very adamant about this.
3.2. Non-Functional Requirements

1. Game must maintain 30 frames per second average over 2 seconds on my laptop.
4. Plan

This section shows how the project will be executed from initial stages to completion. 
4.1. Software Engineering Methodology

The spiral model of software development will be used in this project. This document will be revisited, updated, and amended at the beginning of each cycle.
4.2. Libraries

In order to have a high quality game this project will make extensive use of libraries in order to relieve the programmer of writing a large amount of sub system code. DirectX 9 will be used for rendering graphics and display with Direct3D and getting user input from both the mouse and keyboard with DirectInput. Sound will be played via the FMOD sound library. Physics in the game will be handled by the Open Dynamics Engine. Ruby will be used as the scripting engine for the game, and all runtime dynamic code will use the Ruby language. Since each of these technologies provides a C/C++ interface, C++ will be used for all non-runtime dynamic code.
4.3. Time Line

The following chart shows a speculative timeline for the completion of each stage of this project as the sub tasks are defined and executed the timeline will be updated. Large composite tasks will be broken into steps of that task and added to the timeline.

[image: image1.emf]IDTask NameStartFinishDuration

Jan 2006

15/1

119d2/10/20061/17/2006Specification PH1

710d2/24/20062/13/2006

Implementation 

PH1

85d3/3/20062/27/2006Specification PH2

915d3/24/20063/6/2006

Implementation 

PH2

105d3/31/20063/27/2006Specification PH3

11

Feb 2006

22/129/1

Mar 2006

5/212/219/226/2

Apr 2006

5/312/319/326/32/49/416/4

15d4/21/20064/3/2006

Implementation 

PH3

23/4

10d2/3/20061/23/2006Overview

4d1/20/20061/17/2006Introduction

4d2/9/20062/6/2006Requirements

2d2/10/20062/9/2006Plan

1d2/10/20062/10/2006Software Design

2

3

4

5

6


4.4. Environment

This project will use C++ and Ruby programming languages. C++ will be developed using Microsoft Visual Studio 2005. Ruby Development Environment will be used to develop Ruby scripts. The final product will run under Windows XP with Managed DirectX 9.0 and .NET Framework 2.0.
5. Software Design

This section will show the application’s high level architecture. Modular decomposition will be performed separating the application into function components. The design of each module will be included in this section.
5.1. Application Architecture

The application will be broken up into the following modules:


[image: image2.wmf]World Module

Input Module

Graphics Module

Game Module

Sound Module

Ruby

Direct

3

D and 

Direct

3

DX

FMOD

ODE

DirectInput


· World Module – Contains a database of world objects, and is responsible for updating that database as time changes using the physics library for collision detection and integration. This module provides an interface through which other modules can both query and update objects and their attributes.

· Game Module – Contains the event system and manages all the scripts for each event type. This module is responsible for querying objects from the world and executing scripts on them. This module itself manages a database of scripts and events. This module will be the only one to interface directly with the embedded Ruby system.
· Input Module – Contains events associated with the input from players. Players include both human and AI opponents. This module will raise events in the Game Module.
· Graphics Module – Contains database of rendering resources like meshes, textures and shaders. This module will receive render events from the Game Module. Rendering will be done using the Direct3D and Direct3DX libraries.

· Sound Module – Manages a database of sounds and handles events requesting those sounds to be played. Internally this will also manage a set of playback buffers and cursors. 
5.2. Module Designs

Each module design will include class definitions for major classes used within the module, public interface(s) of each module, ER diagrams, UML diagrams and other module design details once defined.
5.2.1. Physics Module
The world module is responsible for the physics simulation. The physics simulation should keep a database of objects in the world and perform updates, collision detection and collision reaction.
5.2.2. Control Module

The control module hosts the logic of the application. It incorporates a scene graph to manage all game objects and user interface. The user interface will be made possible by using services of the I/O modules (input, graphics, and sound). Updates to the physical game objects will be delegated to the physics module. This module will contain mostly structural and logical data, whereas the asset data will be contained by the applicable module. For instance this module will have data indicating the state of a factory (like what it is currently building, how many resources it has and so on) but the asset data associated with the factory (mesh, texture, sounds) will be contained by other modules.
5.2.3. Input Module

To be defined.

5.2.4. Graphics Module

To be defined.
5.2.5. Sound Module

To be defined.
5.3. Deployment Design

To be defined.
6. Summary

This project is going to be a lot of work. Many libraries are needed if this project is to be a success. Tying multiple libraries together to implement a game will require a lot of learning. The feature set may change through out the life of this project to reflect more realistic goals in the time given.
	
	Graphics
	Sound
	Script
	Physics
	Input

	Before Game Loop
	Initialize Direct3d, create the window
	Create fmod system object
	Create root lua state, create game structures
	Create ODE world, set simulation parameters
	Initialize direct input,
Setup input devices

	During Game Loop
	Add and remove direct3d resource, update dynamic resources, render
	Load, unload, play, and stop sounds, and call update
	Execute event scripts, execute re-entrant scripts
	Call collision detection, create contact joints between colliding objects, step the system
	Poll devices, affect input

	After Game Loop
	Shutdown direct3d, destroy the window
	Destroy fmod system
	Destroy all lua states
	Destroy all objects, shutdown ode
	Release devices


Init order

These provide services:

2. Graphics, needed by scripts to load graphic assets

3. Sound, needed by scripts to load sound assets

4. Physics, needed by scripts to load physics assets

5. Input, needed by scripts to set bindings

This consumes services:

6. Script

Loop activites:

1. poll input which fires input events consumed by the script engine via event handler scripts. Typical events include:

a. button depressed

b. button released

c. mouse moved

d. axis moved

2. if not paused, update physics which fires collide events consumed by the script engine via event handler scripts. Typical events include:
a. projectile collides with another object

b. goal object collides with goal area

3. update sound system, allowing it to change sounds based on requests which are queued (FMOD interaction pattern)

4. Render graphics

5. Run re-entrant scripts (should largely determine frame rate)

Game objects





_1201092181.vsd
Tasks


￼


￼


1


￼


￼


￼


￼


ID


Task Name


Start


Finish


Duration



_1201100393.vsd
World Module


Input Module


Graphics Module


Game Module


Sound Module


Ruby


Direct3D and Direct3DX


FMOD


ODE


DirectInput



