Tracker Implementation- Robert Buchanan – CS470 Project

CS 470 Project Report:

Implementation of a
”Broadband Fish Tracker”

While Employed At

Scientific Fishery Systems, Inc.

[image: image38.png]=lojx|

Horhack | Trocks
[AllTracked Series. Playback Mode-
Ping Se Current ping Series, (‘: Manual
3" styro Delete & Track Record., @ Automaticaly
B
Dotabose
[D:Aseifish2000%datah 200201100800, mdb
[Ping St Bromser
e — e
3" apple (44) - 20 db gain -[1/10/20029.36:094M | 1/10/2002 3:3850AM | 20 3" apple. 20¢
» |3 styro [44)- 20 dB gain |1/10/20029:23:454M [1/10/20029:23004M 157 ‘With 20 db g
single bubbles (23] - 20 dB[1/10/2002 8:27.59 M |1/10/20028:2317 M |39 Wit 20 gain
single bubbles (23] - 20 dB[1/10/2002 8:21:50 4 |1/10/20028:25:21 AM 105 Wit 20 gain
single bubbles (23] - 47 dB[1/10/2002 8:30:17 M |1/10/20028:33.06 AM |84 [With 47db ge—{
Lo | o]

(5.15.2002 – 11.1.2002)

Table of Contents

iiTable of Contents

1A Brief Preface

10.1
The Report

2Chapter 1: Background

21.1
The Topic

21.2
Background

31.3
Current Methods

31.3.1
Tagging

31.3.2
Narrowband Sonar

61.4
A Solution: Build a Broadband Fish Tracking Sonar

61.4.1
More Certain Detection

61.4.2
Improved Identification

71.4.3
The Best Foundation for a Fish Tracker

8Chapter 2: Design

82.1
Analysis

82.2.1
Necessary Tasks

92.2.2
Structure of the SciFish 2000’s Software

102.3
Initial Design Goals

102.3.1
Reproducibility

112.3.2
Compatibility and Modularity

112.3.3
Performance

112.3.4
Adaptability

122.4
The Integration Plan

122.4.1
Tracker Dataflow, Original Concept

132.4.2
Tracker Dataflow, Revised Concept

14Chapter 3: Implementation

143.1
The User Interface

143.1.1
The Collection Form

153.1.2
Track Display Settings Form

163.1.3
Tracker Parameter Form

173.1.4
Track Export

183.1.5
Database Modifications

183.2
Tracking Implementation

183.2.1
Implementation Challenges

223.3.1
The Echogram Displays: LRP and HRP

233.3.2
Distribution Pane: DP

233.4
Storing And Replaying Tracks

243.4.1
Storing Tracks

243.4.2
Replaying Tracks

25Chapter 4: Revision

254.1
Informal Revision Process

254.2
Formal Revision Process

26Chapter 5: Error Handling

265.1
VB 6.0 Error Handling Syntax

275.2
Error Handling Philosophy

275.3
Error Handling Implementation

28Chapter 6: Conclusion

286.1
Achievements

286.2
Skills Gained

29Appendix A: Integration Plan

29A.1
Integration Plan

29A.2
Review Meeting Minutes

30Appendix B: Code Samples

30B.1
Sonar OCX

31B.2
The User Interface: Forms and Displays

31B.2.1
Forms

31B.2.2
Classes

32B.2.3
Modules

32B.2.4
Amount of Code Written

33Glossary of Terms

35Background Documents

357.1
Authorship

357.2
List of Documents

357.3
Video Demos

36Bibliographic Sources

A Brief Preface

I would like to acknowledge that the path that has lead to this report is one that I haven’t had to walk alone. I’ll begin by thanking my employer, Pat K. Simpson, and my direct supervisor, Jennifer Gunderson, for their encouragement and criticism while working on this project. I’d also like to thank current and past UAA faculty for their dedication. In particular, I would like to single out Professor Mock’s CS 411
, Professor Scott’s CS 360
 and former Adjunct Professor Billing’s CS 207
 as being particularly valuable.

0.1
The Report

This report is laid out in a linear fashion and divided into chapters. Additional supporting documents have been included as appendices. These appendices include: original design documents, source code samples, background documents,
 short video clips of the software running, and my CS 470 presentation. These appendices can be accessed via hyperlink.

Chapter 1: Background

This chapter discusses the background and motivation behind my CS470 topic. It frames the topic’s relationship to an SBIR project
 funded by the NSF
. It explains how the SBIR project is motivated by difficulties faced by riverine resources managers. These difficulties are caused by the limitations of current fish counting and tracking methods. I will briefly explain why tracking is required for accurate fish counts. Finally, I will present the advantages that broadband sonar technology could offer when applied to fish tracking and show how my topic contributes to the overall project and ultimately the fisheries management community.

1.1
The Topic

The NSF has recognized the need for a broadband fish tracking sonar. Scientific Fishery Systems has completed a Phase I SBIR grant to study the feasibility and advantages of a broadband tracker.
 Recently an additional Phase II SBIR grant was awarded for the construction of a prototype. Work on Phase II began in May of 2002. This prototype will include split-beam technology, tracking, and display functionality. Raw ping data as well as system settings will be stored to ensure a legal recording capability.

My CS470 topic is a subset of this larger, and still continuing, broadband tracker project. I was assigned to modify the software of an existing sonar system, the SciFish 2000, so that it could by used for fish tracking. This report documents how this task was completed.

1.2
Background

Riverine fish populations are under increasing pressure from development and over-utilization. Current methods for assessing fish numbers are labor intensive, imprecise, and often subjective. Without effective tools for measuring fish populations and run escapements, it is difficult for resource managers to make sound decisions. Since the survival of significant animal and human communities is dependent on these fisheries resources, the tangible and intangible costs of poor decisions can be large.

1.3
Current Methods

Current Methods for counting fish include visual counting, fish tagging, and sonar assays.

Visual counting is limited to shallow, clear waterways, leaving tagging and sonar as the most generally applicable methods.

1.3.1
Tagging

Fish tagging can provide a good estimate of fish numbers in addition to behavioral data. Tagging is done by capturing specimens, and then clipping or tagging a fin or implanting a transmitter. Fish with tagged fins must then be recaptured. Fish with implanted transmitters can be actively followed using an appropriate receiver technology.

Unfortunately, tagging has downsides. A large number of specimens must be captured. Capturing and tagging a large number of fish is laborious, and if poorly done, can result in injury to the specimens. Additionally, if transmitters are used, the cost of the transmitters can be prohibitive.

1.3.2
Narrowband Sonar

Narrowband sonar is predominantly used to assess fish quantity and behavior at key points along a river. Fish are distinguished from noise and background echoes by setting a high target strength
 threshold.
 The sonar's ping rate is usually set very high
 providing several dozen echoes for each fish. These echoes are used to produce tracks that document each fish’s movement through the sonar beam.

There are three problems with this methodology. Fish identification is based on target strength, alone which can cause detection problems. Narrowband sonar has difficulty counting and tracking densely schooling fish because it is sensitive to acoustic shadowing. With most narrowband sonar systems, track assignment must be done manually.

1.3.2.1 Riverine Narrowband Detection Problems

Because narrowband sonar only operates at a single frequency, the operator only knows the range and strength of a target’s echo. Target identification with narrowband sonar can be difficult and error prone. In general, the target strength of an echo is a function
 of target size, type, orientation angle, reverberation effects, size-dependant resonances, and completeness of ensonification.

Unfortunately, when using narrowband sonar, echo target strength thresholds often have to be set quite high, because otherwise the sonar would detect too many false positives. Because thresholds are set high, fish will often disappear and then reappear as they move through the sonar beam. Differentiation between a single track with a gap and two individual tracks is largely subjective and, therefore, difficult to automate.

Examination of typical narrowband riverine data (see the following figure)
 exemplifies the problem faced. Tracks are clearly visible, but it isn’t clear to an untrained eye how to handle gaps in tracks. How many tracks are present? A trained human can, with difficulty, generate consistent fish counts from such data, but these counts are inherently subjective.

[image: image1.png]

1.3.2.2
Acoustic Shadowing, Cause and Effect
[image: image10.wmf] Fish Track Error (Fish Per Minute)

(BioSonics Sonar, Wood River 1998)

0

100

200

300

400

500

600

0

100

200

300

400

500

600

700

800

Tower Count

Tower Count minus

Track Count

Many economically and environmentally interesting riverine environments
 have denser fish concentrations than in the sample data from the previous section.
 When fish are densely schooled, narrowband sonar systematically undercounts fish numbers. Acoustic shadowing causes this systematic error. Acoustic shadowing can compound and be compounded by narrowband sonar’s detection and identification problems.

[image: image11.png]

The effect is depicted in the figure on the right.
 Shadowing reduces the target strength of the more distant target. If the targets are sufficiently close to each other, it may be impossible to resolve the two targets as independent echoes. Both effects can, cause highly variable undercounts.
Because narrowband sonar systems generally use high target strength thresholds to separate fish from other echoes, and because they have poor range resolution, acoustical shadowing can seriously effect fish counts. Generally, as fish flow rates increase, narrow band sonar become highly undependable. The effects of fish flow rate on the accuracy of acoustic fish counts is depicted in the next figure.

[image: image12.png]High Level Overview

The figure on the right
 shows how narrowband sonar data becomes increasing unreliable as fish numbers increase. Narrowband sonar performs well as long as fewer than 100 fish per minute are being counted. As the rate of fish flow increases, there is a systematic undercount caused by acoustic shadowing effects.

Systematic undercounts are often dealt with by scaling the observed fish counts using the “Bendix” method. This method estimate fish passage rates from echo data multiplied by a user generated scaling factor.

1.3.2.3
The Need for Automated Tracking

As fish swim through the sonar beam, they have to be tracked to ensure that each fish is counted exactly once. Thus, according to current methods, fish-counts are based on the assignment of tracks.

With most existing, narrowband sonar systems, tracking and track assignment is a manual process. Because of gaps in tracks and the effects of shadowing this work is difficult, laborious
, and subjective. Resource managers are currently very interested in purchasing systems that can automate tracking.

1.4
A Solution: Build a Broadband Fish Tracking Sonar

Development of a broadband sonar system with automated fish tracking would greatly improve riverine fish passage data. The advantages of a broadband, tracking sonar over current narrowband sonar systems lie in three areas:

· Broadband sonar provides better and more certain detections.

· Broadband sonar provides improved fish identification.

· Broadband sonar provides a superior platform upon which to build a fish tracker.

1.4.1
More Certain Detection

Broadband offers superior detection and 10x better target range resolution. Because identifications are based on target spectra, target strength thresholds and related detection problems are not significant. Superior range resolution means that broadband sonar systems also have fewer detection problems resulting from acoustic shadowing.

1.4.2
Improved Identification

Consider the spectrum of fish identification capabilities:
· [image: image13.png]=lojx|

Horhack | Trocks
[AllTracked Series. Playback Mode-
Ping Se Current ping Series, (‘: Manual
3" styro Delete & Track Record., @ Automaticaly
B
Dotabose
[D:Aseifish2000%datah 200201100800, mdb
[Ping St Bromser
e — e
3" apple (44) - 20 db gain -[1/10/20029.36:094M | 1/10/2002 3:3850AM | 20 3" apple. 20¢
» |3 styro [44)- 20 dB gain |1/10/20029:23:454M [1/10/20029:23004M 157 ‘With 20 db g
single bubbles (23] - 20 dB[1/10/2002 8:27.59 M |1/10/20028:2317 M |39 Wit 20 gain
single bubbles (23] - 20 dB[1/10/2002 8:21:50 4 |1/10/20028:25:21 AM 105 Wit 20 gain
single bubbles (23] - 47 dB[1/10/2002 8:30:17 M |1/10/20028:33.06 AM |84 [With 47db ge—{
Lo | o]

Narrowband sonar systems are not strictly capable of fish identification.

· Scientific Fishery Systems’ current broadband sonar system, the SciFish 2000, identifies fish based on single echoes. Fish species assignment is 80-90% correct.

· A broadband tracker can be setup to apply the SciFish 2000’s fish identification technology to the echoes along a track. According to Alexander Kulinchenko,
 echo averaging should improve identification rates from 80-90% to 98-99%.

1.4.3
The Best Foundation for a Fish Tracker

There are three reasons that the SciFish 2000 is the best existing foundation upon which to build a broadband fish tracking sonar:

· Broadband sonar offers better detection and identification.

· The SciFish 2000 is the only commercial broadband fisheries sonar.

· The SciFish 2000 already has significant computer hardware resources

Chapter 2: Design

During the design phase, initial design goals were identified, the relationships between the design goals and the existing SciFish 2000 software were analyzed, and an integration plan detailing how these goals could be achieved was developed. This design plan was formally reviewed in a meeting, changes were made, and the design document was accepted.

2.1
Analysis

The existing code base for the SciFish 2000 was analyzed as to how the desired functionality could be implemented.

2.2.1
Necessary Tasks

With regards to the tracker and new functionality, one can distill the problem down into four basic task areas:

1. The tracking algorithm and displays accept parameters and settings from the user.

2. Echo data is processed into tracks.

3. The results of tracking (tracks) are displayed.

4. Storage of results.

2.2.2
Structure of the SciFish 2000’s Software

Since any new functionality had to be designed and built with the existing architecture in mind, developing a design required first examining how the three major parts of the application fit together.

The entire SciFish 2000 application is built using Microsoft’s tools. The user interface, including displays, is written in VB 6.0. Most signal processing is done in an OCX written in VC++ 6.0. Data is stored in three Access databases:

· The parameter database:
This database is used for storing persistent setting and configuration information.

· The development database:
This database is used during the extraction and editing of echoes for use in training and testing new neural network based classifiers.

· The ping databases (experimental data):
Each set of raw data is stored in a ping database along with configuration information required for playback.

The figure below illustrates how the UI (user interface) sends parameter and commands to the OCX where signal processing is done. Results from the OCX flow into the databases and are then displayed on the UI’s displays. The various databases supply the UI and OCX with stored data and settings profiles.

[image: image14.png]5 Scifish 2000 [playback: 1" apple (44) - 20 dB gain

2.3
Initial Design Goals

In the beginning there was an SBIR proposal. This proposal roughly defined the tracker’s minimum capabilities. Based on the SBIR proposal, some initial system specification, and project team discussions, the following initial design goals were developed:

· Reproducibility:
Users should be able to playback data with complete fidelity. From a user’s standpoint, it shouldn’t matter if the raw ping data was from live or recorded measurements.

· Compatibility and Modularity:
New code and functionality shouldn’t conflict with older functionality. Raw data should be transferable between systems with tracking and systems without tracking. The UI and database should remain consistent with the SciFish 2000.

· Performance and Speed:
Any new functionality shouldn’t significantly burden the system data collection and playback. The system should be able to track flow rate of up to 1,000 fish per hour.

· Adaptability:
Since the system is expected to be modified before, during and after field-testing, a flexible implementation was considered important.
2.3.1
Reproducibility

Since the market for the tracker is fisheries managers and scientists, exact reproducibility was defined as a primary goal. The SciFish 2000 already stores complete ping data and sonar configuration during data collection. Reproducibility could be assured by placing the settings used by the tracking algorithm in the database with the ping data. Since a single ping series can be played using multiple different tracker settings, this actually entails adding two tables to the database. (See Below.)
[image: image15.png]totalsince star) =2
']

Inactive [-20:20]: 0 (0%) (tracks)

2.3.2
Compatibility and Modularity

Cross platform compatibility between the broadband tracker and the original SciFish 2000 sonar system was considered very important. Maintaining database interoperability would allow selected data from the SciFish 2000 pool tests to be used for testing the tracker. Keeping changes to the user interface modular, and logically consistent with the SciFish 2000, would simplify testing, code maintenance, and user training.

For the database, maintaining compatibility meant that none of the pre-existing database tables could be modified. It also meant that the tracker software had to be able to create missing tables “on the fly” when using legacy data. Finally, since the existing databases are in MS Access, the limitations and peculiarities associated with Access also had to be kept in mind.

For forms and their menus, maintaining compatibility meant that, unless tracking was turned on, the software should look, feel, and work like the original SciFish 2000. It also meant that even when tracking was turned on, the differences should be held to a minimum. It was felt that this would simplify cross training for users and would allow the creation of common user documentation for both systems.

For the displays, maintaining compatibility meant that there was a need to compromise between displaying tracks as clearly as possible and maintaining the look and feel of the SciFish 2000’s rather austere displays. Again, it was felt that this would simplify cross training and code maintenance.

2.3.3
Performance

A rapid ping repetition rate is important for good tracking performance. Since no solid data had been collected on how quickly the SciFish 2000 could process a ping, it was arbitrarily decided that anything that was likely to increase the ping processing time by more that 100 milliseconds should be considered for optimization.

2.3.4
Adaptability

Because it is anticipated that different customers may desire to use new or different tracking algorithms, design emphasis was placed on making the infrastructure supporting the tracking algorithm very flexible.

· New algorithms can be added to the settings form by adding additional case statements to a handful of functions in the “Tracker Parameter” form.

· Storage of algorithm parameters is implemented through a “General Configuration” class that can be used for almost any type of configuration.

· Track and echo caching was implemented so that almost any sort of algorithm could be used for associating echoes with tracks.

2.4
The Integration Plan

A fifteen-page integration plan
 was developed for use as a technical specification. (The integration plan has been appended to this report.) The plan specifies signal processing data flow, tracks should be displayed, and modifications to menus, forms, and databases. The first page of the plan is shown below, with the diagram of the originally proposed dataflow shown expanded.

[image: image16.png]totallsince start) = 16 Interval=d: 44
0 0 3 5 4 2 2

2.4.1
Tracker Dataflow, Original Concept

The diagram above shows the originally conceived dataflow for the tracking functionality. As in the SciFish 2000, echoes are extracted in from the raw ping data and stored in the Ping Database. It was then envisioned that the tracker would read the processed echoes from the database and the track associations in “TrackedEchoes” table with track information being stored in a “Tracks” table. This information would then be read from the database and displayed on the echograms
 and distribution
 displays.

2.4.2
Tracker Dataflow, Revised Concept

During formal discussion and review of the original dataflow concept (previous section), concerns were raised regarding performance losses due to excessive database traffic. Simple, timed performance tests were done and they indicated that the problem could be significant. To avoid accessing the database during track creation and display, it was decided to cache echo and track data. The resulting modified dataflow is shown below.

[image: image17.png]totalsince star) =2
']

Inactive [-20:20]: 0 (0%) (tracks)

Chapter 3: Implementation

Implementation followed the integration plan developed during the design phase. Feature interdependencies dictated that the feature implementation order roughly followed the task breakdown given in section 2.2.1 of this report:

· The first task was development of menus and forms for the user interface.

· The second task was creation of the tracking “infrastructure” and integration of the tracking algorithm.

· The third task was adaptation of the existing SciFish 2000 displays so that they could display track information.

· The final task was implementation of a way to save tracking results for playback.

3.1
The User Interface

[image: image18.png]Excel Worksheet

Signal Processing Microsoft Excel
Sonar OCX

Excel Chart Generation

Tracker - OCX

Signal Processing
Tracking e it

= e

Echo Caching

Tracking

The concept of operation called for the tracking functionality to be unobtrusive until activated by the user. The user needed a way to activate tracking and then access forms to enter tracker settings. The forms that would be accessed needed to be created. Finally, the database schema needed to be expanded to store the new, tracker settings.

3.1.1
The Collection Form

It was decided allow the user to activate tracking through the “Collection” form’s system menu. The collection form is the application’s most central form. It is always open and contains the main displays and top-level menus. A screenshot of the Collection form is shown on the right.

The “System | Turn Tracker ON” item was added to the system menu. Toggling this item allows the user to toggle the activation of the tracking functionality. With tracking enabled, a new “Tracker” menu becomes visible. It also allows the user to access new functionality in the Playback Parameters form.

[image: image19.wmf] Fish Track Error (Fish Per Minute)

(BioSonics Sonar, Wood River 1998)

0

100

200

300

400

500

600

0

100

200

300

400

500

600

700

800

Tower Count

Tower Count minus

Track Count

Each item in the Tracker menu leads to a new form. Forms were created to allow the user to adjust track displays and tracker parameters: “Track Display Settings”, and “Tracker Parameters”. A third form, “Track Export”, was created for use as a debugging tool.

3.1.2
Track Display Settings Form

Using the “Track Display Settings” form the system operator sets tracker display options. The user can decide whether track lines should be drawn on the LRP and HRP echograms. The user can also decide whether the DP’s histogram should show echo counts or track counts. The diagram below shows the form on the right with circles and arrows indicating which parts of the settings form effect which displays.

[image: image20.png]

3.1.3
Tracker Parameter Form

Using the Tracker Parameter form, the system’s operator can set the algorithm by choosing from the combo box on the left side of the form. When a new algorithm is chosen, the number and labeling of the parameters automatically readjusts.
 The screenshot below on the right shows the form, as it would appear after the Alpha Beta tracking algorithm had been chosen. The screenshot on the left shows the form after the JPDA algorithm has been chosen.

[image: image2.png]Tracker Parameters; Profi

Parameters

=lolx|

Current Algorithm

Parameters
Alpha [velocty updete]

Beta [posiin update]

Radis of Range Gate:

 [image: image3.png]Tracker Parameters; Profi

Parameters

=lolx|

Current Algorithm

:
Parameters
Alpha [velocity updte] [07
Beta posiion update] [03
Initial Gate Size [samples] T
Probabilty of Detecton [055
Extaneous Retum Dersty [01

The form’s menu is shown below. This menu allows the operator to load, save, rename, delete and apply a group of settings. The name of the profile displayed by the form, and whether it has been applied, is shown in the form’s caption.
 Because the currently loaded “default” profile is read only, the ReName menu item has been disabled. If the settings had already been applied, the Apply Parameters item would also be disabled.

[image: image4.png]=lolx|

Parameters
LosdProfe... Cbel Parameters
save s cules
Retiane cult Alpha velocty wpdate] [02

e et psiion dae] [05

Il Gote e fsamples] [5
Probabily of Detecton [055
Extancaus Retum Densty [01

Apply Parameters kA
Close i

The settings profile is held in an instance of the “General Configuration” class. I created this class so that I could reuse code for creating and managing settings profiles. The class handles all common functionality.
 The only functionality that the form still has to implement is input validation and control properties.

3.1.4
Track Export

The ‘Track Export’ form, despite its name, is actually a debugging tool. It allows the tester or developer to conveniently view all tracker related parameters, start tests, and tracking results. The Track Export form isn’t intended to be part of the final product. This form will be transformed into a report generation utility after field-testing is completed.
 The screenshot shown immediately below shows the form:

[image: image5.png]=10l

Export
Type of Report Include the Following
& Bow Text Fie = ezt
C Fomated Test e 7 Echoss
© Tabuler _

[V Estended Echoes
 Some other option
IV Tracker Parameters

IV Qther Parameters

¥ Date snd Tine.

teutt

Using the Export menu, the information gathered by the form can be saved to a text file or displayed in a non-modal form consisting of a large textbox. The two screenshots below illustrate the use of this debugging tool to independently verify the applied tracker parameter settings.

[image: image21.png]High Level Overview

3.1.5
Database Modifications

Additions were made to the parameter database. The new entries in the property list allow the application to default at startup to the last used track display and tracker algorithm settings:

· A table was added to store profiles from the “Track Display Settings” form.

· New entries (additional properties) were added to an existing “PropertyList” table.

3.2
Tracking Implementation

Design goals called for the tracking algorithm to be fast, adaptable, and modular. For the SciFish 2000, nearly all of the heavy data processing is done in the “SonarControl.OCX”. This OCX is a control written in C++. Since many tracking algorithms are known to be computationally intensive, it was decided from the start that the tracking algorithms would be implemented as part of the OCX. When the decision was made to cache echo and track data, this also was designed into the OCX.

3.2.1
Implementation Challenges

To successfully implement tracking, four challenges had to be overcome: An interface between the OCX and UI had to be defined and built. Infrastructure for caching echo and track data had to be developed. Existing prototypes of tracking algorithm had to be modified before they could be integrated into the system. Finally, all of this needed to be thoroughly tested, even though there initially was no way to efficiently display track data.

3.2.1.1 Interfacing With The OCX

Creation of an interface between the OCX and the UI’s tracker functionality required the creation of infrastructures on both sides for the OCX /UI boundary. To create an interface that the UI could access, the sonar OCX’s interface was expanded
. .

This was accomplished through the creation of public access methods in the sonar class and through creation of a “Tracker” class. An instance of this Tracker class was added as a public member to the Sonar class. The Tracker class serves three needs. It acts as a wrapper for the Sonar class methods that access the OCX’s tracking functionality. It initializes the tracker. Finally, it does “cleanup” when tracking stops.

The diagram on the following page shows the flow of information through the OCX, across the OCX/UI interface. In this diagram the databases and settings forms are the providers of parameters, requests, and raw data. (The connection between the OCX and the sonar hardware during live data acquisition is omitted.) Processed data (echoes and tracks) are stored in the databases and shown on the displays.

Boxes shown in orange stand for modules that were modified or created “de novo” as part of the tracker’s implementation. The UI (written in VB) is shown in the box with the light purple striped background near the top of the diagram. The databases are represented the by purple box in the upper right corner. The green box filling the bottom of the diagram shows the OCX (written in C++).

[image: image6.png]OCX /Ul: Interface Implementation

VB Side

Settings Forms | [Displays
SonarClass:
—
Y2 e s «+— | Access Functions
|4

Eho®
Ping dta

Dapl & DSPoutput classes

Fing Processing
Echo Extraction
Echo Classification

SonarCotrolClass

HAecess Bunctons

+t

Tracker Class:

Porameters & Oversees
Commans o
=i Emesl Tnm no
Algorithm "X Class Jieskasszmalons | Eco Cacho
Holds Algo Parameters | s | Stores Echo & Track Data
Calculates Tracks < | Does"Bookkesping’
Echo Data (Ranges)

3.2.1.2
Echo-Caching Implementation

To investigate the pros and cons of caching, I created a limited prototype that stored echo and track data in statically allocated arrays. Initial ad hoc performance testing gave positive results and generated interest in ultimately using the cache for more than just tracking.

While I was working on other aspects of the project, a senior developer, Jennifer Gunderson, revised the initial prototype so that it used dynamic memory allocation and a circular buffer. I have recently tested and debugged the revised cache. The concept seems to be working very well.

3.2.1.3
Algorithm Integration

Background research, algorithm analysis, and basic algorithm development were done by Dr. Jae-Byung Jung. My task was to create a wrapper so that current and future algorithms developed by Dr. Jung could be integrated into the software.

[image: image22.png]Tracker Integration Plan (2002.06.03)

Background:
Database Documentation: The curtent database schera has been
documented. A brief (4 page) reportwas circulated by ernail on 2002-05-34.
The reportincluded diagrame, in IE notation, of the three SFIK databases and &
brief commentary on the pectliariies of each of the databases

Dataflow Overview: An absiract overview of the dataflow relative 1o the tracker
andmain displays is shown below:

High Level Overview

FagtE ManDiples

Pings are pracessed to echoes s i the current system. The tracker concems
itseifwith echoes and the relationships between them. (The tracker also
interacts with several tables containing stored parameters. These interactions
are discussed In this documentin the section on database modification)

General infomation ahout each track wil be contained in 3 new ping database
table (Tracks). The association of each echo with a track will be stored in a new
ping database table (TrackedEchoss). TrackedEchoss is snvisioned as an
extension of the Echo table that stores the echo's track association and "chilg”
along the track. (Echoes from the mast recent ping wil have a NULL child)

Both the LRP, HRP displays, (and any other echograms e.q. zoomed areas)
would frst draw their echoes nommally. After the echoes are in place, the
displays would read association infommation, from TrackedEchoes, in'order to
draw connecting lines along the fracks. The Distribution Pane would be used to
display (fish) counts. The count infornation would be taken from the Tracks
table. Filters would be setto allow counts of finished, unfinished or allracks.

Dr. Jung used Matlab and C to explore and define two algorithms. The “Alphabeta” algorithm predicted the position of the object being tracked based on its current location and speed. The JPDA algorithm applied a more global approach basing its predictions on track history statistics. Both algorithms used a nearest neighbor approach to assess goodness of fit.

Implementation and integration of the Alphabeta algorithm is complete. Ad hoc performance tests indicate that the current implementation of this algorithm is sufficiently fast. If performance needs to be improved, the slowest step in the algorithm (echo-track association) can be optimized so that it scales at O(n(log(n)) by presorting the list of unfinished tracks.

Implementation of the JPDA algorithm is not yet complete because there are concerns about the amount of memory that the algorithm requires. As currently implemented, Dr. Jung’s implementation can require O(n(n!)) memory space to solve conflicting assignments between ‘n’ tracks in a cluster of fish.

Would memory requirements cause problems for the current implementation of the JPDA algorithm? It can reasonably be assumed that a cross-section of a school of fish could contain about a dozen fish. If these fish are closing bunched then could cause conflicts. The relative memory requirements for two to twelve conflicts are shown below.

Table 1: Memory requirements for O(f(x)) for f = n, n(log(n)), n!, and n(n!).

	n
	n(log n)
	n!
	n(n!)

	2
	0.30103
	2
	4

	3
	0.477121
	6
	18

	4
	0.60206
	24
	96

	5
	0.69897
	120
	600

	6
	0.778151
	720
	4320

	7
	0.845098
	5040
	35280

	8
	0.90309
	40320
	322560

	9
	0.954243
	362880
	3265920

	10
	1
	3628800
	36288000

	11
	1.041393
	39916800
	4.39E+08

	12
	1.079181
	4.79E+08
	5.75E+09

(Implementation of the JPDA algorithm is currently stalled awaiting modification of the algorithm.)

3.2.1.4
OCX Unit Testing

Unit testing and debugging each part of the tracker and its infrastructure (caches, access methods, etc.) presented a challenge. The amount of data that had to be verified was staggering. Most of the testing had to be done prior to the development of the software displays. (This meant that there was a circular dependency with regard to implementation and testing.)

I dealt with these problems by inserting scaffolding into critical sections of the tracking algorithm. This scaffolding captured a snapshot of the trackers state, and sent this information to tab delimited text files. The advantage of using these text files was that I could directly open them using MS Excel.

Since the SciFish 2000 temporarily stores echoes in its databases and nothing related to the tracker interacted with the original signal-processing pathway, I could use echo data from the database as a “gold standard” for comparisons. This echo data was extracted using SQL queries and then exported to Excel.

With test data from the tracker and control data from the databases both in Excel, verification was straight forward. Direct comparison of values was sometimes done. When working with large amounts of data (e.g. several thousand echoes), comparisons were mostly visual using scatter plots. Until the tracker’s displays were complete Excel’s chart making utility was used as a substitute.

[image: image23.png]A S w2 B S A A
Inactive 82.46 ft: ts= n/a dB: t=21:39:03:

3.3
The Displays

[image: image24.jpg]Rogue River, Oregon - Side Look (200208261013)

©
Jaquiny Bulq

 It was decided to keep the tracker’s displays as close to the Scifish 2000’s displays as possible. Both tracker and SciFish 2000 have a main display consisting of three parts. Echoes (and tracks) are displayed in the echogram displays: LRP (Low Res Pane) and HRP (High Res Pane). Counts of echoes (and tracks) are displayed by a histogram showing in the DP (Distribution Pane). The LRP and HRP are located on the left side and lower right corner respectively. The DP is located in the upper right corner.

3.3.1
The Echogram Displays: LRP and HRP

[image: image25.jpg]

For the base SciFish 2000, both LRP and HRP are implemented as instances of the “EchoGram” class. After every ping is processed, the new echoes are plotted as a time vs. range plot. Point coloration depends on either the echo’s classification (e.g. fish species) or target strength. The user can toggle the choice between target strength and classification. Point sizes (horizontal and vertical) and coloring schemes are also user definable.

For the tracker, track association is displayed by simply connecting echoes along a path with a thin track line. To ensure that the tracks don’t completely overwrite the echoes, a minimum point size for the echo is defined. If the display’s point size is set too small, it is automatically increased to 3 by 3.

In the current version of the software, all track lines are colored “vbBlue”.
 Additionally, all track lines are one pixel wide. Experiments with a range of point sizes, track coloration schemes, and track line width showed that these choices created the most legible displays possible without sacrificing visual consistency with the SciFish 2000.

3.3.1.1
Experiments With Multicolored Tracks

Usability experiments with a number of coloration schemas where tracks were colored by average target strength, track classification, or as a hash of the track’s ID were all disappointing. In particular, coloring the tracks by average target strength or classification tended to make the tracks difficult to read. Confusion tended to occur whenever track and echo colors were similar.

3.3.2
Distribution Pane: DP

[image: image26.png]. Tracker Parameters Profile Loaded: 38 butwid =10l x|
Parameters

LoadProfll... Cttl

Parameters

e ity

Save a. Cti+s Apha 3

Dekete. Cas 6
Window [

Close. i

For the SciFish 2000 the DP (histogram display) is implemented as an instance of the “DistributionPlot” class. The DP shows the distribution of echoes by target strength or classification of all for all echoes displayed in the HRP (the echogram below the DP). When the DP displays counts by echo classification, the number of bars is equal to the number of classes being in the classifier. When the DP displays counts by target strength, the user sets the number of target strength bins.

With tracking activated, the user can also choose to have the DP display a count of all tracks or just those tracks that start inside the boundaries of the HRP. The DP can be set to display track counts by classification or average target strength. Because the calculation of track classifications and average track targets strengths is resource intensive, these tasks are done in C++ as part of the OCX’s Tracker class.

To indicate to the user when the DP is displaying track counts, the bars of the histogram’s display are solid when displaying echoes and crosshatched when displaying track counts. The total sum in the top right of the display indicates whether the track counts are from the start of the series of pings, or if the display only shows track counts based on tracks visible in the HRP. (In the example above, the average target strength distribution of all tracks since the beginning of the ping series is being displayed.)

3.4
Storing And Replaying Tracks

Complete storage of echoes and tracks would require significant amounts of storage space. Instead of saving large volumes of derived data, the software saves raw data and precise tracker and sonar settings so that the tracks can be exactly reproduced. The record associating a series of raw data (i.e. ping series) with a settings profile is stored as a “Track Series” record. Whenever the operator finishes playing tracks, independent of whether live or recorded raw data is being used, there is an opportunity for him to create a Track Series record.

3.4.1
Storing Tracks

When an operator running with tracking engaged, stops playing ping data, he is asked:

[image: image7.png]o S

If the operator clicks yes, he is asked for the name of the new “Track Series”. The Track Series is a record containing all of the parameters and profile required in order to replay the tracking result that the user has just viewed. If the name is the same as an existing record, the name that the operator entered has a version number appended to it.

[image: image8.png]Enter Track Series Nam

Please enter a name forthe new Track Seies®

=

After entering a new name for the Track Series, the operator’s name is requested.

[image: image9.png]Flease enter you name:

=

[Rabert Buchanan

[image: image27.bmp]If the operator has clicked affirmatively for all three boxes, the tracking event can be replayed later exactly as recorded.

3.4.2
Replaying Tracks

Unless tracking is enabled, the Playback Parameters form only allows the operator to playback a ping series.
 Once tracking is enabled, the tracks menu becomes visible. The user can use the Track menu to select a track series from all tracks series in the database
 or from track series using the currently loaded ping series.
 The last item on the Tracks menu allow the user to delete a track series.

Chapter 4: Revision

Review and revision were a result of both ad hoc and formal processes. Both types of processes were useful because they were effective at different project levels.

4.1
Informal Revision Process

Most small revisions to the design and implementation of the software were done in an ad hoc manner. Most small revisions tended to be the result of bugs and / or muddled design implementation. Since the number of these errors was large but their complexity was generally low, they were fixed as they were brought to my attention.

4.2
Formal Revision Process

Most large revisions were a result of the formal review process. Generally these fundamental design problems were unanticipated. Some required partial redesign. Without a formal process of review, the need for these revisions would not have been uncovered until later in the development cycle.

The tracking software has been subjected to several formal cycles on review. The first cycle followed the development of an integration plan. The second cycle followed the implementation of a prototype of the echo cache.

A third cycle of revision will take place after the end of the CS470 project. It consists of pool tests planned for the weekend of 12/14/02 and 12/15/02, followed by a formal code review at the beginning of 2003. If the code review goes well, the current code will be base lined.

__

Chapter 5: Error Handling

__

Inconsistent error handling is one of the weak points of the SciFish2000’s software. Implementation of a systematic handling system is planned, but not scheduled. During the course of implementing tracking, a policy was accepted that all tracker modules would include error handling. Since the code that I had written for the tracker was largely self-contained, it was viewed as a good test case for implementing consistent error handling.

5.1
VB 6.0 Error Handling Syntax

VB 6.0’s error handling uses “On Error GoTo LABEL” syntax instead of the more conventional “try-catch” syntax used in C++, JAVA, and VB.NET. Because the “On Error GoTo LABEL” is basically a “GoTo” statement, writing well-structured VB error handlers can be difficult.

A literature search
 of the web, the MSDN library, and advanced tests on VB programming yield a large body of common goals when implementing VB error handling, but little consistency in actually implementing complex application level error handling.

5.2
Error Handling Philosophy

The primary goal for my error handler implementation is to ensure that the software runs correctly, collects data, and does not crash. The following rules of thumb were applied:

· To ensure that the error handler can respond sensibly, the error handler’s first action is to ensure that VB’s “Err” object is saved.

· Errors that can be anticipated are handled with a coded response.

· Unanticipated errors are handled by attempting to roll the software back to a correct state. (All database modifications are done through transactions.)

· Depending on the location and type of error, the operator may be informed.

· All unanticipated errors trip an assertion when running in the IDE.
(Unanticipated errors should be made obvious to the developer and tester.)

5.3
Error Handling Implementation

Initial examination of the application for code reuse candidates was of limited success. A method had been written to store errors, but unfortunately it didn’t work. Two different types of error boxes had already been implemented, but neither was useful. The first error box was too complicated and difficult to use. The “second error” box was too limited.

I attacked these shortcomings by creating the MyErrorObject class. Class methods included a method to store errors that actually worked and an error box method that was compatible with the simpler of the legacy error box methods, but was more useful.

To prevent crashes every routine that I had added or significantly modified during the tracker development, was equipped with an error handler. Where possible the handler was designed to silently correct any errors. If the error occurred during the collection of raw data, the handler disabled tracking, to ensure that tracker error could not affect the data collection process.

Chapter 6: Conclusion

I consider my CS470 project to have been successful based on my achievements and the skills gained.

6.1
Achievements

A short list of my achievements includes:

· I succeeded in designing, implementing and integrating fish tracking software.

· The system is ready to be tested under live conditions:

· Pool tests are scheduled for December 14-15, 2002.

· On site field-testing is scheduled for summer 2003 on the Copper River.

· I made significant progress toward implementing systematic error handling.
Because the tracker shares a number of modules with other products, complete implementation, once completed will be reusable for a number of similar products.

6.2
Skills Gained

While working on this project, I gained skills and experience:

· I gained extensive knowledge of the Visual Basic language.

· I was introduced to multi-language software development. (C++ and VB 6.0)

· I was introduced to, and spent close to a hundred hours working with, error-handling concepts, and practice.

· I experienced the dynamics of product design, including the element of cooperative teamwork, competition, and other intangible interpersonal skills.

__

Appendix A: Integration Plan

__

From 6/21/2002 to 6/4/2002 a plan for integrating tracking into the existing SciFish 2000 software was developed. This Integration Plan has been included with this report, and can be considered part of the report.

A.1
Integration Plan

The Integration Plan is located in the “Report\Appendices\Appendix A” folder. This planning document includes the general approach to the integration problem, task breakdown, examples of pseudocode, and general implementation details. This document was fairly closely followed during the implementation phase.

To view the Integration Plan click here.
A.2
Review Meeting Minutes

The Integration Plan was formally reviewed in a meeting on 6/7/2002. Minutes from the meeting were created and circulated.

To read the minutes from the design review meeting click here.

Appendix B: Code Samples

I am providing samples of source code that I wrote while working on my topic. All of the source code provided is, and remains. property of Scientific Fishery Systems, Inc. These samples are written in C++ and VB 6.0. This source code is not a complete listing of every line written, but is largely a sampling of code taken from the most recent latest software version.

Code samples are located in folder (“\Report\Appendices\Appendix B\User Interface VB6-Code\New”), and can also be reached from this document via hyperlink. For modules that are not new, but have been expanded, a folder (“\Old”) containing the original pre-tracker versions has also been provided for comparison.

B.1
Sonar OCX

Although I am responsible for the early tracker algorithm coding, most of this code has been extensively rewritten by my colleague and supervisor Jennifer Gunderson, and then debugged and revised by myself. In the current version of the tracker algorithm, the only contiguous section of code that I can claim nearly sole responsibility for is the implementation of the Alphabeta class: (Path: \Appendix B\Sonar OCX C-Code\AlphaBeta Algorithm)

· Alphabeta.h

· Alphabeta.cpp
The following source code listings are an example of the earlier version of the tracking algorithm. This code was used as a prototype, but has since been largely revised:
(Path: \Appendix B\Sonar OCX C-Code\Early Tracker Prototype)

· tracker.h
· tracker.cpp
· TRACK_FOR_TRACKER.h
· TRACK_FOR_TRACKER.cpp
B.2
The User Interface: Forms and Displays

Most of my code was written in MS Visual Basic 6.0. Four new forms were created and two existing form were significantly expanded upon. Three new classes were created, and three existing classes were expanded upon. Two modules were somewhat expanded. (Click on hyperlinks to view samples.)

B.2.1
Forms

Of the four new forms, showReport.frm and TrackExport.frm, are only being used as debugging tools during development, and will not be part of the commercial product.

· showReport.frm
· trackDisplaySettings.frm

· trackParameters.frm
· TrackExport.frm
The following preexisting forms were significantly expanded upon:

· frmCollection.frm

(Original Version) vs. (New Version)

· playbackParameters.frm
(Original Version) vs. (New Version)

B.2.2
Classes

The MyErrorObject class is not fully complete. Possible additional features are stubbed out and await time and resource for completion. The other two classes are finished.

· generalConfigurationClass.cls
· myErrorObjectClass.cls
· tracker.cls
The following preexisting classes were significantly expanded upon. The Echogram and DistributionPlot classes are used for displays. The sonar class had to be expanded to give the UI access to the OCX’s new tracking functionality:

· echogram.cls

(Original Version) vs. (New Version)

· distributionPlot .cls

(Original Version) vs. (New Version)

· sonar.cls

(Original Version) vs. (New Version)

B.2.3
Modules

The modGeneral module serves as the entry point for the application and had to be slightly modified. The modUtil module contains utility functions. Several new utility functions were added and others modified.

· General.bas

(Original Version) vs. (New Version)

· Util.bas

(Original Version) vs. (New Version)

B.2.4
Amount of Code Written

During the course of the project most of the modules were extensively and repeatedly revised. In the curse of coding and revision approximately 4,000-5,000 lines of VB code and 1,500 lines of C++ were written. Although much of this code was tossed out during revision, the total amount of code added to the project exceeded 100 pages. Approximately, 75% of this material was include as code samples for this report. This leads to two conclusions:

1. Since much of the code that was written ended up be revised or edited away, carefully writing durable code is fast than a quick and dirty approach.

2. Electronic submission of project reports lifts a weighty
 burden from students’ and instructors’ shoulders.

Glossary of Terms

Acoustic Shadowing
Partial or complete blocking of one sonar target by another. The effect can cause systematic undercounts of passing fish.

Bendix Method
A process that combines an echo counting algorithm with input from the user. The method counts all echoes in user-selected range bins, and then scales the overall count by the number of echoes per track from respective bins, as observed on the oscilloscope. For this reason this method of counting is also sometimes referred to as “Scaled Echo Counts.”

Broadband Sonar
Sonar utilizing a broad swathe of the acoustic spectrum.

Classifier
Classifiers are used in connection with Neural Nets by the SciFish 2000 to identify targets. Creation of classifiers requires example of the object to be identified.
Database,

Development
Database used by the SciFish 2000 and Broadband Tracker for the development of classifiers.
Parameter
Database used for the storage of persistent settings, configurations, and parameters.
Ping
Database used for the storage of sonar data. Also contains related sonar configuration profiles.

Displays,

DP
See section 3.3.2

HRP
See section 3.3.1

LRP
See section 3.3.1

Echo
Reflected signal from a sonar target.

Echogram
A range vs. time display showing echoes. See section 3.3.1 for examples.
Ensonification
Illumination of a target by sound waves from an active sonar.

Narrowband Sonar
Sonar utilizing a narrow range of the acoustic spectrum.

NSF
U.S. National Science Foundation

Ping
Acoustic signal sent out by an active sonar system.
Ping Series A regularly repeating series of pings making up a continuous data set.
Riverine Pertaining to rivers
SBIR
Small Business Research Innovation grants are available through a number of U.S. federal agencies and are intended to promote new technology, research, growth.

SciFish 2000
broadband sonar built by Scientific Fishery Systems, Inc. My 470 topic uses this system as the base system upon which the tracker is built.

SonarOCX
OCX component of the SciFish 2000’s software. Responsible for most of the data and signal processing. The tracking algorithms are integrated into the SonarOCX.

Tagging
Marking or attaching a tag to a fish.
Track
The path, consisting of connected observations, as a target moves through a sensor’s field of view.

Track Series
The combination of a ping series along with all tracker setting reproducibility of derived tracking results.
Target Strength
The strength of a returning sonar echo.

Background Documents

I have attached a number of background documents. The documents can be reached via hyperlink. All documents provided are the property of Scientific Fishery Systems and are provided solely for use as background information.

7.1
Authorship

The SBIR report was authored by Pat Simpson and has been included to provide background information. The SciFish 2000 UI Class Hierarchy was created by Jennifer Gunderson using Rational Rose’s reversing engineering capabilities. Although I created the CS470 presentation and the three short demonstration videos, they contain intellectual property belonging to Scientific Fishery Systems.

7.2
List of Documents

The attached documents are:

A. Phase I SBIR Report

(MS Word 2000)

B. SciFish 2000 UI Class Hierarchy

(PDF Reader)

C. CS470 Presentation

(Power Point 2000)

7.3
Video Demos

Three short video demos were created using
HyperCam capture software. The files are standard AVI and should be viewable using the Windows Media Player.

1. Playback
2. Playback and UI

3. Playback with only the HRP showing tracks
__

Bibliographic Sources

__

1. Balena, F. (1999). Programming Microsoft Visual Basic 6.0, Redmond. WA.
Microsoft Press
2. Combs, T. & Campbell, J. (1998). 1001 Visual Basic Programmer’s Tips 2nd ed., Albany, NY. Onward Press
3. Deitel, H.M., Deitel P.J., Nieto, T.R. (1999). Visual Basic 6: How To Program, Upper Saddle River, NJ. Prentice-Hall Publishing.
4. Ezzel, B. (1998). Developing Windows Error Messages, Sebastopol, CA.
O’Reilly Press.
5. Eddon, G., Eddon, H. (1998). Programming Components with Microsoft Visual Basic 6.0 2nd ed., Redmond. WA. Microsoft Press
6. Gill, T. (2000). Visual Basic 6: Error Coding & Layering, Upper Saddle River, NJ. Prentice-Hall Publishing.

7. Patton, R. (2000). Software Testing, Indianapolis, IN, Sams Publishing.

8. Holzner, S.. (1998). Visual Basic 6 Black Book, Scottsdale, AR., Coriolis Press.

� EMBED Excel.Chart.8 \s ���

� EMBED PBrush ���

Ping_Series

Sonar Data�

Tracking:

Software Version

Ping SeriesID

Tracker SettingsID

Etc.

Tracker Setting:

Settings

Existing “Ping” Database

These new tables are required for reproducibility

� EMBED PBrush ���

Reports / Counts

Sonar Pings

Signal Processing�(Echo Extraction)

Data Flow - High Level Overview

New Table:

Tracks

Main Displays

Echo Cache and Tracker Algorithm(s)

Databases

New Table:

TrackedEchoes

Tracker Settings

User Interface

DP:

Distribution Pane

A Lesson Learned:

I received both algorithms defined in well-commented C. A better medium for defining the algorithms would have been English-like pseudocode. Why? Unfortunately C, (particularly when written by non-programmers), is difficult to read. ��When it became necessary to adjust the implementation of the algorithms prior to integration, the algorithms had to be reverse engineered into pseudocode and then re-implemented.

DP: Distribution Pane

Broadband�SciFish 2000

Broadband Tracker�(w/ Echo Averaging)

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

HRP:

High Res�Pane

LRP: �Low Res Pane

HRP:

High Res�Pane

SonarOCX

Databases

User Interface

The Trinity: OCX, UI, and DB

� EMBED PBrush ���

Narrowband

(Conventional)

0%

100%

Fish Identification Capability

� EMBED PBrush ���

� Design and Analysis of Algorithms

� Database Systems

� The C Programming Language

�

� SBIR (Small Business Innovation Research) awards are granted by various U.S. federal agencies for the development of innovative new technologies.

� NSF (U.S.) National Science Foundation.

� Simpson, P. (2000). Broadband Fish Tracker, Report No. SFS-99-09, Phase I SBIR Final Report, Award Number 9961318, U.S. National Science Foundation

� According to a SciFish presentation (Simpson, P.) some of the tags used to investigate king salmon along the Copper River cost $150.00 per tag, July 2002.

� Target strength is the strength of the returning echo.

� The target strength threshold acts as a filter. Echoes falling outside the threshold are ignored.

� Denny, G. (2002), private communication, July

� Simpson, P. (2000). Broadband Fish Tracker, Report No. SFS-99-09, Phase I SBIR Final Report, Award Number 9961318, U.S. National Science Foundation, pp

� The figure was derived from unpublished sonar data gathered on the Rogue River (Ore.) on August 26, 2002. Data and diagram are courtesy of G. Denny and Dr. Jae-Byung Jung.

� Rivers with large salmon runs.

� In the sample data from the Rogue River, several meters separate individual fish. As is visible from the picture of the spawning salmon, the distances between salmon are often much less than a meter.

� Simpson, P. (2000). Broadband Fish Tracker, Report No. SFS-99-09, Phase I SBIR Final Report, Award Number 9961318, U.S. National Science Foundation, pp 20.

� Simpson, P. (2000). Broadband Fish Tracker, Report No. SFS-99-09, Phase I SBIR Final Report, Award Number 9961318, U.S. National Science Foundation, pp 8.

� There is a tradeoff inherent in the Bendix method. Multiplying the observed count by an experimentally derived (ergo uncertain) scaling factor can only improve accuracy at the cost of precision. (See any work on the propagation of experimental error for an explanation.).

� (1 track = 1 fish)

� Apparently some research groups invest as much as one man-year per season in order to tally track data. Denny, G. (2002), private communication, July.

� My colleague Mr. Kulinchenko is has been investigated echo processing and the effects of averaging on classification as part of his current work on improving the SciFish 2000’s signal processing path.

� Scientific Fishery Systems’ founder, Mr. Simpson, P., holds the patent on fish identification using broadband sonar.

� Support for legal recording is desirable.

� Microsoft Access 2000 is not designed with large databases in mind. Individual Access database sizes are effectively limited at roughly 1GB.

� The original integration plan has been attached as “Appendix A: Integration Report”.

� The echogram displays found on the left side (LRP) and lower right corner (HRP) of the application’s main display. They are used for displaying echoes.

� The distribution pane found in the upper right corner of the main display, is used to show relative target distributions.

� Changes to the Playback Parameters form are discussed in section 3.4.2 of this report.

� Depending on the algorithm chosen, zero to ten parameters textboxes become accessible.

� The form’s caption runs the length of the top of the form.

� For example, applying, loading and saving a profile are all commonly used.

� Field tests are scheduled for summer 2003 on the Copper River.

� The UI’s Access to the OCX’s interface had to be accomplished through a preexisting “Sonar” class, because the OCX is instantiated by the Sonar class as a private class member

�The Visual Basic constant for the color blue is vbBlue.

� To playback a ping series the operator selects a database and a raw ping series from the chosen database using the playback menu.

� “Track | All Tracked Series…” allow the user to select from all stored track series records in the particular ping database

� “Track | Current Ping Series…” allows the user to select from all stored track series records in the particular ping database that used the currently selected ping series.

� Go to this reports bibliography for a list of some of these sources.

� E.G. SciFish 2000, BB-Fish Tracker, and ATP projects

� Scaffolding and early versions of prototype code have generally been omitted to spare the time and patience of this report’s reviewers.

� Both versions are provided so that differences between the new and old versions can be compared. Alternatively, instead of comparing files manually, WinDiff can be used to compared entire directories.

� Because of dependencies, opening the individual VB forms, classes and modules will prompt error messages. You should be able to ignore these messages.

� The pun is intended. Consider the weight of several hundred pages of source code.

PAGE
26

[image: image28.png]totalsince star) =2
']

Inactive [-20:20]: 0 (0%) (tracks)

[image: image29.png]5 Scifish 2000 [playback: 1" apple (44) - 20 dB gain

[image: image30.png]5 Track Display Setti =loix|
TrackDisplay

Track Display Options
Low Res _High Res

ShowTracks [V ~

Distribution Pane Source

Histogram
Incivicual Echoss c
Total Track Count &

Tracks Visile in HRP. c

[image: image31.png]etallsnce stat] =16 Trterva 5
00 3 2

[image: image32.png]Excel Worksheet

Signal Processing Microsoft Excel
Sonar OCX

Excel Chart Generation

Tracker - OCX

Signal Processing
Tracking e it

= e

Echo Caching

Tracking

[image: image33.png]Show Report IN=ET]
Report
Echo-Track Asociatons: =

Tracker parameters:
wackerConfigurationlD = 10
name = default
crealianDate = 6/21/2002
createdsy = anon
desciption = & defaut configuation

acker =0
parameter] =03
parametei2 = 04

parameter3 =2
parameterd = not used
parameter5 = not used
parameler = not used
parameter? = not used
parameterd = not used
parameter3 = not used
parameter]0 = not used

i}

[image: image34.png]=lolx|

Report

eport Type: Ram Tent

This Report Cortains:
Data and Time of Fepor Generation
AllTracks: Track data
Echaes: Selested EchoData
Echo/Track data. Relationships between individual echoss and tracks
Tracker Patameters: The patameler setthat was used by the lacker
Miscellaneaus Parameter. Addiion Perameters

Date: 12/5/2002
Time: 5:03:16 A

Track Data
ot implemented

Echa Data
ot implemented

Echa - Track Asociations:

e L

[image: image35.png][———T Itervai=t: a4
00 3 2

[image: image36.png]

[image: image37.png]totallsince start) = 16 Interval=d: 44
0 0 3 5 4 2 2

_1100606004

_1100639170

_1100888486.xls
Chart1

		430

		480

		520

		520

		540

		540

		540

		680

		560

		560

		615

		650

		625

		620

		300

		350

		350

		375

		375

		390

		390

		400

		410

		415

		420

		420

		425

		430

		470

		450

		450

		450

		60

		80

		60

		80

		60

		60

		70

		70

		80

		90

		100

		110

		120

		110

		130

		80

		90

		100

		110

		130

		90

		110

		140

		180

		130

		170

		110

		130

		120

		150

		140

		160

		180

		150

		160

		10

		15

		20

		25

		30

		35

		40

		50

		15

		20

		25

		30

		40

		55

		55

Error

Tower Count

Tower Count minus Track Count

Fish Track Error (Fish Per Minute)
(BioSonics Sonar, Wood River 1998)

270

305

410

380

400

370

365

510

345

295

405

420

365

280

175

195

225

225

235

250

240

275

270

280

295

290

300

305

350

310

300

300

20

50

10

30

0

5

0

10

20

30

40

50

60

60

80

15

25

35

45

65

15

35

65

105

50

90

30

45

30

50

30

50

70

30

40

0

0

0

0

0

0

0

0

5

5

5

5

5

5

0

Sheet1

		Tower Counts		Track Counts		Tower Counts		Track Counts		Error				Tower Counts		Error				Tower Counts		Percent Error

		43		16		430		160		270				430		270				430		0.6279069767

		48		17.5		480		175		305				480		305				480		0.6354166667

		52		11		520		110		410				520		410				520		0.7884615385

		52		14		520		140		380				520		380				520		0.7307692308

		54		14		540		140		400				540		400				540		0.7407407407

		54		17		540		170		370				540		370				540		0.6851851852

		54		17.5		540		175		365				540		365				540		0.6759259259

		68		17		680		170		510				680		510				680		0.75

		56		21.5		560		215		345				560		345				560		0.6160714286

		56		26.5		560		265		295				560		295				560		0.5267857143

		61.5		21		615		210		405				615		405				615		0.6585365854

		65		23		650		230		420				650		420				650		0.6461538462

		62.5		26		625		260		365				625		365				625		0.584

		62		34		620		340		280				620		280				620		0.4516129032

		30		12.5		300		125		175				300		175				300		0.5833333333

		35		15.5		350		155		195				350		195				350		0.5571428571

		35		12.5		350		125		225				350		225				350		0.6428571429

		37.5		15		375		150		225				375		225				375		0.6

		37.5		14		375		140		235				375		235				375		0.6266666667

		39		14		390		140		250				390		250				390		0.641025641

		39		15		390		150		240				390		240				390		0.6153846154

		40		12.5		400		125		275				400		275				400		0.6875

		41		14		410		140		270				410		270				410		0.6585365854

		41.5		13.5		415		135		280				415		280				415		0.6746987952

		42		12.5		420		125		295				420		295				420		0.7023809524

		42		13		420		130		290				420		290				420		0.6904761905

		42.5		12.5		425		125		300				425		300				425		0.7058823529

		43		12.5		430		125		305				430		305				430		0.7093023256

		47		12		470		120		350				470		350				470		0.7446808511

		45		14		450		140		310				450		310				450		0.6888888889

		45		15		450		150		300				450		300				450		0.6666666667

		45		15		450		150		300				450		300				450		0.6666666667

		6		4		60		40		20				60		20				60		0.3333333333

		8		3		80		30		50				80		50				80		0.625

		6		5		60		50		10				60		10				60		0.1666666667

		8		5		80		50		30				80		30				80		0.375

		6		6		60		60		0				60		0				60		0

		6		5.5		60		55		5				60		5				60		0.0833333333

		7		7		70		70		0				70		0				70		0

		7		6		70		60		10				70		10				70		0.1428571429

		8		6		80		60		20				80		20				80		0.25

		9		6		90		60		30				90		30				90		0.3333333333

		10		6		100		60		40				100		40				100		0.4

		11		6		110		60		50				110		50				110		0.4545454545

		12		6		120		60		60				120		60				120		0.5

		11		5		110		50		60				110		60				110		0.5454545455

		13		5		130		50		80				130		80				130		0.6153846154

		8		6.5		80		65		15				80		15				80		0.1875

		9		6.5		90		65		25				90		25				90		0.2777777778

		10		6.5		100		65		35				100		35				100		0.35

		11		6.5		110		65		45				110		45				110		0.4090909091

		13		6.5		130		65		65				130		65				130		0.5

		9		7.5		90		75		15				90		15				90		0.1666666667

		11		7.5		110		75		35				110		35				110		0.3181818182

		14		7.5		140		75		65				140		65				140		0.4642857143

		18		7.5		180		75		105				180		105				180		0.5833333333

		13		8		130		80		50				130		50				130		0.3846153846

		17		8		170		80		90				170		90				170		0.5294117647

		11		8		110		80		30				110		30				110		0.2727272727

		13		8.5		130		85		45				130		45				130		0.3461538462

		12		9		120		90		30				120		30				120		0.25

		15		10		150		100		50				150		50				150		0.3333333333

		14		11		140		110		30				140		30				140		0.2142857143

		16		11		160		110		50				160		50				160		0.3125

		18		11		180		110		70				180		70				180		0.3888888889

		15		12		150		120		30				150		30				150		0.2

		16		12		160		120		40				160		40				160		0.25

		1		1		10		10		0				10		0				10		0

		1.5		1.5		15		15		0				15		0				15		0

		2		2		20		20		0				20		0				20		0

		2.5		2.5		25		25		0				25		0				25		0

		3		3		30		30		0				30		0				30		0

		3.5		3.5		35		35		0				35		0				35		0

		4		4		40		40		0				40		0				40		0

		5		5		50		50		0				50		0				50		0

		1.5		1		15		10		5				15		5				15		0.3333333333

		2		1.5		20		15		5				20		5				20		0.25

		2.5		3		25		30		5				25		5				25		0.2

		3		3.5		30		35		5				30		5				30		0.1666666667

		4		4.5		40		45		5				40		5				40		0.125

		5.5		5		55		50		5				55		5				55		0.0909090909

		5.5		5.5		55		55		0				55		0				55		0

						195,250		82,000		113,550				195250

Sheet1

		430

		480

		520

		520

		540

		540

		540

		680

		560

		560

		615

		650

		625

		620

		300

		350

		350

		375

		375

		390

		390

		400

		410

		415

		420

		420

		425

		430

		470

		450

		450

		450

		60

		80

		60

		80

		60

		60

		70

		70

		80

		90

		100

		110

		120

		110

		130

		80

		90

		100

		110

		130

		90

		110

		140

		180

		130

		170

		110

		130

		120

		150

		140

		160

		180

		150

		160

		10

		15

		20

		25

		30

		35

		40

		50

		15

		20

		25

		30

		40

		55

		55

Track Counts

Tower Counts

Track Counts

Tower Counts Vs. Track Counts
(Fish Per Minute)

160

175

110

140

140

170

175

170

215

265

210

230

260

340

125

155

125

150

140

140

150

125

140

135

125

130

125

125

120

140

150

150

40

30

50

50

60

55

70

60

60

60

60

60

60

50

50

65

65

65

65

65

75

75

75

75

80

80

80

85

90

100

110

110

110

120

120

10

15

20

25

30

35

40

50

10

15

30

35

45

50

55

Sheet2

		430

		480

		520

		520

		540

		540

		540

		680

		560

		560

		615

		650

		625

		620

		300

		350

		350

		375

		375

		390

		390

		400

		410

		415

		420

		420

		425

		430

		470

		450

		450

		450

		60

		80

		60

		80

		60

		60

		70

		70

		80

		90

		100

		110

		120

		110

		130

		80

		90

		100

		110

		130

		90

		110

		140

		180

		130

		170

		110

		130

		120

		150

		140

		160

		180

		150

		160

		10

		15

		20

		25

		30

		35

		40

		50

		15

		20

		25

		30

		40

		55

		55

Error

Tower Count

Tower Count minus Track Count

Fish Track Error (Fish Per Minute)

270

305

410

380

400

370

365

510

345

295

405

420

365

280

175

195

225

225

235

250

240

275

270

280

295

290

300

305

350

310

300

300

20

50

10

30

0

5

0

10

20

30

40

50

60

60

80

15

25

35

45

65

15

35

65

105

50

90

30

45

30

50

30

50

70

30

40

0

0

0

0

0

0

0

0

5

5

5

5

5

5

0

Sheet3

		430

		480

		520

		520

		540

		540

		540

		680

		560

		560

		615

		650

		625

		620

		300

		350

		350

		375

		375

		390

		390

		400

		410

		415

		420

		420

		425

		430

		470

		450

		450

		450

		60

		80

		60

		80

		60

		60

		70

		70

		80

		90

		100

		110

		120

		110

		130

		80

		90

		100

		110

		130

		90

		110

		140

		180

		130

		170

		110

		130

		120

		150

		140

		160

		180

		150

		160

		10

		15

		20

		25

		30

		35

		40

		50

		15

		20

		25

		30

		40

		55

		55

Percent Error

Tower Count

1 - (Track Count / Tower Count)

Percent Error Vs. Tower Count

0.6279069767

0.6354166667

0.7884615385

0.7307692308

0.7407407407

0.6851851852

0.6759259259

0.75

0.6160714286

0.5267857143

0.6585365854

0.6461538462

0.584

0.4516129032

0.5833333333

0.5571428571

0.6428571429

0.6

0.6266666667

0.641025641

0.6153846154

0.6875

0.6585365854

0.6746987952

0.7023809524

0.6904761905

0.7058823529

0.7093023256

0.7446808511

0.6888888889

0.6666666667

0.6666666667

0.3333333333

0.625

0.1666666667

0.375

0

0.0833333333

0

0.1428571429

0.25

0.3333333333

0.4

0.4545454545

0.5

0.5454545455

0.6153846154

0.1875

0.2777777778

0.35

0.4090909091

0.5

0.1666666667

0.3181818182

0.4642857143

0.5833333333

0.3846153846

0.5294117647

0.2727272727

0.3461538462

0.25

0.3333333333

0.2142857143

0.3125

0.3888888889

0.2

0.25

0

0

0

0

0

0

0

0

0.3333333333

0.25

0.2

0.1666666667

0.125

0.0909090909

0

		

		

_1100924439

_1100627327

_1100195117

_1100567439

_1100569081

_1100567337

_1100167993

