SUS Commander
CS470 Design Document

Sean Merritt
1/25/2005
1.0 Introduction

This document provides a detailed design description of the SUS Management and Reporting Tool (SUS Commander). It includes a general history of the problem, requirements, and design of SUS Commander.
2.0 Project Overview

The Department of Natural Resources (DNR) has offices located all over Alaska. These offices all have Microsoft Windows based computers for the employees to work on. With the recent surge of security vulnerabilities and viruses, it is important to keep these computers patched and up to date. To do this my client, the Computer Information Center (CIC), has implemented a Software Update Server (SUS) to remotely patch computers at regular time intervals. Unfortunately, the log files of the server are very difficult to read and have heavy redundancy.
2.1 Data Files

The data files that SUS Commander will use are produced by the server itself. As it stands now, there is a log file for everyday that the server has been up. Each log file contains the http traffic that the server has seen for that day. Every call (GET, POST, and HEAD) that the server receives is put on a separate line and contains the host IP, remote pc IP, whether there was a new patch to download and what patch that was. These files contain data for the entire day, so they can reach sizes in the MB. The breakdown of relevant information in these files is below:
· Software. The services software controlling the automatic updating.

· Version. The version of the software described above

· Date. The date that this log corresponds to.
· Time. The time of day the log file was created.

· Activity date and time. Every time some activity takes place, the time and date are recorded.
· C-IP. This is the IP of the computer that is connecting to the SUS.
· Cs-username. The username that the remote computer is using.

· S-IP. The IP of the SUS.
· S-port. The port that is being used (always port 80).

· Cs-method. The http message type (HEAD, GET, POST, etc...).

2.2 Existing Management Tool
There is currently no tool in place to view the information in the log files. Since every http method is written down, there is a large amount of redundant information. This makes manually looking through each file a mess. On top of that, the formatting of the log files is very poor and it is difficult to distinguish between columns or types of information. An example section of part of the log is below:

[image: image1.emf]
Figure 1. Sample SUS log file

As you can see, it is difficult to make heads or tails of the information in the log files. It is necessary to know which computers are being updated, and currently there is no way to do this given the information in the log files.
3.0 Project Requirements

The Computer Information Center has written up a list of functional ideas that they would like to see in the tool. These requirements are a must in the final product.
3.1 Functional Specifications

1. The tool will have the ability to import an entire folder of log files. This will be used to build the initial database from the start of the SUS configuration.
2. A tree-view on the left-hand side of the screen to easily browse different locations. This will behave much like the Windows Explorer folder listing
3. A toolbar near the top of the application will provide some of the functionality of the menu system without having to navigate menus.
4. A table on the right-side of the screen will be a visual display of the database. This will not be editable to ensure that incorrect information is not accidentally entered.
5. A status bar on the bottom of the application will give the user feedback on the current workings of the application.
6. Customizable wan configurations that can be loaded. These will give the user a way of logically ordering the wan to provide more useful searching.
7. HTML and plain text export for exporting data.

8. Dynamic reporting tools. These will be customized database searches allowing the user to pull up specific information that meets their criteria.

3.2 Interface
The Department of Natural Resources uses anti-virus software called Sophos. This software has a server management tool that is similar to the screenshot below. It was agreed that SUS Commander would have a similar layout since it was easy to find and navigate items. Although the mockup is not the same as Sophos, there was agreement that it would be a nice layout to display the desired information.

[image: image2.emf]
Figure 2. Mock-up of the Software

3.3 System Specifications

The system will be constructed in C# using the Visual Studio .NET IDE. The final executable must be run on a Windows Server based system with the .NET Framework v1.1 or later installed. It will be assumed that Microsoft IIS 5 or higher is installed and will be responsible for managing connections to the SUS. At a minimum, the server must have 512 Mb of memory and a processor of 900 MHz or higher. The lowest resolution that the software should be used in is 1024 x 768 pixels. It is therefore necessary to have a monitor and video card that can produce that resolution.
4.0 System Design

C# was developed with the ideas of the Object Oriented paradigm. As such, the system will be developed using Object Oriented techniques such as encapsulation and information hiding.
4.1 Database
The backend of this software will be a database. This will create a stable way of keeping track of all the information. On top of this, it will make it easier to produce reports based on search criteria. By using this database, the searching and removal of duplicate information will be very quick. Otherwise, the software would have to create a searching algorithm that would go through the entire data structure every time that new information was read in. A quick query to the database will determine if the information is already there and update it appropriately. This will boost performance and help maintain clean code.
4.2 System Architecture

The basic modules of the system are shown below. After the initialization of the main form, all other functions will be available to the user.

[image: image3.emf]Main Form Initialization

Load Log Files

Select Directory

Read in Data From Log

Files

Create Wan Configuration

Save Configuration File

View Information

Search Database

Generate Report

Export Report To HTML

Load One Log File

Load A Directory of Log

Files

Read Log File

Figure 3. System Architecture
After everything has been loaded, the user can create a new wan configuration. This is a logical representation of the wan. It is divided into regions and locations. Basically, every region has a series of locations. Each location has a series of computers. For example, a region might be Anchorage. Then the user can create locations for Anchorage such as the Atwood Building or Sunshine mall. Since these locations are given separate IP ranges, this system should fit the mental picture of the wan very nicely. The only limit to the number of regions and locations is the point at which the hard drive is full. It would be advisable to not create thousands and thousands of regions/locations however.
Once the main form is initialized, the default information will be displayed. Depending on which location is selected in the tree view on the left side of the screen, determines what information is shown in the table. By using this tree view, the user will be able to quickly look at the computers under each location. Reports can also be generated by setting search parameters. Dynamic reports are generated at the will of the user.
At the first startup of the program, it will be necessary to generate the database. This can be done in two ways. One way is to give the program a directory that houses all of the log files from the SUS. After receiving the path to this directory, SUS Commander will go through and load the relevant information from each file. This is recommended only on the initial startup as it will be processor intensive. The second way to load data into the database is to specify a specific log file. That log file will be loaded and then the program will display the results.
It is important to make sure all of DNR’s computers are updating off of SUS. To be sure of this, the user may search for a specific computer. If the computer does not show up in the search results, that user may remotely configure the pc to update off of the SUS. Changes are made immediately and the computer will update the next day.
Like all software, there will be a help function to give the user an easier time. If the user is stuck on something, he/she will be able to look at the help menu.
4.3 Algorithms

SUS Commander will need ways of sorting specific types of information. Due to this, a couple custom sorting algorithms will need to be developed.
Every IP address will need to be comparable so that a sort by IP function can be done. The problem with treating these IP’s as strings and sorting them that way is that the sort won’t be absolute. A comparable example is having two files with the same name except digits on the end. When sorting them, the file that ends in 11 will come before the file that ends in 2. To counter this, each IP will be broken down into octets. These octets will then be compared from left to right. This will ensure that an IP addresses are sorted correctly.

The issue with keeping track of dates has created the need of a couple different algorithms. The first algorithm is sorting. The sorting algorithm that I will implement will take the date and figure out how many days into the year it is. It will do this for the date being compared to it as well. It will then determine how many days have passed between the two and return a value depending on if the first date was more recent or not. In order to get this algorithm to work properly, another algorithm had to be created.
To determine how many days there are between two dates, there were a few considerations that had to be made. Things such as whether or not it is a leap year have been entered into the algorithm layout. The days between the two days start off by determining how many years there are and adding up the days for each year. Then it goes on to the month and adds up the appropriate number of days for each month. Finally, it goes down to the days and adds those in. If the date is the same, it will return a zero. If the date is more recent, a one is returned. If the date is older, a negative value is returned.

When it comes to parsing the information from the log files, that will be done using Regular Expressions. This will make it easy to pull information since most of the relevant information is made up of the same character patterns. The program will loop through every line in the file and try to match the Regular Expression. When there is a successful match, a string is returned and then split into the different chunks.

5.0 Planning and Schedule

The majority of the time on the project will be implementation. This is due to the lack of knowledge of the developer in regards to external database access and remote software installation.

[image: image4.emf]Hourly Breakdown

10%

10%

35%

28%

10%

7%

Requirements

Design

Implementation

Testing

Writeup

Presentation

Figure 4. Estimated effort for each phase.

Throughout the semester, I should have around 10 hours a week to work on this project. This means that there should be around 120 hours to work on the project over the course of the semester. Here is the estimated breakdown of time by category:

Requirements:

12 hours
Design:

12 hours

Implementation:
42 hours
Testing:

33.6 hours

Write-up:

12 hours
Presentation:

8.4 hours

The following chart displays the projected schedule for the creation of the program.
[image: image5.emf]Gantt Chart

1/10/05 1/20/05 1/30/05 2/9/05 2/19/05 3/1/05 3/11/05 3/21/05 3/31/05 4/10/05 4/20/05 4/30/05

Initial Planning

Write Proposal

Initial Requirements

Initial Design

Implement Custom Wan Configuration

Connect application with Database and populate

Implement Log Parser

Implement Directory Importer

Combine parts into a common UI

Implement report generation

Implement report exportation/printing

GUI review

Code review

Project Proposal

Final Presentation

Research Database Access in C#

testing

Figure 5. Projected timeline.

6.0 Summary

The Department of Natural Resources needs a management tool for their SUS to keep track of which computers are or aren’t updating. With the barrage of security issues cropping up recently, it is more important than ever. The completed project will give them the usability and functionality that they seek. It will be challenging to finish this project in the allotted time due to the learning curve of interfacing with a database and remotely configuring a pc. If done correctly, it is possible that other companies could utilize this software making it a personal success.

_1175852288.psd

_1175852463.vsd
Main Form Initialization

Load Log Files

Select Directory

Read in Data From Log Files

Create Wan Configuration

Save Configuration File

View Information

Search Database

Generate Report

Export Report To HTML

Load One Log File

Load A Directory of Log Files

Read Log File

_1168857363.psd

