Quack Attack! the saga begins…
CS470 Requirements and Design Document
Ryan P. Sullivan
Due: 25 April 2005
1.0 Abstract

This project was a challenge, taking it from conception to finish. All the methods for coming up with requirements, making a design, documentation, implementation, and testing are very helpful when making a project. My project was making made a 3D game. I had a hard time deciding what type of game to make at first, but I decided to go 3D because I had some experience with that from CS 385 (Graphics). My project evolved slowly into its current form. I say current, not final, because I plan to continue working on it. Overall my project was a success.

2.0 Introduction
The “problem” I address in my project is making a 3D game. There are several parts to the problem. I have to make sure the game works on multiple machines (as long as they meet the system requirements). Games are interactive, which means I have to make sure the user can’t mess things up by giving the wrong commands. That also ties into GUI design: I want the user to know how to use the game without looking at a manual. Another big problem is creative design. A game must be visually appealing. The user of this project will be a computer gamer who is at least somewhat familiar with stereotypical game play. My project is written entirely in C++. I’m using the openGL libraries for C++ to render the graphics and Direct X 8 for the audio and input. My goal is to make a very simple game that is at least mildly entertaining for those playing it. This project will give me the chance to use several different topics that I have learned in my CS classes.
3.0 Contributors

There were no outside contributors or companies involved in my project.
4.0 The Planning Process

[image: image1.jpg]Project: Quack Attack!

Current Week

Weeks

Tasks

Gather Ideas

Choose Project

01/02 |01/09
to | to
01/09|01/16

01/16|01/23
to | to
01/23|01/30

01730
to
02/05

02/06 |02/13 | 02/20| 02/27
to [to | to | to
02/13|02/20 | 02/27|03/08

03/06 |03/13
to | to
03/13|03/20

03/20|03/27
to | to
03/27|04/03

04/03|04/10
to | to
04/10{04/17

04/17
ta
04/24

04/24
ta
05/01

write Proposal

Gather Requirements

Design Basic System Structure

Finish Requirements/Design Document

Wain Program Implementation

Project Proposal/R and D Presentation

write reviews for previous presentations

Progress Reviews

Level Design

Testing

Final Presentations

Final Writeup

Dema Day

Tasks

weeks

Current Week

Fig 1. Gantt Chart
I used evolutionary prototyping and increased the functionality as the project progressed. I tried to use the original requirements, but I cut a lot out because of ROTC and other commitments. As you can see from the chart, I didn’t finish the implementation until the last minute. One problem I ran into was unspecific requirements at the start.
5.0 Project Requirements
5.1 Functional Specifications
5.1.1 2D movement in a 3D world. The player can move around in a 3D environment, but he can only move along the X,Z plane. There will be no ladders, jumping, flying etc.
5.1.2 2 Levels. The first level is a maze. You will have to complete the maze within the given time. Scattered throughout the maze is “food” that will increase the remaining time. You lose if you can’t solve the maze within the given time. In the second puzzle, you’re in a dream where you must avoid rampaging cougars. Every time a cougar runs into you, you lose a health point. You die when your health goes to zero. If you survive the allotted time, you win.
5.1.3 In-Game Menu. So you don’t exit the level/program on accident. Also, this pauses the game.
5.1.4 On screen information. Depending on the level, there will be onscreen information including time remaining and health.
5.1.5 Midi music sound track. I will use midi files of various pop songs as background music.
5.1.6 Sound Effects. I used wave files and made my own sounds.
5.1.7 I did not implement the following. Picking (selecting something with a mouse), 3D sound effects, in-game modifiable levels, combat, shadows, physics modeling (except for collision detection), saving games, and models.
5.2 Interface Mock-Up – “Screen Shots” made in MS Paint
[image: image2.jpg]Quock ~ttock

The Duckiest Game in the World

[image: image3.jpg]

[image: image4.jpg]

5.3 Actual Screen Shots

[image: image5.emf]Quack Attack!

the saga begins

A game by Ryan Sullivan

[image: image6.jpg]

[image: image7.jpg]Health: 0 Time: 0:67.00

YOU LOSE!

Space = try again

Q = Go to Main Menu

[image: image8.jpg]Thank you for playing

Quack Attack)

The saga begins. ..

look for the
“Revenge of the Duc\k'

sequel next year

Zf you have any ideas on
proving the game, ewo
7% RoceDiick@amar ¢

5.4 System Specifications

I used MS Visual Studio to compile the program. The compiled game must play correctly on any computer equipped with a 1 GHz processor, 512Mb RAM, 3D graphics card (at least 128 Mb) and DirectX 8 (I used this for input and audio). Windows XP must be installed. The screen resolution must be at least 800X600 pixels. The user must have at least a generic sound card and speakers. A keyboard and mouse is required.
6.0 System Design
I’m using object orientation in my project through a class hierarchy and inheritance.
6.1 Data Structures
6.1.1 Tree. I am using a tree to handle all the objects in the program.
6.1.2 Structs. I am using a struct to hold texture information.,
6.1.3 Arrays. I am using arrays to hold some world information, including walls in a maze.
6.1.4 Disjoint Set. I use this data structure to generate a maze
6.2 System Architecture - The overall system can be decomposed into the major modules shown in figure 2. I used the free graphics engine, SimpEngine, as the foundation of my project.
[image: image9.jpg]COGLWindow

CEngine

CSimpEngin

CKeyboard

CObject

CTeXture

CAudioSystem

Fig 2. This is the System Architecture of SimpEngine.
As Fig 3 shows, all objects inherit for CNode and CObject. Inheriting from CObject allows all objects to have Draw, Animate, Collision, and Prepare methods.
[image: image10.jpg]CNode

CObjoct

[Fignan-OnDrawl)
lesignal»-OnAnimate()
lesignair-OnGolision)
lesignal-OnPrepare()

o

Cerrain CBox

Tengh - Toat

it loat

height : float
toxure

Cerate

Fig 3 Inheritance from CNode and CObject

The reason for that becomes apparent when you look at Fig 4. Because of all objects are nodes in a tree, I can call the Draw method, which will then be called on all children of the node I called it on. This allows me to switch levels with ease: just switch which Terrain object you call.

[image: image11.jpg]

Fig 4. Trees and Inheritance at work
6.3 Algorithms
6.3.1 Disjoint Sets. I will use this simple algorithm to randomly generate a maze. I’m using this because I’m familiar with it: I’ve used it to create mazes for two different classes in two languages.
6.3.2 Double Buffering. This will eliminate screen flickering. I draw the screen in the background and then display the complete frame. This is just a parameter change in openGL; I don’t have to actually implement the algorithm.
6.3.3 Collision Detection. I’m using Bounding Box Collision Detection because I need to know if a collision occurs between the player and objects in the program. I didn’t use Spherical Collision Detection because it gives too many false collisions. Fig 5 shows how a bounding box is more accurate for long shapes (like maze walls).
[image: image12.png]

Fig 5. Bounding Box Collision Detection

6.3.4 Game Mode. I use a big combination of if then else then statements coupled with switch statements to change modes in the game. This allows me to have total control of what is shown on the screen and also what the user is allowed to press on the keyboard.
7.0 Software Development Process
7.1 Code Like Hell! I had a hard time using the process and wound up stuck using my bad habit of coding on the fly.

7.2 Challenges
7.2.1 Hard to Track Errors in Visual Studio

7.2.2 Not completely understanding the SimpEngine graphics engine (no user manual)

7.3 Work Schedule (see fig 1)
7.3.1 I spent several weeks learning how to use SimpEngine

7.3.2 I didn’t make any significant progress on the game itself until after spring break.
8.0 Analysis, Results, Discussion

The program works well, but is missing a lot of the features I wanted to implement. My favorite part of the project is the game mode system (see 6.3.4). I think the music adds a lot to the game. I wish I had more time to flesh out the levels; right now they’re pretty bare boned. I have some problems with garbage collection, but at least they do not cause errors while running though (I haven’t seen any).
9.0 Conclusions and Lessons Learned
This was the most challenging project I’ve ever worked on. Even though a lot of features I wanted to implement got cut, I am satisfied with the resulting program. It completes the two main requirements: run with few errors and fun to play. I hate C++ with a passion now, but it was a good experience to work with objects, something I haven’t done in C++. If there’s one lesson I learned, it is to listen to Dr. Mock when he says do not wait till the last minute! That and to use all the development processes available to me. I hope you have fun playing the game, and look for upgrades in the future.

