Tug of War
A real-time strategy with first person action.

Project Document

By: Earl E. Lamson III

February 1, 2006
0. Abstract

TODO
1. Introduction
This document details all information needed during every step of engineering the Tug of War project. This document will serve as a reference during the software construction process.

2. Overview

The game Tug of War is described in this section. The description has been broken up into several aspects of the game. We will start with an overview of the world the game is played in. Once the setting has been covered we go into the rules of the game, how it is ultimately played out in terms limited to the game world description. Lastly we discuss how the game will by played from the user’s perspective, shedding light on the human to software interfaces and displaying several mocked up user interfaces.
2.1. Game World Overview

The world of the game will be various landscapes, some with mountains, some with only islands. The landscape should be rectangular and have gravity which pulls objects toward the ground. The landscape will be populated with foliage, rocks, buildings, and game units. All the objects and the land itself should be simple graphically as part of the world’s style. The following are lists of each object types found in the game world.

2.1.1. Non Game Play Objects and Landscape Features

· Trees will cover a large portion of the land and serve to hinder the movements of game units.

· Grass will cover the landscape accept where roads.

· Roads will connect buildings and offer less resistance to movement.

· Rocks will be strewn sporadically across the landscape and serve to hinder the movement of game units and provide cover.
2.1.2. Buildings

· Factories convert resources into units, upgrades and new buildings.

· Conveyors help to transport resources to the factories.
· Turrets defend against enemy units.
2.1.3. Units

· Gatherers find and transport resource to the factories.

· Soldiers attack enemy units and defend friendly units.

· Pullers help pull the main object to the goal.
2.1.4. Resources

· Green resources can be used to build defensive upgrades and some new buildings.

· Red resources can be used to build offensive upgrades and some new units.

· Yellow resources can be used to build puller upgrades and some new units.
2.2. Game Play Overview

When the game starts each player has one factory, one gatherer and a goal area. The players start at opposite ends of the land. In the center of the map is the goal object which starts an equal distance from each player’s goal. The map starts with all resources being scattered fairly uniformly across the land. The winning condition of the game is when either the goal object enters a player’s goal or all other players have lost all buildings and units. In order to transport objects around the world each unit can fire conveyor projectiles which attach to the object they hit and pull that object in a specified direction. Each projectile has a limited life span. Resources have to be transported to a factory, once the factory has the resources specified by the blue print the factory is working on, the blue print is constructed. The player will be able to select the blue print for each factory the player owns. Once a blue print is created by the factor the upgrade, unit, or building will be added to a queue until the player, either places the building or unit, or assigns the upgrade to a building or unit.
2.3. User Interface Overview

The user will interact with the software via mouse and keyboard controls. The view of the world changes from either overhead/free mode or first person mode in the context of a controllable game unit. From the overhead perspective the user will be able to select game units, give orders, move the camera around the world, place buildings and units, and assign upgrades. From the first person perspective the user should be able to select a weapon, fire the weapon, look around/aim, move, jump and interact with some game objects via in world user interfaces. The user will be able to escape to the menu at any time. From the menu the user will be able to adjust game settings, video settings, sound levels, input sensitivity and key bindings.
3. Software Requirements

This section contains the specification for the terms of project success or failure. In order for this project to be considered a success all requirements must be confirmed as implemented in the final deliverable.
3.1. Function Requirements

The functional requirements of this game have been broken up into logical groups, each of which is addressed under its own section heading.

3.1.1. Game Play
1. A box playfield should be generated for each game.

2. Gravity should pull all objects toward the ground of the playfield.

3. Trees should be placed on the ground of the playfield.

4. Rocks should be placed on the ground of the playfield.

5. A specified number of resource of each given resource type should be distributed fairly evenly over the ground of the playfield.

6. The playfield should be bounded by visible walls on all 5 sides with the ceiling not being visible and the ground being a different color than the walls and opposing the ceiling.

7. Each player starts with one factory and one gatherer.
8. A free gatherer is placed in the player’s queue whenever that player runs out of active units and has no units in the queue.
9. A circular goal area is marked on the ground for each player.

10. Players start fairly far apart on the ground of the playfield.

11. The game starts with a goal sphere in the middle of the ground of the playfield.

12. The game detects the end of the game and displays options to start a new game or quit.

13. The game ends when the goal sphere touches the ground inside the goal area and the player that area belongs to wins.

14. Two modes of play should be implemented. The first is command mode, which is an overhead view of the ground that allows the player to select one or more units and give them orders. The second is avatar mode where a player takes first person control over a single selected unit.

15. In avatar mode the player should be able to select different tools/weapons the occupied unit has available. The player should be able to move, jump, aim and fire the current weapon.

16. In command mode the player should be able to select units and see their status such as health and ammo. The player should be able to give orders to selected units, where the available orders change based on what unit is selected.

17. In command mode the player should be able switch to avatar mode only when a single unit is selected.

18. In command mode when multiple units are selected the list of commands should be limited to the commands common to all units selected. When a command is given with multiple units selected, all units receive that command.

19. The player should be able to store a set of selected units in a hotkey. When the hotkey is pressed from command mode the remaining units that were stored are selected.
20. In avatar mode the player may give commands to other units under that player’s control.

21. In command mode the player may place new units from the available queue.

22. In command mode the player may assign upgrade from the available queue.

23. Before the game starts a menu should be displayed to allow the user to configure the game. No main menu or introduction is required though video, sound, and game play settings menus would be nice.
3.1.2. Graphics

1. The playfield should be rendered in 3D with a perspective camera placed above the playfield looking down on the playfield in command mode.
2. The playfield should be rendered in 3D with a first person perspective of the avatar unit selected when in avatar mode.

3. A model should be generated or loaded at runtime for each of the object types in the game world. It will be acceptable to generate only simple geometric models such as spheres, boxes, cylinders, pyramids, ellipsoids, tori and cones.
4. Texture should be generated or loaded at runtime for each model that needs it though it will be acceptable if all models are only lit and colored.
5. Vertex lighting can be used, but better lighting model will be acceptable.

6. The GUI should be rendered on 3D surfaces so they can be both overlaid on the screen and placed on objects in the game world.

3.1.3. Sound

1. Sounds should be loaded from file at runtime.

2. firing gun, game start, and game finish sounds should be included in the game. Though GUI sounds, and music would be nice they are not required.

3. All sounds should be at least stereo if non-positional sounds are used, and mono when used as positional sounds. Though positional sound would be nice they are not required.
3.1.4. Extensibility

1. An in game console should be provided to give commands to the system and make queries on the game world and game system.

2. In game script editing facilities (optional).

3. Scripted AI with player definable behavior scripts.

4. Scripted world generation.

5. Scripted game play.
3.1.5. Deployment
1. An installer should be used to package the game install into a single executable file.
2. The game should allow un-installation via the operating system where it will remove all game files as well as any registry settings. Must be a clean un-install, I’m very adamant about this.
3.2. Non-Functional Requirements

1. Game must maintain 30 frames per second average over 2 seconds on my laptop.
4. Plan

This section shows how the project will be executed from initial stages to completion.
4.1. Software Engineering Methodology

The spiral model of software development will be used in this project. This document will be revisited, updated, and amended at the beginning of each cycle.
4.2. Libraries

In order to have a high quality game this project will make extensive use of libraries in order to relieve the programmer of writing a large amount of sub system code. DirectX 9 will be used for rendering graphics and display with Direct3D and getting user input from both the mouse and keyboard with DirectInput. Sound will be played via the FMOD sound library. Physics in the game will be handled by the Open Dynamics Engine. Ruby will be used as the scripting engine for the game, and all runtime dynamic code will use Lua. Since each of these technologies provides a C/C++ interface, C++ will be used for all non-runtime dynamic code.
4.3. Time Line

The following chart shows a speculative timeline for the completion of each stage of this project as the sub tasks are defined and executed the timeline will be updated. Large composite tasks will be broken into steps of that task and added to the timeline.

[image: image1.emf]IDTask NameStartFinishDuration

Jan 2006

15/1

119d2/10/20061/17/2006Specification PH1

710d2/24/20062/13/2006

Implementation

PH1

85d3/3/20062/27/2006Specification PH2

915d3/24/20063/6/2006

Implementation

PH2

105d3/31/20063/27/2006Specification PH3

11

Feb 2006

22/129/1

Mar 2006

5/212/219/226/2

Apr 2006

5/312/319/326/32/49/416/4

15d4/21/20064/3/2006

Implementation

PH3

23/4

10d2/3/20061/23/2006Overview

4d1/20/20061/17/2006Introduction

4d2/9/20062/6/2006Requirements

2d2/10/20062/9/2006Plan

1d2/10/20062/10/2006Software Design

2

3

4

5

6

4.4. Environment

This project will use C++ and Lua programming languages. C++ will be developed using Microsoft Visual Studio 2005. The final product will run under Windows XP with DirectX 9.0.
5. Software Design

This section will show the application’s high level architecture. Modular decomposition will be performed separating the application into function components. The design of each module will be included in this section.
5.1. Application Architecture

The application is broken into five major subsystems.

· System Module – Contains a database of world objects. This module provides an interface through which other modules can both query and update world objects and their attributes.

· Graphics Module – Contains database of rendering resources such as meshes, materials, and object lists. This module will provide and interface to render its managed set of graphics objects as well as creating, manipulating and destroying graphics objects and resources. Rendering will be done using the Direct3D and Direct3DX libraries.

· Audio Module – Manages a database of sounds and sound sources. Provides and interface for creating, manipulating and destroying sounds and sound sources.
· Input Module – Fires events associated with changes in input state of input devices such as keyboard and mouse. Provides an interface for enabling and disabling input and polling input.
· Physics Module – Manages a database of physical bodies and their properties. This module supports an interface for creating, manipulating, and destroying bodies, and geometries as well as stepping the simulation and enumerating collisions.
5.2. Module Designs

Each module design will include class definitions for major classes used within the module, public interface(s) of each module, ER diagrams, UML diagrams and other module design details.

[image: image2.emf]+GetGraphics()

+GetPhysics()

System

+CreateSphere()

+CreateBox()

+SetObjectPosition()

+SetOjectOrientation()

+DestroyObject()

+CreateMaterial()

+DestroyMaterial()

+SetLight()

+SetCamera()

+GetCameraDirection()

+DrawString()

IGraphics

+Update()

+LoadSound()

+CreateSoundSource()

+DestroySoundSource()

+SetListenerPosition()

+SetSoundSourcePosition()

+SetMasterVolume()

IAudio

+Startup()

+IsReady()

+Shutdown()

+SetInputEventHandler()

+Aquire()

+IsAquired()

+UnAquire()

+Poll()

IInput

+CreateWorld()

+DestroyWorld()

+CreateBoxBody()

+CreateSphereBody()

+DestroyBody()

+Step()

+SetBodyPosition()

+SetBodyOrientation()

+SetBodyLinearVelocity()

+SetBodyAngularVelocity()

+GetBodyPosition()

+GetBodyOrientation()

+GetBodyLinearVelocity()

+GetBodyAngularVelocity()

+CreateSpace()

+DestroySpace()

+CreateGeometry()

+DestroyGeometry()

+AddGeometryToSpace()

+RemoveGeometryFromSpace()

+SetGeometryPosition()

+SetGeometryOrientation()

+GetGeometryPosition()

+GetGeometryOrientation()

+EnumerateCollisions()

+()

IPhysics

D3DGraphics

FMODAudio

DIInput

ODEPhysics

+RegisterState()

+ChangeState()

+Update()

+GetCurrentState()

StateManager

+Update()

IBaseStat

+Update()

State

+Update()

InitializingState

+Update()

LoadingState

+Update()

RunningState

+Update()

UnloadingState

+KeyDown()

+KeyUp()

+ButtonDown()

+ButtonUp()

+MouseMoved()

IInputEventHandler

+Collision()

+ShouldCreateContact()

IPhysicsEventHandler

5.2.1. Graphics Module
The graphics module will provide rendering services via a single public interface. Behind the interface the module will manage a set of mesh resources, material resources and object definitions. The resources will be used in the process of rendering objects from their definitions. Object descriptions will store handles to the resources needed during rendering of the object. Each material holds a set of object handles that use the material. A single light and camera are used and can be manipulated via the public interface. When requested the graphics module will render its list of graphics objects.

[image: image3.emf]ObjectDescription

PKobject_name

object_location

object_orientation

object_size

FK1mesh_name

FK2matieral_name

Mesh

PKmesh_name

mesh_vertices

mesh_indicies

mesh_mormals

Material

PKmatieral_name

matieral_color

MaterialObjectDescription

PK,FK1matieral_name

PK,FK2object_name

During the rendering process, after the camera and light are set, each material is applied once then each object using that material is rendered. This is done to reduce the number of state changes to the rendering device.

5.2.2. Audio Module

The audio module will provide sound playback services via a single public interface. Services provides are the loading of sounds from file, playing sounds once, creating, manipulating and destroying source sources (looping positional sounds), and setting the master volume.

[image: image4.emf]Sound

PKsound_name

sound_data

SoundSource

PKss_name

ss_position

FK1sound_name

This module has an update function which should be called once per frame.

5.2.3. Input Module

The input module will provide input device state change event detection and notification via a single public interface. A single event handler can be set in the module as the target for input events.
5.2.4. Physics Module

The physics module will provide rigid body dynamics simulation via a single public interface. A single event handler can be set in the module as the target of collision events. This module manages a set of bodies where each body represents a rigid body in one module wide simulation. Two types of bodies can be created, static and dynamic. Static bodies do not change during the stepping of the simulation but are considering during collision detection. Dynamic bodies are updated during stepping of the simulation and are affected by both gravity and contact with other objects. Two object shapes are currently supported, sphere and box.

During stepping of the simulation collisions are detected, when a collision is detected the module asks the current event handler if it should or should not create a contact between the two bodies involved in the collision.
5.2.5. System Module

The system module manages access to each of the sub systems already described. This module contains a state management class and provides methods to allow the changing of the current state, and registration of new states. The system currently implements the following states:
· Initializing state – registers the other states needed for this state machine then changes to the “Loading state”

· Loading state – creates objects by calling methods of the subsystems provided by the system. When objects are loaded it changes to the “Running state”.

· Running state – updates the subsystems and unfortunately never does anything else, but it should run the game, When game end is detected it changes into the “Unloading state”.

· Unloading state – destroys all objects created during the loading and running states, returning the system to clean state. Once all objects are destroyed it changes to the “Loading state” to start another game.
6. Post Mortem
6.1 Software Development Process
The development process was to research the libraries used for each subsystem and simplify the interaction with the library via an interface. Test applications were written separately to explore library capabilities before implementation of the subsystems was done.
Testing was performed on each subsystem during development at small functionality milestones.

I estimate I spent about 120 hours on this project over the course of the semester. The following chart shows how I think the time was spent.

[image: image5.emf]Time Distribution

55%

30%

5%

10%

Requirements

Design

Implementation

Testing

6.2 Analysis, Results and Discussion
Although a program was produced it was far from meeting all functional requirements and is more of a subsystem integration test program and the deliverable for the first spiral of development on this project. The implementation of the program and the subsystems has shown many shortcomings to the chosen application architecture. The following choices in architecture need to be addressed:

· Subsystem divisions – this choice caused redundancy in storing common data about objects in the system.

· Functional interaction with subsystems – by forcing all interactions with subsystems to be by functions with handle arguments there is an increase in complexity of interaction and added overhead of handle lookups.

· Single event handlers per subsystem – having each subsystem fire events at only one target, and to fire all events at that target caused a lot of pointless event propagation through system to system state to objects managed by the state

6.2 Conclusions

In the end I manage to create a small system with much of the functionality necessary to implement my game but with a lot of inefficiency and not all of the functionality needed. The development of each subsystem did grant me greater understanding of both the problem each library addressed and the strategy the library used in solving the problem. A simple game engine prototype was produced taking advantage of most functionality implemented. I have in essence, an early prototype of a system. With this experience I feel confident in adding more functionality, changing the design to increase simplicity and performance, and creating the logic necessary to support the game that is ultimately the goal of this project. Development will proceed.

7. References
· Game Programming Gems 5, Charles River Media Inc. 2005

· Game Physics, Elsevier Inc. 2004

8. Program Instructions
The following controls are available in the program:

· Move mouse – looks around, first person style

· Any mouse button – fires a projectile forward

· W – moves camera forward

· S – moves camera back

· Alt-F4 – exits the application

_1208111581.vsd
Table

_1208113288.vsd
+GetGraphics()
+GetPhysics()

System

+CreateSphere()
+CreateBox()
+SetObjectPosition()
+SetOjectOrientation()
+DestroyObject()
+CreateMaterial()
+DestroyMaterial()
+SetLight()
+SetCamera()
+GetCameraDirection()
+DrawString()

IGraphics

+Update()
+LoadSound()
+CreateSoundSource()
+DestroySoundSource()
+SetListenerPosition()
+SetSoundSourcePosition()
+SetMasterVolume()

IAudio

+Startup()
+IsReady()
+Shutdown()
+SetInputEventHandler()
+Aquire()
+IsAquired()
+UnAquire()
+Poll()

IInput

+CreateWorld()
+DestroyWorld()
+CreateBoxBody()
+CreateSphereBody()
+DestroyBody()
+Step()
+SetBodyPosition()
+SetBodyOrientation()
+SetBodyLinearVelocity()
+SetBodyAngularVelocity()
+GetBodyPosition()
+GetBodyOrientation()
+GetBodyLinearVelocity()
+GetBodyAngularVelocity()
+CreateSpace()
+DestroySpace()
+CreateGeometry()
+DestroyGeometry()
+AddGeometryToSpace()
+RemoveGeometryFromSpace()
+SetGeometryPosition()
+SetGeometryOrientation()
+GetGeometryPosition()
+GetGeometryOrientation()
+EnumerateCollisions()
+()

IPhysics

D3DGraphics

FMODAudio

DIInput

ODEPhysics

+RegisterState()
+ChangeState()
+Update()
+GetCurrentState()

StateManager

+Update()

IBaseStat

+Update()

State

+Update()

InitializingState

+Update()

LoadingState

+Update()

RunningState

+Update()

UnloadingState

+KeyDown()
+KeyUp()
+ButtonDown()
+ButtonUp()
+MouseMoved()

IInputEventHandler

+Collision()
+ShouldCreateContact()

IPhysicsEventHandler

_1208118480

_1208111828.vsd
Table

_1201092181.vsd
Tasks

￼

￼

1

￼

￼

￼

￼

ID

Task Name

Start

Finish

Duration

