An Action Arcade Game:

NeoBreakout

Sonhui Schweitzer
CS470 Project Write-up
04/25/2005

Abstract
I
1. Introduction
1
2. Project Overview
2
2.1 Existing games
2
3. Project Requirements
2
3.1 Functional Specifications
3
3.2 System Specifications
4
4. System Design
4
4.1 Game Design
4
4.2 Algorithms
5
4.2.1 Collision Detection and Response Algorithm
5
4.2.2 Fixed Interval Algorithm
9
4.2.3 Particle System Algorithm
9
5. Software Development Process
10
5.1 Development Process
10
5.2 Testing and Debugging
10
6. Results
10
6.1 Final Program
10
6.2 Future Steps
12
7. Summary and Conclusions
12
8. References
13
Minimum System Requirements
i
Installation
i
Starting the Program
i

NeoBreakout
Sonhui Schweitzer

Abstract

NeoBreakOut is a stand alone, action arcade game. Pong and Breakout by Atari inspired the making of this game. It is a single player game. A ball or balls travel across the screen bouncing off the top and side walls. When the ball hits a breakable, the breakable becomes smaller with each impact, finally disappearing from the screen. When a ball touches the bottom of the screen (void), the player loses the ball. To prevent from losing the balls and to break the breakables, the player maneuvers the paddle left and right using the mouse. When the player loses five balls, the game ends. On the other hand, if the player reaches the end of the level they proceed to the next. To make the game more interesting, Power-ups are added. Also, the breakables regenerate over time. The growth rate of the breakables and the speed of the balls increase when the player completes each level.
1. Introduction

Computer Science discipline offers a broad range of topics for final projects. Of many choices I faced, writing a game appealed to me for many reasons. One of them was to discover whether I enjoy the aspects of game development. Another was because of the game development encompasses my topics of Computer Science education such as:
· Software Engineering

· Object Oriented Programming

· Mathematics

· Computer Graphics

Gaming Industry has grown immensely since the days of Pong. Of the many genres, Retro games, especially Pong-like games peaked my interest for the following reasons.
· Simple enough for single semester project

· Contains many game development elements

· Rendering of graphics

· Collision detection

· Collision response

· Sound

· Particle System

· User Interface
2. Project Overview
2.1 Existing games
The goal was to develop a single player, Breakout-like game. There are many games like this already exist. Since the objective of this project was to learn, and possibly to provide fun gaming experience to friends, I focused more on the features I liked rather than focusing on the originality. I chose the basic requirement categories after reviewing games that are similar to the original Breakout. I liked BreakQuest from Nurium Games the most. The many of the requirement categories are based on that game.
[image: image1.png]3
:
g

¥

Figure 1. A screen shot from Break Quest
3. Project Requirements
Since it was difficult to determine the degree of challenges, the learning curve, and the duration of developing this game, I devised two requirement categories: the basic and the enhanced.
Basic: must meet in order to call it a game

· Three side walls and a void

· A paddle and a ball with no acceleration

· Breakable objects in the middle area

· Power ups : five kinds

· Sound effects

· Mouse input

· 1 game level and 1 difficulty level

· Basic collision detection

· Collision response

Enhanced: more challenging, but still doable as time permitting
· Floating objects to provide more challenging environment

· Curved spline for the path of the paddle

· A paddle and a ball with acceleration

· Floating objects that regenerates as time passes

· Paddle with missile as a power up

· Up to 5 games levels and 2 difficulty levels

· Background music integration

· User Interface

3.1 Functional Specifications

1. The system must take Keyboard and mouse input for the game set up and the paddle movement.

2. The paddle’s movement is to be constrained to a level defined spline.
3. Play the sound effect

a. when the game begins

b. when an item is selected in the menu

c. when the ball collide with objects on the screen (walls, breakables, paddle, and void)

d. when the player collects a power up

4. Render the level

a. Walls

b. Breakables

c. The ball / balls

d. Power ups

e. The paddle

f. User interface (score and remaining balls)

5. . Render the non game displays

a. Main menu

3.2 System Specifications

To run this game, it requires a Microsoft Windows operating system that has both the Microsoft .Net Framework v1.1 and Managed DirectX 9.0 installed. The programs I used to develop NeoBreakout are:

· Microsoft Visual Studio .NET 2003 using C#
· Microsoft .NET Framework 1.1

· Managed DirectX 9.0

· 3D Studio Max 5

· Photoshop CS / Illustrator CS

· Cool Edit Pro for the sound

4. System Design

4.1 Software Design
4.1.1 Game Flow
Create game

Setup controls (UI)

Load level entities

While (!quit)

{

Process input (if it exists)

Update game entities

Play queued sound effects

Render game

Render User Interface (score, balls left)

}

Cleanup

Exit

4.1.2 Class Descriptions
The NeoBreakOut class is the entry point to the application and manages the interaction between the Framework and the Game class as well as creating and managing the DirectSound, DirectInput device objects and the GUI controls. The Framework class was provided by the SDK and handles the job of creating the Window and the Direct3D device. The Game class manages the entity object for the active game level. The NeoBreakOut class receives events from the Framework, and the sound and input devices and sends them to the Game. The Game handles device events by either creating or destroying the following device resources:

VertexBuffer objects (mesh data)
Texture objects (image data)

SecondaryBuffer objects (sound data)

The NeoBreakOut class passes update and render events to the game and GUI. The Game updates the entities and performs collision detection and response. The Entity interface allows the Game to send collide, update and render events as well as query the bounds. The Entity interface is implemented by each of the following types:

Ball
Wall

Void

Breakable

Paddle

Projectile

PowerUp

ParticleSystem

PowerUp class is subclassed by 5 power up types effecting paddle size, ball size, ball split, ball speed, and missle paddle options.
4.2 Algorithms
4.2.1 Collision Detection and Response Algorithm
Between two circles
Detection:

fDistance = Distance between the center of the circles – sum of radius

If fDistance is <= 0, the collision is detected.
[image: image2.jpg]¢« ®

Figure 2. Collision Detection between two circles

Response:

The centers of the circles form a collision normal vector. Find a line that is perpendicular to that vector. Then, reflect the velocity vector about that line. That gives the new direction of the ball. The magnitude of the velocity vector (speed of the ball) remains the same.

[image: image3.jpg]Moving
Bl

Static
cirde

 Figure 3. Collision Response between two circles

Between a ball and a wall

Detection:
This is a valid collision as the circle is moving toward the line. It is detected by taking the dot product of V and N. If it is < 0 then, they are colliding and the collision detection begins by comparing D with the radius of the Circle. When D <= radius, collision response starts.

[image: image4.jpg]|

Colson

st

 Figure 4. Collision detection between a ball and a wall

In the following case the dot product of V and N > 0 which indicates that the ball is behind the wall. No collision detection is required. The use of D and V for the dot product would allow a double sided collision. Single sided collision is needed because discrete collision detection could allow the center of the ball to pass through the wall making it seem like the ball is on the other side.
[image: image5.jpg]No Collision

 Figure 5. Invalid case of collision between a ball and a wall

Response:
When a collision is detected, simply reflect the velocity of the ball about the wall.
[image: image6.jpg]Ball
Wall

Figure 6. Collision Response between a ball and a wall

Between a ball and a paddle

Detection:
Collision detection of the ball and the paddle is same as the collision detection between the ball and the wall.
Response:

First, find a collision (derived) normal vector for the paddle by connecting a special point below the paddle to the center of the ball. The special point is given by x = (center of the paddle.x), y = (- some distance that is hard coded).
Once the collision normal is derived, find a line perpendicular to the derived normal. Then, reflect the velocity of the ball about that line.

[image: image7.jpg]Paddle Reflection

Velocity of the ball is
reflected about the
line perpendicular to
the derived normal.

Good Case

Figure 7. Collision detection and response of a paddle

However, problem occurs when the ball approaches the paddle at a steep angle as shown below. When this case is detected, reflect the new velocity vector about the paddle line once more.
[image: image8.jpg]Paddle Reflection

Problem
Since the normal isn't
perpendicular to the
paddle the ball can
be reflected into the
paddle.

Solution
Reflect the resulting
velocity about the
paddle line when
V dot N remains < 0.

Figure 8. Problem case of a collision response of a paddle

4.2.2 Fixed Interval Algorithm

Variable update intervals can miss collisions any time the speed of an object would carry it beyond its own size during one interval. With fixed intervals for updates that are independent of the frame rate, all collisions can be caught.

[image: image9]
 Figure 9. Fixed Interval Algorithm

4.2.3 Particle System Algorithm

Particle System is used to simulate explosions, collision impacts between the ball/breakables, ball/walls, ball/paddle, as well as smoke trails of the ball and missiles. Particle System is made up of particles. A particle is a small object such as a point, a circle, or a triangle in this case. Each particle has properties:
· Position

· Velocity

· Color

· Age
Usually, 20 to 50 particles are spawned from a single point. Each particle moves to the direction that is assigned. Each update, as it gets older, the alpha value gets smaller. As alpha value determines the transparency, a particle starts its life opaque and dies transparent.
Two types of particles effects are used in this game. One has a short life span, and the other is continuous. Explosions and collision impacts are good examples of the short life span particle system. The continuous type persists throughout the life span of the object that owns the particle system. The smoke trail simulation of the ball uses the continuous type.
5. Software Development Process

As developing this game was a learning process, I used evolutionary prototyping. At each step, I researched and learned something new, implemented, tested, then moved on to the next objective.
5.1 Development Process

One of the major hurdles was to display anything on to the screen at all. A sample framework was a good starting point that had the menu buttons and a toggle function for the full screen mode already built in. However, after the initial importing of a mesh (.x file), I made a very little progress over the next week due to the complexity of the sample framework. So, I took a new approach. This time, using Windows Form, I used drawprimitive () function to draw circles. Then using Vector2 operations and Matrix translation calls, made the circles move at random directions.
5.2 Testing and Debugging

Detecting and responding collisions produced many challenges. Using the algorithms described above, implementation of it was fairly straight forward. However, there were some bugs. One notable oddity was that a ball would approach the wall, and then disappear from the screen. After logging the positions (x , y) of the balls to a file, I found out that sometimes a ball would go through the wall and keep going without any changes to the direction. This indicated that the collision detection did not occur. Since there was correlation between the velocity and the loss of a ball, my initial response was to make sure a ball’s speed doesn’t get too fast. Later, I implemented fixed interval algorithm described above to solve this issue after a discussion with a fellow student, Earl Lamson.

6. Results

NeoBreakout is completed. The entire basic requirements are met, and the game even provides some challenges. A couple of avid game players were pleased with the result.
6.1 Final Program

[image: image10]
Figure 10. A screen shot of game level 1

The figure shown above shows the first level of the game. The remaining ball count is shown at the bottom left corner, and the score is shown at the bottom right corner. A couple of power ups are shown. Each power-up is described later in the appendix A. The red circles are a particle effect.
[image: image11.png]Score: 13329

Figure 11. A screen shot of game level 2

The screen shot above shows the second level of the game. It shows that the paddle acquired a Machine gun power-up.

6.2 Future Steps

There is a large room for improvements. The first thing on my list is to use mesh. Then, I would also like to create a more robust UI, add more game levels and difficulty levels. Physics engine that adds friction, mass and ball spin is also desired.
7. Summary and Conclusions

Overall, this project was very challenging. I went through a several code refactoring process to improve readability and performance as the project grew complicated. Working on this project was also a fun experience. I had many people from work and school who expressed interest in the outcome of this project which was an incentive to complete the game. Game development encompasses many aspects of Computer Science education as I described above. For that reason, I would recommend developing a game for a senior project to the future seniors. However, understanding of Computer Graphics is prerequisite. Without it, the learning curve will be too great for a single semester project.
8. References

[1] Harrison, Lynn T. (2003). Introduction to 3D Game Engine Design Using DirectX 9 and C#. Apress, Berkeley CA.

[2] Dunn, Fletcher and Parberry, Ian. (2002). 3D Math Primer for Graphics and Game Development, Wordware Publishing, Inc., Plano, TX.
[3] Bourg, David M. (2002). Physics for Game Developers, O’Reilly & Associates, Inc., Sebastopol, CA.

[4] Lay, David C. (2003), Linear Algebra and Its Applications, 3rd Edition. Addison-Wesley.
[5] Tutorials from DirectX 9.0c SDK

Appendix A: User Manual
Minimum System Requirements

700 MHz CPU

32 MB Memory
3 MB Hard drive

DirectX 9.0 Managed

.NET Framework v1.1

DirectX compliant Mouse, Sound card, and Video card

Installation and Starting the Program
Unzip the folder, and click on the NeoBreakOut.exe icon.

[image: image12.wmf]NeoBreakOut.exe.lnk

Use the buttons to navigate.

[image: image13.png]Main Menu

Play Game

Fullscreen Toggle

Keys:

· Esc – Main Menu

· P - Pause /Un-pause
Controls:

· Left Mouse Button - Release ball / Fire Missile (with missile power-up)

· Move Mouse Left/Right - Move paddle

Power-Ups:

· [image: image14.jpg]

- Slower Ball

· [image: image15.jpg]

- Faster Ball

· [image: image16.jpg]

- Larger Paddle

· [image: image17.jpg]

- Smaller Paddle

· [image: image18.jpg]

- Larger Ball

· [image: image19.jpg]

- Smaller Ball

· [image: image20.jpg]

- Machine Gun
· [image: image21.jpg]

- Rifle

· [image: image22.jpg]

- Shotgun
· [image: image23.jpg]

- Split Ball

NeoBreakOut
13
4/25/2005

[image: image24.png]Advancing the Simulation (Integration)

Variable update
intervals can miss
collisions any time
the speed of an
object would carry it
beyond it's own size
during one interval.

With fixed intervals they can be set to ensure all
collisions are caught.

[image: image25.png]000000
o000 000000
000¢°0_,0000000
000000 000000
o 0900000
PAUSED

o 0o 000000

- 000000

BALLS: 2 SCORE: 6281

