[image: image1.png]High Level Overview

SciFish Internal Design Document

Prepared by Robert Buchanan in Anchorage, Alaska

[image: image4.png]

[image: image5.png]

Tracker Integration Plan (2002.06.03)
Background:

Database Documentation: The current database schema has been documented. A brief (4 page) report was circulated by email on 2002-05-24. The report included diagrams, in IE notation, of the three SF2K databases and a brief commentary on the peculiarities of each of the databases.

Dataflow Overview: An abstract overview of the dataflow relative to the tracker and main displays is shown below:

[image: image7.png]

Pings are processed to echoes as in the current system. The tracker concerns itself with echoes and the relationships between them. (The tracker also interacts with several tables containing stored parameters. These interactions are discussed in this document in the section on database modification.)

General information about each track will be contained in a new ping database table (Tracks). The association of each echo with a track will be stored in a new ping database table (TrackedEchoes). TrackedEchoes is envisioned as an extension of the Echo table that stores the echo’s track association and “child” along the track. (Echoes from the most recent ping will have a NULL child.)

Both the LRP, HRP displays, (and any other echograms e.g. zoomed areas) would first draw their echoes normally. After the echoes are in place, the displays would read association information, from TrackedEchoes, in order to draw connecting lines along the tracks. The Distribution Pane would be used to display (fish) counts. The count information would be taken from the Tracks table. Filters would be set to allow counts of finished, unfinished or all tracks.

Items in Progress:

Insertion Points: The following 10 pages show where new code will need to be inserted into the existing framework. The first set of insertion points will be the code for doing the actual tracking. The second set will be display modifications. The third set will be the UI (menus and forms). The final set is the insertion of additional tables into the existing database schema.

[image: image6.png]

Tracking Algorithm(s): A routine that calls the selected tracking algorithm will be placed in SonarOCX_Ping (Sonar class). The precise point of insertion is:

The call to “AssociateEchoesToTracks” should occur immediately prior to any displays being updated. This is important because the tracking results need to be complete and available in the database, before there is an attempt to display the tracks.

AssociateEchoesToTracks should do the following:

Additional routines that will or may be required:

GetTrackerSettings:

Fetch the tracking parameters (from the DB)

TrackAssociationAB:
(/(Association Routine

TrackAssociationJP:
Joint Prob. Algorithm Association Routine

TrackAssociationMHT:
MHT Association Routine

StoreTracksData:
Store the track data in the ping db
(tables Tracks and TrackedEchoes)

LiveTracks:

List all tracks that are still growing

InitializeTracks:

Delete all entries in Tracks table
(Ping.mdb)

InitializeTrackedEchoes:
Ditto for TrackedEchoes table
(Ping.mdb)

GetTrackingMode

Get value of trackingFlag

SetTrackingMode

Set value of trackingFlag

ClassAverage:

Average classifications to give a track’s class

TSAverage:

Average TS over track to give a track’s TS

ColorAverage:

Average acoustic color to give a track’s color
Set__ & Get__:

Access new db tables and attributes
Additional variables that will or may be required:

“trackingFlag”:

Indicates which tracker (if any) is being used

(Private member variable of the Sonar class?)

New DB interactions during track association:

Ping DB, Tracks:
This, new table will hold general information about particular tracks. During track association this table will be both read and written to.

Ping DB, TrackedEchoes:
Ditto - (as above).

Ping DB,

TrackerConfiguration:
During playback, this table may be read from and written to.

Ping DB,

TrackerDisplayConfig.:
During playback, this table may be read from and written to.

SciFish 2000 DB,

TrackerConfiguration:
During playback, this table may be read from and written to.

SciFish 2000 DB,

TrackerDisplayConfig.:
During playback, this table may be read from and written to.

Display Modifications: The results of tracking will be graphically displayed in real time on the main displays:

· LRP
(Low Res Pane
//
Left)

· HRP
(High Res Pane
//
Lower Right)

· DP
(Distribution Pane)
//
Upper Right)

Changes to the echograms (e.g. LRP and HRP) are discussed below and changes to the DP follow.

Low (High) Res Pane: Both displays (LRP and HRP) are instances of the Echogram class. This class is also used for creating zoomed portions of both the LRP and HRP.

Tracks need to be updated in real time as pings arrive. The logical place to insert new code is either in Echograms’ PingArrived subroutine or in one of the routines that it calls.

(Modifications to this class may be rather complicated because there are a number of events/situations that can cause the displays to be redrawn and because many of these events are handled by different routines.
The challenge is to avoid writing (and also testing and debugging) several different modifications to several different routines.)

(Scrolling is also a problem…)

Insertion Points: There are a number of possible different insertion points. Although not all of the details are 100% clear, the following code locations appear favorable:

The (new) collection, visTrackedEchoes will need to be updated in Echogram’s PingArrived routine. A natural point would be somewhere before or after the following lines of code:

The DrawTraxForPing routine will need to be inserted into Echogram’s PaintGram sub. Some supporting code will need to test if it’s OK to draw tracks. DrawTraxForPing will need to be repeatedly called for each column of the display (except the leftmost) going from (2nd) lowest numbered visible ping number to highest visible ping.
Additional routines that will or may be required:

AddNewVisTracks:

Add new tracks to visTracks

PruneVisTracks:

Remove tracks from visTracks if not visible

GetTraxEchoes:

Gets tracked echoes from TrackedEchoes

table.

DrawTraxForPing:
Paint tracks for a whole column as follows: Check to see if all echoes in the collection are on screen – if not it prune the collection.
Call DrawATrack for each echo in the column.

DrawATrack:

Draw a line between any two Echoes.

(Error checking:

AreAllEchoesOnScreen:
Check to see if all echoes in visTrackedEchoes are on screen

PruneOffScreen:
Remove all echoes from a collection that are no longer on the screen…

Additional variables that will or may be required:

visTracks:

Array w/ list of all tracks on screen (2+ echoes)
visTrackedEchoes:

A collection meant to hold on-screen echoes

???Flag???

Flag indicating is gram should display tracks

Distribution Pane: The DP (Distribution Pane) is an instance of the DistributionPlot class. This display will be updated in real time.
Two existing routines need to be modified. New code needs to be added the PingArrived sub – see below. There is a rather straightforward modification is to the class’ PlotPaint routine.

Minor and obvious changes also need to be made to Echogram’s TopAreaPaint routine. TopAreaPaint prints out the bin amounts, total, and time interval across the top area of the distribution plot. When displaying counts we might want it to print “total count =” instead of just “total =”…

Additional routines that will or may be required:

FillBinTrackClass:
Fetch all completed tracks (using CompletedTracks), and sort and enumerate them by class. (Similar to, but simpler than the DistributionPlot class’ InsertEchoes.

FillBinTrackTS:

Ditto, as above, but sorted by TS.

CompletedTracks:

Fetch all tracks that are finished.

New DB interactions during track association:

Ping DB, Tracks:

The DP display will need to read from this table

Additional variables that will or may be required:

“someFlag”:
Need to be able to indicate to DP that it is displaying tracks. (The variable probably should be named to something descriptive for actual implementation…)

Additional UI Elements: These elements include five new menu items, one new menu, and four new forms.

Menu Modifications: Each modification is described briefly. The effect of selecting each menu item is detailed (as needed) with pseudocode.

The Collection form’s System menu needs two additional menu items:

· System | Tracker ON (OFF)

· System | Play Back Tracks…

I also propose adding a top-level menu (tracking) to the Collection form. This menu would be invisible until the tracker was turned on. The new menu would have at least three items:

Tracker menu:

· Tracker | Tracker Parameters…

· Tracker | Track Display…

· Tracker | Track Export…

Descriptions of Modifications: The effects of each new menu item and form are described below:

System | Tracker ON turns the tracker on by changing the property TrackerOn to TRUE (locate in Scifish2000.mdb table PropertyList).

System | Play Back Tracks… opens a form (SelectTrackFile) allowing the user to choose from saved playback setups in TrackFile (Ping.mdb).

The Track menu should be visible if and only if the tracker is on.
(See “System | Tracker ON”.)

Tracker | Tracker Parameters… opens the TrackerConfiguration form, allowing the user to configure tracker parameters.

Tracker | Track Display…opens the TrackDisplay form, allowing the user to configure how tracks are displayed.

Tracker | Track Export…opens the TrackExport form allowing the user to export transient track data to a text file.

New Forms: I intend to add four new forms. All of these forms are called from the new menu items that will be added to the Collection form. The new forms are list below:

· SelectTrackFile

· TrackerConfiguration

· TrackDisplay

· TrackExport

The SelectTrackFile allows the user to load a save combination of raw ping data and tracker settings. (This is important for reproducibility.)

The TrackerConfiguration form should look similar to the sonar configuration form. Just as is presently done with the sonar configurations, the user should be able to load saved tracker configurations.

Users in PB mode would be able to create and delete tracker configurations. A copy of all saved configurations would be written to both the SciFish2000.mdb and Ping databases. Tracker configurations (from other units) could also be imported from “foreign” Ping databases.

The TrackDisplay configuration form will be analogous to the TrackerConfiguration form in both function and appearance. The difference between the two is that the TrackDisplay form will concern itself with how tracks are displayed rather than tracker parameters.

This TrackExport form will allow the user (probably tester) to copy data from Tracks and TrackEchoes tables (Ping db) to a text file. The form will have a radio button for choosing between (~3-4) different export formats. Initially, the name of the outputted text file can be automatically generated. (Use a date stamp for part of the file’s name???)

(Note: TrackExport may be useful in speeding up algorithm testing.
At a later point it can evolve into a form for generating count reports.)

Database Modifications: I intend to modify the current database schema by adding two tables to the SciFish2000.mdb and five tables to the Ping database.

The SciFish2000.mdb: The diagram below shows the current db schema enclosed in the yellow box. The two tables that will be added are in the magenta box: TrackConfiguration and TrackDisplayConfiguration.

TrackerConfiguration will hold any and all parameters for the tracker algorithms. An entry in the PropertyList table will be set to point to the currently valid tracker configuration.

TrackDisplayConfiguration will hold any and all parameters for displaying tracks. This will include minor matters such as track color and any of a number of possible filter settings.

[image: image2.wmf]

SciFish2000.mdb

Class

ClassID: INTEGER

ClassifierID: VARCHAR(50)

ClassName: VARCHAR(50)

ClassDescription: VARCHAR(255)

ClassThreshold: INTEGER

Classifier

classifierID: VARCHAR(50)

name: VARCHAR(50)

description: LONGCHAR(1073741823)

nClasses: INTEGER

nBins: INTEGER

firstBin: INTEGER

netImage: LONGBINARY(1073741823)

samplingPeriod: INTEGER

colorMapName: VARCHAR(50)

bandwidth: INTEGER

exemplarFftSize: INTEGER

echoAvgMaxRange: REAL

Color

colorMapID: INTEGER

level: INTEGER

color: INTEGER

threshold: REAL

category: INTEGER

ColorMap

Name: VARCHAR(50)

ColorMapID: INTEGER

Type: INTEGER

gridColor: INTEGER

bottomColor: INTEGER

nColors: INTEGER

offset: REAL

increment: REAL

Description: VARCHAR(255)

DBAttributes

key: VARCHAR(50)

value: VARCHAR(50)

PropertyList

key: VARCHAR(50)

valueType: INTEGER

text: VARCHAR(255)

blob: LONGBINARY(1073741823)

memo: LONGCHAR(1073741823)

Replica

ReplicaID: VARCHAR(50)

Name: VARCHAR(50)

Description: VARCHAR(255)

SamplingPeriod: INTEGER

Bandwidth: REAL

Size: INTEGER

waveform: LONGCHAR(1073741823)

SonarConfiguration

name: VARCHAR(50)

SonarConfigurationID: VARCHAR(50)

description: LONGCHAR(1073741823)

adcSigned: BIT

adcLittleEndian: BIT

adcMinVoltage: REAL

adcMaxVoltage: REAL

adcNBits: INTEGER

bandwidth: INTEGER

beamAngle: INTEGER

bottomDetectFalloffRatio: REAL

bottomDetectStartRange: REAL

bottomDetectThreshold: REAL

bottomDetectWindowSize: INTEGER

classifierName: VARCHAR(50)

echoSeparation: REAL

echoCorrelationThreshold: REAL

echoMFReplica: INTEGER

echoTsThreshold: REAL

echoWindowSize: INTEGER

exemplarFftSize: INTEGER

logging: VARCHAR(50)

pingInterval: INTEGER

pulseLength: INTEGER

pulseType: INTEGER

receiverGain: INTEGER

sampleCount: INTEGER

samplingPeriod: INTEGER

startFrequency: INTEGER

stopFrequency: INTEGER

transmitPower: INTEGER

replicaName: VARCHAR(50)

hardwareVersion: VARCHAR(50)

echoAvgMaxRange: REAL

TrackerConfiguration

trackerConfigurationID: INTEGER

ABalpha: INTEGER

ABbeta: INTEGER

ABgate: INTEGER

MHTsomeParameters: REAL

TrackerConfigurationName: VARCHAR(255)

Some_other_parameters....: VARCHAR(255)

TrackerDisplayConfiguration

trackerDisplayConfigurationID: INTEGER

filterLeft: REAL

filterRight: REAL

trackColor: INTEGER

filterMoving: REAL

filterFarthest: REAL

XminPixelSize: INTEGER

YminPixelSize: INTEGER

more_parameters...: REAL

The Ping.mdb: The diagram on the next page shows the current db schema enclose in a green box at the bottom of the diagram. The five tables that I propose to add to this schema are in a purple box near the top of the diagram. These tables are:

· TrackConfiguration

· TrackDisplayConfiguration

· TrackFile

· Tracks

· TrackedEchoes

TrackerConfiguration and TrackDisplayConfiguration are as described for the SciFish2000.mdb. (See the previous section for a description.)

TrackFile holds track-processing information. It will assure that operators can fully reconstitute derived data, without have to store the actual derived data itself.

Tracks contains attributes of individual tracks. These attributes will include the number the classification of the tracks, its acoustic color, starting point etc.

TrackedEcho holds the track association of each echo. Since every echo will eventually be associated with some track, this information needs to be stored for every echo as it comes in. Although not shown in the database diagram, the Echo table should also contain the echo number of each echo’s child. (See the discussion on Echogram displays for the reason.)

1st Note: The same result, (as added the TrackedEcho table), could also be achieved by adding additional fields to the Echo table. I chose to add a table, rather than modify the existing Echo table, because I wanted to avoid potential issues with modifying legacy code and databases.

2nd Note: The contents of the Tracks and TrackedEcho tables are transient. Since the raw data, settings and software version are stored in the TrackFile table, track information can be reconstituted at will and need not be saved.

3rd Note: Since the tracks themselves are transient, it may be useful for both the end user and for the software tester to built in some sort of track data export utility. Similarly, a well developed report generating would utility be generally useful.

[image: image3.wmf]

SciFish2000 Ping

DB

Extension for Track

Storage

Extended Ping

DB

Class

ClassID: INTEGER

ClassifierID: VARCHAR(50)

ClassName: VARCHAR(50)

ClassDescription: VARCHAR(255)

ClassThreshold: INTEGER

Classifier

classifierID: VARCHAR(50)

name: VARCHAR(50)

description: LONGCHAR(1073741823)

nClasses: INTEGER

nBins: INTEGER

firstBin: INTEGER

netImage: LONGBINARY(1073741823)

samplingPeriod: INTEGER

colorMapName: VARCHAR(50)

bandwidth: INTEGER

exemplarFftSize: INTEGER

echoAvgMaxRange: REAL

DBAttributes

key: VARCHAR(50)

value: VARCHAR(50)

Echo

pingNumber: INTEGER

echoNumber: INTEGER

range: REAL

targetStrength: REAL

classification: INTEGER

confidence: REAL

correlation: REAL

spectrum: LONGBINARY(1073741823)

rescaleFactor: REAL

Ping

pingSeriesID: VARCHAR(50)

pingNumber: INTEGER

time: DATETIME

latitude: DOUBLE

longitude: DOUBLE

timeSeries: LONGBINARY(1073741823)

outputReplica: LONGBINARY(1073741823)

PingSeries

pingSeriesID: VARCHAR(50)

name: VARCHAR(255)

transducerSerialNumber: VARCHAR(50)

startTime: DATETIME

stopTime: DATETIME

sonarConfigurationID: VARCHAR(50)

cruiseID: VARCHAR(50)

salinity: INTEGER

speedOfSound: INTEGER

maxDepth: INTEGER

notes: LONGCHAR(1073741823)

nPings: INTEGER

Replica

ReplicaID: VARCHAR(50)

Name: VARCHAR(50)

Description: VARCHAR(255)

SamplingPeriod: INTEGER

Bandwidth: REAL

Size: INTEGER

waveform: LONGCHAR(1073741823)

SonarConfiguration

SonarConfigurationID: VARCHAR(50)

name: VARCHAR(50)

description: LONGCHAR(1073741823)

adcSigned: BIT

adcLittleEndian: BIT

adcMinVoltage: REAL

adcMaxVoltage: REAL

adcNBits: INTEGER

bandwidth: INTEGER

beamAngle: INTEGER

bottomDetectFalloffRatio: REAL

bottomDetectStartRange: REAL

bottomDetectThreshold: REAL

bottomDetectWindowSize: INTEGER

classifierName: VARCHAR(50)

echoSeparation: REAL

echoCorrelationThreshold: REAL

echoMFReplica: INTEGER

echoTsThreshold: REAL

echoWindowSize: INTEGER

exemplarFftSize: INTEGER

logging: VARCHAR(50)

pingInterval: INTEGER

pulseLength: INTEGER

pulseType: INTEGER

receiverGain: INTEGER

sampleCount: INTEGER

samplingPeriod: INTEGER

startFrequency: INTEGER

stopFrequency: INTEGER

transmitPower: INTEGER

replicaName: VARCHAR(50)

hardwareVersion: VARCHAR(50)

echoAvgMaxRange: REAL

TrackFile

TrackFileID: INTEGER

pingSeriesID: VARCHAR(50)

ProcessedBy: VARCHAR(255)

SoftwareVersion: VARCHAR(255)

TrackFileName: VARCHAR(255)

trackerConfigurationID: INTEGER

trackerDisplayConfigurationID: INTEGER

Tracks

TrackID: INTEGER

classification: INTEGER

color: INTEGER

confidence: REAL

doneYet: BINARY()

lengthPings: INTEGER

sumSpectrum: VARBINARY()

totalTS: REAL

trackEndPing: INTEGER

trackStart: INTEGER

TrackedEchoes

pingNumber: INTEGER

echoNumber: INTEGER

TrackID: INTEGER

trackerDisplayConfiguration

trackerDisplayConfigurationID: INTEGER

trackColor: INTEGER

filterLeft: REAL

filterRight: REAL

filterMoving: BIT

thresholdMoving: REAL

filterFarthest: REAL

fiilterNearest: REAL

XminPixelSize: INTEGER

YminPixelSize: INTEGER

More_parameters...: REAL

TrackerConfiguration

trackerConfigurationID: INTEGER

ABalpha: REAL

ABbeta: REAL

ABgate: INTEGER

MHTsomeParameters: REAL

TrackerConfigurationName: VARCHAR(255)

Some_other_parameters....: VARCHAR(255)

Potential Conflicts:
When I spoke with Alex on Saturday (2002.06.02) he didn’t anticipate any major conflict with his acoustic coloring modification. Alex will present his own integration plan on Friday (2002.06.07) the situation could possibly change…

Conclusion: The Next Steps
I need to gather feedback and make modifications to my plans. Gathering feedback will take a few days. While waiting, I can adapt JB’s tracker so that it will fit into the broader scheme. I also need to work on a written test plan for the tracker implementation.

Once I have an approved integration plan, I intend to start with the database modifications and insertion of the tracker algorithm. The next task, (after testing), would be to set up the menus and work on the Echogram displays. Fleshing out a proper report generation capability is somewhat tangential to the project, but can be pursued once other goals have been accomplished.

Pseudocode: Tracker | Track Export…

Opens a new form TrackExport

Additional Tables for Tracker

Modified SciFish2000.mdb

New Code

 Public Sub PingArrived(ByVal pingNumber As Long)

 If mPlotType = dptClass Then

 ' For class type plots, check to see if the classifier has changed.

 ' If it has, resize the arrays.

 If mClassifier Is Nothing And general.sonarIF.GetClassifier Is Nothing Then

 Exit Sub ' No classifier, so cannot do much of anything.

 ElseIf Not mClassifier Is general.sonarIF.GetClassifier Then

 Set mClassifier = general.sonarIF.GetClassifier

 resizeArrays mClassifier.GetNClasses() - mClassifier.GetNImplicitClasses() + 1 ' for unknown

 PlotLayout

 End If

 End If

 ' START: REB 2002.06.0? - DP Tracker Mod

 ‘ Associate the pings that have just been collected with tracks

 If someFlag <> 0 Then

 If mPlotType = dptClass Then

 FillBinTrackClass

 ElseIf mPlotType = dptTargetStrength Then

 FillBinTrackTS

	

 End If

	

 PlotPaint

 Exit Sub

 End If

 ‘ STOP: REB 2002.06.0?

 mTimesliceCount = mTimesliceCount + 1

 If mTimesliceCount > mTimesliceMax Then

 ' All the available time slices are used, so

 ' throw out the oldest one: deduct it from the totals and

 ' adjust the pointers

.

.

.

(PingArrived continues…)

Pseudocode:

If trackingFlag is zero (no tracking) or larger than 3 >>ERROR

Get the Tracker Parameters

Add echoes (ping & echo numbers) to the new TrackedEchoes table in the Ping DB. (Use StoreTracksData)

Based on trackingFlag select the right tracker algorithm and call algorithm passing echoes, ping # and parameters

	1st case: 	(/(

	2nd case: 	Joint Prob.

	3rd case:	MHT

Check to see if the tracker failed

Install track info in DB (both)

	

New Code

.

.

 ' Flush the old echoes

 For i = echoes.count To 1 Step -1

 echoes.Remove i

 Next i

 ' Upload the new echoes

 For i = 0 To nEchoes - 1

 Set theEcho = New EchoClass

 theEcho.Upload i, spectrumSize, SonarOCX

 echoes.Add theEcho

 Next i

 End If

 ' START: REB 2002.06.0? - Call Tracker

 ‘ Associate the pings that have just been collected with tracks

 If trackingFlag <> 0 Then

 AssociateEchoesToTracks mPingNumber, echoes, trackingFlag

 End If

 ‘ STOP: REB 2002.06.0?

 ' Notify all listeners that a ping has arrived

 For Each listener In pingListeners

 listener.theObject.PingArrived p_pingNumber

 Next listener

 SonarOCX.UnlockPing (p_pingNumber)

 (Ping continues…)

SciFish Internal Design Document

Authored by Robert Buchanan in Anchorage, Alaska

� EMBED PBrush ���

Public Sub PingArrived(ByVal pingNumber As Long)

.

.

.

 ' Go through the echoes and install them into the appropriate

 ' point on the gram. Each point will hold the maximum target

 ' strength of all echoes associated with the point

 nEchoes = general.sonarIF.GetNEchoes()

 For i = 0 To nEchoes - 1

 Set echo = general.sonarIF.GetEcho(i)

 InsertEcho echo, mCurrentColumn

 Next i

 					 (sub continues…)

Pseudocode: Tracker | Track Display…

Opens form TrackDisplay

Pseudocode: Tracker | Tracker Parameters…

Opens form TrackerConfiguration

Pseudocode: System | Play Back Tracks…

Opens form SelectTrackFile

Pseudocode: System | Tracker ON

Toggle Caption “Tracker On”/”Tracker OFF”

Check PropertyList with Caption – Sanity Check

Toggle Value of TrackerOn in PropertyList

Make (In)Visible: System | Tracker menu

IF in PB mode make (In)Visible: System | Play Back Track Data…

Note: Need to add to System | Playback Mode something in case PB is later turned on/off.

PAGE
9

_1084706187

_1084706607

_1084631086

