A Parallel Wave Simulator

Nick Armstrong

CS 470: Senior Project

12.11.02

Table of Contents

1Abstract

11. Introduction

12. Project Overview

12.1 Data Files

23. Project Requirements

33.1 Functional Specifications

33.2 Interface

43.3 System Specifications

44. System Design

44.1 System Architecture

54.2 Data Structures

54.3 Algorithms

65. Software Development Process

75.1 Testing and Debugging

75.2 Challenges

75.3 Work Breakdown

86. Results

86.1 Final Program

126.2 Scaling

127. Conclusions

127.2 Future Steps

138. Summary

139. References

14Appendix A: User Manual

15Appendix B: Code Listing

A Parallel Wave Simulator

Nick Armstrong

 TC Abstract Abstract

Waves are everywhere; countless natural phenomena are composed of waves or interact with waves in some way. Light, sound, earthquakes, oceanic waves – all are example of waves. Since waves are so ubiquitous, it is of great importance for scientists and engineers to study and model them. For example, a seismologist may want to model how an earthquake will travel through a section of the earth. The wave simulator described in this document is designed to simulate such a situation, i.e., the propagation of an acoustic wave through a medium of varying density. It models the wave’s propagation in two dimensions. In order to accommodate large sets of data over many time iterations and to model such data in a tractable amount of time, the simulator is parallelized. The output is displayed visually as an animation over a three-dimensional surface, in which the z-axis represents the density of the medium; the wave can be seen as a displacement in density, and appears as an elastic wave on the surface of the medium. It looks not unlike the waves in a pond created by drops of water.

1. Introduction
This project was developed primarily for the CS 470: Senior Project class. An extension of the project will take place next semester, under a combination of HNRS 470: Honors Thesis and a research grant from the National Science Foundation for undergraduate research.

The requirements and design of the project were mostly self-determined, with the advice and assistance of Dr. Patrick O’Leary. Although meant to be general and useful for many purposes, it was designed primarily with the theme that seismologists could use it to study earthquake propagation through the ground; boundary and initial conditions were chosen accordingly.

2. Project Overview

The goal of this project was to develop a parallelized simulator that uses a finite difference scheme to solve a nonhomogeneous wave equation in two dimensions. The scope of this project included processing and visualizing the data, and analyzing the aptitude of the algorithm.

2.1 Data Files

The geometry of the medium is represented by a two-dimensional matrix. Each element directly represents a point in the medium. The numerical value of an element defines the density of the medium at that point.

The matrix may be generated by one of two methods:

1. Given: The data is supplied in a file. The columns are separated by a whitespace, and the rows are separated by a carriage return.

2. DataGenerator: A separate subprogram, DataGenerator, prompts the user to enter a set of ranges and the density for each range. It then generates the data file as described in Method 1.

Here is a sample medium geometry file:

1.00 1.00 1.34 1.45

1.00 1.14 1.58 1.79

1.00 1.14 1.27 1.43

Listing 2.1.1: Sample Geometry File

*Note: the size of the matrix is variable in both dimensions.

Additionally, the generated wave data is output to several files, one for each node working on the simulation. Each file contains a number of matrices, each representing the node’s domain at a given time slice, and separated by two carriage returns. These files look like:

1.00 1.00 1.34 1.45

1.00 1.14 1.58 1.79

1.00 1.14 1.27 1.43

1.10 1.20 1.44 1.55

1.10 1.24 1.48 1.69

1.10 1.24 1.37 1.53

1.20 1.30 1.54 1.65

1.20 1.34 1.38 1.59

1.20 1.34 1.47 1.63

Listing 2.1.2: Sample Output File

The files produced by each node must be collected into a single output file for a visualization of the entire domain to occur. This can be done by using the DataMerger subprogram, which takes no argument and prompts the user for the number of data files (also the number of processors used for the simulation) and the number of time steps. A single file, like the one in Listing 2.1.2 but including the entire domain, is produced.
3. Project Requirements

The requirements for this project were created by myself; I included what I wanted, what I thought would be interesting and edifying, and what I thought I could reasonably accomplish in the allotted timeframe. I tried to be conservative, but meeting all the requirements was more taxing than I had expected. Nonetheless, all were satisfied, and a few additional functions were included in the final project, e.g., the performance testing script.

3.1 Functional Specifications

1. The program will be written in C++.

2. The program will use a finite difference scheme for solving the wave equation.

3. The program will use the Message Passing Interface (MPI) to parallelize the operation and improve performance.

4. An OpenDX visualization network will be used to render a graphical animation of the wave’s propagation.

3.2 Interface

1. The program will be command-line driven.

2. The program will be broken up into several subprograms: the simulator itself, the DataGenerator, the DataMerger, and the OpenDX visualization network.

3. Input will be given as in Listing 2.1.1, as created by hand or generated with the DataGenerator.

4. Output from the simulator will be written to a number of files, one for each node, each containing the density matrices for each iteration separated by two carriage returns, as specified in Listing 2.1.2.

5. DataMerger will condense the output files from each node into a single output file representing the entire domain, for easier file management and visualization.

6. Output will also be displayed via OpenDX. The output will be an animation, which can be saved to disk as separate image frames. A sample screenshot is shown below in Figure 3.2.1.

[image: image1.png]

Figure 3.2.1: Sample OpenDX Visualization Screenshot

3.3 System Specifications

The system will be constructed using the GNU Compiler Collection (gcc) running on i386 Suse Linux. The resulting executable should be compatible with any Linux OS. For optimum performance, a multi-processor machine or cluster should be used.

The simulator will be tested on both the compiling machine, a dual 1 GHz Pentium-4 with 512 MB of RAM running Suse Linux and MPICH, and a cluster of 8 nodes, each being a dual 2.4 GHz Pentium-4 with 1GB of RAM running RedHat Linux and MPICH.

4. System Design

4.1 System Architecture

The system is composed of several separate subprograms, as shown in Figure 4.1.1: the simulator itself, DataGenerator, DataMerger, the OpenDX visualization network, and a performance testing script.

Figure 4.1.1: System Architecture

The breakup of the simulator was done this way for several reasons, to wit:

1. The generation of data is logically separate from the simulation of a wave on that data

2. The OpenDX visualization network is the only subprogram that requires a GUI environment to run, and is written in OpenDX’s visual programming environment

3. The performance script is a bash script

4. The merging of data into one file is not logically a part of its processing, and including it as such reduces performance gains from utilizing additional nodes

4.2 Data Structures

The Matrix class is the main data structure, and is used to hold the medium geometry and the displacement matrices, described below.

A matrix holding the medium geometry is read from the input geometry file. To reiterate, it is a two-dimensional matrix whose entries correspond directly to points in the medium. The value of an entry indicates the medium’s density at that point. This matrix is then partitioned, based on the domain decomposition algorithm described in Section 4.3: Algorithms (below), into submatrices that represent the domains for each processing node.

Each node will contain three matrices that represent displacement from the base densities of the node’s domain. These will represent the last, current, and next iterations, and are used in the finite difference algorithm described in Section 4.3: Algorithms (below).

4.3 Algorithms

The main algorithm is the finite difference method for solving the wave equation.

The wave equation is: utt = c2 (uxx + uyy), where c is the speed of the wave in the medium (which may depend on x and y), and u is the density of the medium. This is for an acoustic wave (one that varies in pressure/density); for an elastic wave, which varies in position, u is the position in the direction of the z-axis.

The equation can be interpolated in the x, y, and t dimensions using an iterative finite difference scheme. It uses the 5-point equation in two dimensions, which determines u at a point by approximating the second partial derivatives in x, y, and t from the u values of neighboring points. A lengthy derivation is beyond the scope of this document.

Additionally, a domain decomposition algorithm is used to partition the problem domain into smaller, independent chunks for use on a parallel computing system. The domain is split up horizontally, as shown below in Figure 4.3.1. If the number of processors does not factor evenly into the size of the matrix, an additional column is added to each node’s subdomain until the excess is accounted for.

Figure 4.3.1: Domain Decomposition

The processors use essentially the same algorithm on their individual slices of the domain, but also include columns and rows of “ghost nodes” on the boundaries of their individual problem spaces. Ghost nodes on the boundary of the entire domain, which includes all ghost nodes at the very top and bottom of each processor’s domain, are fixed at zero as a boundary condition. Ghost nodes in columns on the boundaries between separate processor domains are filled with the data from the neighboring processor domains, which are transmitted each time step; this is presented visually in Figure 4.3.2, below. This provides the inter-process communication between the nodes.

Figure 4.3.2: IPC

5. Software Development Process

The development of this project took place in several different phases:

1. Solve wave equation using finite difference scheme

2. Write linear implementation

3. Develop domain decomposition scheme (parallelize algorithm)

4. Implement parallelized code version

5. Analyze performance and refine algorithms

Because of these distinctions, I used the prototyping methodology.

5.1 Testing and Debugging

I did not spend too much time testing and debugging, which is unusual for me. Development seemed to be fairly smooth, with testing occurring intermittently throughout the process and at the end of each phase. The program still seems to choke on extremely large data sets (input files over 100 MB), which may be due to buffering limitations in MPICH. Specifying more processing nodes than are available on a system also causes a crash, but only sometimes. Again, I blame MPICH.

5.2 Challenges

I spent much more time figuring out animation in OpenDX than was reasonable and than what I had allocated. The documentation was poor, but only with respect to animation. Eventually I determined that the problem was merely the unchecking of a default option that the data only contained one time step; from then on, the animation was trivial.

Additionally, I misunderstood the finite difference algorithm and the domain decomposition algorithm in minor ways. As a result, I had to re-implement each one several times. However, the changes were not major and were accomplished with a minimum of additional work and time.

5.3 Work Breakdown

I originally estimated that I would be able to spend approximately ten hours per week working on the project for twelve weeks, for a total of 120 hours. The breakdown for each phase is given below in Listing 5.3.1, with the format proposed / actual time spent.

Finite Difference:
5 / 10 hours
Design:

10 / 20 hours

Linear implementation:
30 / 20 hours
Analysis:
25 / 20 hours

Domain decomp:
5 / 10 hours
Write-up:
15 / 5 hours

Parallelized code:
20 / 10 hours
Presentation:
10 / 5 hours

Total: 120 / 100

Listing 5.3.1: Proposed vs. Actual Workload

Below (in Figure 5.3.1) is an estimated breakdown of my proposed and actual schedules; detailed dates are not included for the purposes of clarity and simplicity, and due to bad record-keeping.

Figure 5.3.1: Proposed vs. Actual Schedule

I had originally planned to do a constant amount of work throughout the semester, but other classes and procrastination led to small bursts of work before deadlines and a mountain of work right before the semester’s end.

6. Results

The application was completed on time and was used successfully to visualize the propagation of several waves through several different medium geometries. Approximation errors are minimal, especially after the wave proceeds for a few time steps away from the location of the source. Despite parallelization, using more nodes seems to have little effect or slightly increase the processing time for a data set.

6.1 Final Program

Screenshots of several different waves are shown on the following pages.

[image: image2.png]

Figure 6.1.1: Sample Wave

For the wave displayed in Figure 6.1.1, density is constant. The domain is rather small – a 20 by 20 matrix. The wave source was at the center. The peaks jutting upwards are a manifestation of the error from the numerical approximation.

[image: image3.png]

Figure 6.1.2: Sample Wave

The domain displayed in Figure 6.1.2 contains an area of greater density (in red). The domain is a 100 by 100 matrix. The wave source was at the bottom-center. There is reflection from the boundary of the low and high-density regions, and off the boundaries on the left and right.

[image: image4.png]

Figure 6.1.3: Sample Wave

The domain displayed in Figure 6.1.3 contains an area of greater density (in red). The domain is a 100 by 100 matrix. The wave source was at the bottom-center. There is reflection spreading as a circle from the corner. Also of note is the slower wave speed through the higher density medium, noticeable a difference in how far the wave propagated in the low-density area and the high-density area.

6.2 Scaling

The performance evaluation script was run using the cluster, described in 3.3: System Specifications. The results are displayed below in Figure 6.2.1.

[image: image5.emf]Time Taken vs. Number of Processors

0

2

4

6

1 2 3 4 5 6 7 8 9 10

Number of Processors

Time Taken

Figure 6.2.1: Scaling

It is also worth noting that the linear implementation performed several times faster than the parallel implementation.

7. Conclusions

It is curious that increasing the number of nodes working on the problem resulted in little or negative performance improvement. It may be because the overhead of the domain decomposition and the inter-process communication outweighs the gains of multiprocessing. The domain decomposition does not provide the minimal amount of inter-process communication, which is probably a factor. Perhaps a much larger data set (on the order of 10,000 by 10,000 matrices) would meet with better scaling.

The linear implementation probably performed so much faster due to the extensive overhead in MPICH required to reserve the processors and to distribute the program and data files (the filesystem was NFS-mounted).
Errors from approximation seemed minimal, and were much more prevalent near the location of the wave source. This is most likely due to the finite difference algorithm, which, for a single time step, propagates the wave to neighboring points above, below, and to the left and right, but not to the corners. As such, the corners are one time step behind, which is much more significant if only a few time steps have been taken. After a number of iterations, the wave smoothens out.

7.2 Future Steps

The next phase of this project will consist of refining the original program and making some additions and improvements. These improvements include:

· A graphical user interface (GUI)

· A single executable file for ease-of-use

· A user-friendly interactive computational environment (ICE)

· Processing of three-dimensional data

· Finite elements as a numerical method

· A more efficient domain decomposition scheme

The schedule and design for the second implementation has not yet been decided upon; the work will occur next semester.
8. Summary

This wave simulator was developed with the needs of a seismologist in mind. The project was completed on time. Through the use of prototyping, a fairly simple program grew to a powerful and useful tool through parallelization and visualization. All project requirements were met in the end, and the visualization turned out to be quite appealing. It would be nice to extend the project and refactor some components (such as the domain decomposition).

As a result of this project, I learned about MPI and parallelization, OpenDX and visualization, and gained more insight into the finite difference numerical method. The project was especially challenging, because many of the features included had to be learned from scratch before being implemented. However, procrastination was my primary foe.

9. References

[1] MPI Tutorial. NCSA. 11/02/02. <http://webct.ncsa.uiuc.edu:8900/public/MPI>

[2] “VIS Products.” Visualization and Imagery Solutions, Inc. 10/12/02. <http://www.vizsolutions.com/products.html>

[3] Ewing, Richard, et al. “Interface Conditions for Acoustic Waves.” Mathematical Reviews. American Mathematical Society: Philadelphia, PA. 1991.

[4] Sochacki, James. “Absorbing Boundary Conditions for the Elastic Wave Equations.” Applied Mathematical Computations 28 (1988), no. 1.

Appendix A: User Manual

Minimum System Requirements

A Linux i386 system with MPICH; X-Windows and OpenDX are required for visualization.

Other system requirements are directly dependent on the size of the medium geometry.

Compilation
Recompilation may be required if run on a system with MPICH not in the default directory, if LAM is used instead of MPICH, or if a different architecture than i386 is used. The includes.h file may need to be updated to reflect the correct location of mpi.h before compilation.

Generating Input

Create the input geometry file either by hand or using DataGenerator (simply run DataGenerator with no arguments). DataGenerator asks for the size of the matrix as m rows and n columns, followed by a set of ranges (x1, y1, x2, and y2) and a density for each range. Enter –1 as x1 when finished.

Running the Simulation

To run the simulation, use the syntax:

mpirun –np numprocessors Simulator inputfilename numiterations

Collecting the Data

Simply run DataMerger, with no arguments. Respond to its prompts to give it the number of files (should be the same as the numprocessors, from above) and the number of time steps (numiterations, from above). A file wavedata.txt is produced.

Visualizing the Data

Run OpenDX by typing dx on the command line. Select Import Data. Choose Grid or Scattered file. Deselect Single Time Step. Click Describe Data. Type the location of your data file (wavedata.txt). Input the size of the matrix in Grid size (as m x n), and the number of time steps as Series: n. Leave all other options as their defaults. Save your new OpenDX data file. Click OK.

Now choose Edit Visual Program. Select wavevisualize.net. Double-click FileSelector, and choose the data file you just created. Select the Sequencer, and choose Configuration from the Edit menu. Enter the number of iterations in you data file, minus one as the end parameter. Hit OK. Double-click the sequencer and click the play button to begin the animation.

If your data is positioned poorly, choose Navigation Control from the View Menu. Reposition the camera to your liking with the Rotate, Zoom, and Navigate controls.

Sit back and enjoy as your wave propagates!

Appendix B: Code Listing
Please see the included file wavesimulator.tar.gz

DataMerger

…

proc2out

proc1out

Output

WaveVisualizer

Finite Difference

Wave Source

Domain

Decomposition

DataGenerator

manual

Input

Etc

Processor 1

Processor 2

Processor 3

Ghost Nodes

Actual

Proposed

�Ideally this document should contain details on the parallel algorithm

Sometimes a linear implementation has to be completely re-done to operate in parallel, so that is something to consider so you don’t do unnecessary work

PAGE
14

