CS 470 Project

Overview:

This document describes the project for the CS470 class at the University of Alaska, Anchorage. This document is divided into several parts:

1. Description-a general discussion of the problem this project is designed to solve, and a brief description of how the project will solve this problem;

2. Requirements-a list of the rules and constraints that define how members may use the database. These rules and constraints were used to define the program logic and database relationships in this project;

3. Required Output-a description of the web pages produced by this project;

4. Project Plan-an outline of the steps required to complete the project;

5. Project Milestones-a list of major accomplishments leading to completion of the project;

6. Project Post-Mortem-an analysis of the completed project.

Description:

This project is a web-based aircraft scheduling program for a fictional flying club called Cumulogranite Flying Club, which is loosely based upon the former Chugach Flying Club. Cumulogranite Flying Club has several aircraft available for rent by club members, who currently schedule the aircraft by calling the club during normal business hours. When a club member requests an aircraft on a specific date and time, the club receptionist (or other staff member) must make an entry in a paper book, with a graph containing aircraft registration numbers ("N-Numbers", the equivalent of a license plate on a car) on the left-most column and times across the top. If there are no staff members available to take the call, club members must keep calling until someone answers the phone. Because there is only one paper schedule, club staff may only help one club member at a time.

Consequently, the Cumulogranite Flying Club has decided to automate the process by placing the aircraft schedule on a web-based form which queries a back-end database. The new process allows users to sign in via the internet to browse and schedule aircraft for rental, lookup contact information for club flight instructors (CFIs), download club policies and procedures and apply for membership.

Most small aviation businesses-and the Cumulogranite Flying Club is no exception-operate on extremely thin margins. Because the club does not have a large budget to fund this project, the software had to be relatively inexpensive and needed to run on a small-scale server. Therefore, this project was built upon open source software: the operating system is Slackware Linux 8.0, the web server is Apache v. 1.3.20 and the database is MySQL v. 3.23.49. Custom Perl scripts were used to tie the web forms to the MySQL database. This software operates on any reasonably modern PC platform (the development platform was an AMD Duron 700 with 256MB of RAM and a Maxtor 20GB hard drive).

The flying club already has a valid domain name, ISP and DNS server to allow the web server to operate on the Internet. Therefore, these considerations are outside the scope of this project.

The project consists of several independent parts: a web site using both static and dynamic pages; a back-end database containing member, CFI (flight instructor) and aircraft information; and Perl scripts to connect HTML forms to the back-end database.

The database consists of the following tables:

· AircraftData-contains rental aircraft information.

· Schedule-the flying club aircraft schedule.

· Members-the list of current flying club members.

· CFIs-the list of members who hold CFI or ATP certificates and wish to instruct.

· PilotCert-contains the pilot certificate, ratings and endorsements for members.

· Administrators-contains the member numbers of club administrators.

See attachment "A" ("Database Schema") for the complete database schema.

Requirements:

1. Only authorized members may schedule aircraft.

2. Only authorized members have access to CFI contact information.

3. Only the member who scheduled a particular aircraft at a particular time or a member of the Administrator group may delete that schedule entry.

4. Anyone may browse the aircraft schedule or aircraft specifications.

5. Only one person may schedule a particular aircraft for any given time.

6. Each person may schedule only one aircraft at any given time (note: this is **NOT** the same as the previous requirement! There is a subtle-but critical-difference between the two statements.)

7. Scheduling is done in ½ hour increments (i.e., 12:00, 12:30, etc.)

8. Links to contact information for flying club flight instructors is included on a separate page on the web site.

9. Renters are NOT required to schedule a flight instructor, even when scheduling an aircraft for which the renter pilot is not rated (the procedures in place for obtaining the aircraft keys are sufficient to prevent improperly trained pilots from using aircraft for which they do not have the proper qualifications).

10. CFIs are club members who hold a CFI or ATP certificate and request to be added to the CFI database.

11. This is a complete web project-while the emphasis is upon web-enabling the database that drives the scheduling, the web site that contains the schedule also includes such incidentals as membership requests (also driven by the back-end database), a welcome screen with a well-designed, user-friendly format, a brief description of the flying club and contact information.

12. Administrator group-there is an administrator group used for adding and removing members to or from the database, adding and removing CFIs to or from the database, adding and removing aircraft to and from the database and suspending members for pilots with FAA violations, in violation of club policies, etc. (note: an administrator group is defined so that multiple users-from the flying club staff-have administrative privileges).

Required Output:

1. Static web pages:

a. Welcome.html-contains the flying club logo, a list of shortcut buttons for other pages, and the flying club address, phone number and e-mail address.

b. Info.html-contains detailed information about the club, its purpose, membership rates and initiation fees, etc.

c. Contact.html-contains the flying club logo, a list of shortcut buttons for other pages and detailed contact information.

d. PandP.html-on-line version of the flying club Policies and Procedures handbook, in .doc (MS-Word) and HTML format.

2. Dynamic web pages (forms):

a. Specs.pl:

i. Model year.

ii. Aircraft make and model (i.e., Cessna 150, Citabria 7GCBC, etc.).

iii. Aircraft registration number (N-number).

iv. Aircraft category and class (i.e., Airplane, Single-Engine, Land).

v. Additional Aircraft Characteristics (High-Performance, Complex, Tailwheel). Note: These are separate entries with a yes/no value.

vi. Engine(s) Size.

vii. Fuel Capacity.

viii. Aircraft IFR/VFR and Day/Night certifications.

ix. Undercarriage type (i.e., Wheels, Floats, Skis, Tailwheel).

x. Minimum Pilot Qualifications.

xi. Gross Weight/Empty Weight.

xii. Rental Rate.

xiii. Aircraft photo.

b. ContactCFI.pl:

i. CFI name.

ii. Ratings (i.e., single-engine, multi-engine, sea, tailwheel, etc.).

iii. Total hours flight instruction given.

iv. E-mail address (link for member notification for scheduling).

v. Contact phone number(s).

vi. Schedule info (i.e., "Weekdays after 5:00", "Saturdays and Sundays only", etc.).

c. BrowseSchedule.pl-shows the current aircraft schedule and allows club members to schedule aircraft for unused time slots. Schedule entry controls are not displayed for non-members or members who have not yet signed in.

d. Join.html: (calls a Perl script after obtaining user information)

i. Name.

ii. E-mail address.

iii. Phone number.

iv. Address.

v. Pilot Certificate and ratings:

1. None.

2. Student.

3. Recreational.

4. Private.

5. Commercial.

6. CFI.

7. ATP.

8. Airplane.

9. Rotorcraft.

10. Glider.

11. LTA.

12. Land.

13. Sea.

14. Single-Engine.

15. Multi-engine.

16. IFR.

17. Complex Endorsement.

18. High-Performance Endorsement.

19. Tailwheel Endorsement.

vi. Total time.

e. Admin Tools:

i. Login.html (calls Perl scripts after obtaining login information).

ii. Home.pl (Admin Tools main menu).

iii. ManageMembers.pl.

iv. AddEditMembers.pl.

v. ManageInstructors.pl.

vi. AircraftManagement.pl.

vii. ManageSchedule.pl.

f. purge.pl: (removes old schedule entries from the database; run by the Cron daemon at midnight each night).

Project Plan:

· Built static web pages:

· Welcome screen.

· Basic contact information.

· Club policies and procedures (links to .doc and html file)

· Policies and procedures documents.

· Preliminary database design:

· Determined what information would be contained within the database.

· Created a flat file containing sample information.

· Normalized the database:

· First normal form.

· Second normal form.

· Third normal form.

· Drew entity-relation diagrams.

· Validated database design.

· Built database:

· Created database tables.

· Populated database tables with sample data.

· Validated database.

· Began program design:

· Designed logic flow:

· Created object-relation models.

· Verified object relations.

· Created macro-scale pseudocode (outlined the program).

· Validated logical analysis-note any critical conditions for later testing.

· Created Perl scripts.

· Created dynamic web pages:

· Aircraft schedule page.

· CFI contact page.

· Membership request page.

· Administrative Tools pages.

· Project testing:

· Identified critical conditions (what combination of input might cause problems?)-for example, returning an aircraft before it was checked out, etc.

· Created test data for critical conditions.

· Ran project using test data.

· Corrected identified problems.

· Repeated until project trapped errors for all combinations of input.

· Verified all web page links.

· Corrected any broken links.

· Created user documentation:

· Created draft.

· Verified draft matches sequences in the completed project.

· Verified grammar, spelling, punctuation, etc.

· Third-party testing: Provide documentation and project to third-party to verify that instructions make sense to someone not involved in the construction of the project (minimal third party testing; would have liked to do more).

· Validated project.

· Submitted project.

Project Milestones:

1. Static web pages complete:
__Complete___________

2. Database design complete:
__Complete___________

3. Database built:
__Complete___________

4. Program logical design complete:
__Complete___________

5. Perl scripts complete:
_Mostly Complete______

6. Dynamic web pages complete:
__Complete___________

7. Project testing complete:
__Complete___________

8. User documentation complete:
__Complete___________

9. Project complete:
__Complete___________

10. Project submitted:
__Complete___________

Project Post-Mortem:

Before beginning on this project, I had no experience with the Perl programming language, JavaScript, CGI or the MySQL database, I had minimal experience with the Apache server, and I had never worked on a web development project of this magnitude. Needless to say, the technical risk was a significant factor, and the Perl scripts I created show quite clearly how my skills improved as the project progressed. My earlier interfaces are not as user friendly as my later interfaces; my early scripts are not as structured as my later scripts, and so on. Although I would truly like to redesign many of the components I created during the first stages of the project (such as the actual schedule interface) to make them either more efficient or more user friendly, time constraints prevent me from doing so.

I am also aware of a flaw in the initial database installation--the project is built upon the "test" database installed by default with MySQL because I was unable to create a MySQL user that had rights to create new databases. I have since learned how to create users with rights to create new databases, but again, time constraints prevent me from changing the application to use a different database on the MySQL server.

One last area that was left incomplete is user input validation. I have included minimal user input validation on the project, again due to time constraints. This leaves the project somewhat vulnerable to hack attempts, although the research I have performed suggests that Perl is inherently less vulnerable to some attacks (such as buffer overflow) than some other programming languages, such as C. Nevertheless, before this project is truly ready for production, user input validation must be completed.

On the positive side, all of the desired functionality has been completed on the project. The Flight Schedule and Administrative Tools are fully functional, and are working with no known flaws. The Administrative Tools in particular are clean, logical and easy to use, despite having been created in one week and being considerably more complex than the Schedule pages.

As a learning tool, this project has been an overwhelming success. As mentioned earlier, I knew nothing of the Perl scripting language nor of CGI applications when I started this project. I now am using Perl professionally, and am working on a Perl/Apache/MySQL project in my job as a system administrator at ACS Internet.

In conclusion, this project has been a valuable and enjoyable experience. I look forward to applying the skills I have learned this semester to other tasks in the future.

