

CS 470

Final Report

Chat Client and Chat Server Software

Mehrdad Minasazi
University of Alaska Anchorage
November 2002

Contents
Part 1
Objective
………………………………………………………………..
3

Chat Server
………………………………………………………………..
3

Chat Client
………………………………………………………………..
4

Part 2
Strategy Deployed
………………………………………………………..
5

Part 3
Development Process

………………………………………………..
6

Communication API
………………………………………………………..
6

Recognizing Data Types and Efficiencies
………………………………..
6

Server

………………………………………………………………..
9

Client

………………………………………………………………..
18

MyScrollPane
………………………………………………………………..
19

DoubleBufferedStyledTextArea
………………………………………..
21

DoubleBufferedStyledNameArea
………………………………………..
23

MyImageButton
………………………………………………………..
25

SmileyFacesMenu
………………………………………………………..
26

ColorChooser

………………………………………………………..
27

ChatApplet
………………………………………………………………..
29

PMBox
………………………………………………………………..
30

ChatServerConnection
………………………………………………..
31
Part 4
Problems Encountered
………………………………………………..
31

Part 5

Experience Gained

………………………………………………..
34

Reference
………………………………………………………………..
35

[image: image1.png][Applet Viewer: Chatapplet.class

Applet

‘Connecting to the server. =[1am available
Connection established.

‘You are connected to the server naw. In The Room --Romance--120s.

System: 42 Logged in.

42: this s a test!

d2: this is another test!

eyvet another test

1

T I e I

Applet started

Figure 1. Chat Applet
I. OBJECTIVE
There are both free and paid chat software on the market. However, the free ones do not contain enough attractive features and the paid ones are simply too expensive. The objective of this project is to develop a fully functional chat server and chat client. This software will be used on a publicly accessed website. Java programming language will be used to develop the project.
A. Chat Server
The chat server will support the following:

· Ability to handle a heavy load
· Ability to handle multiple rooms
· Each room must have its own name/topic

· Ability to reconfigure the server without taking it offline

B. Chat Client
The chat client will be an applet placed on a browser, like the one shown in figure 1.
The chat applet will support the following:

· Ability to choose different font style, face, size, and color

· Ability to choose emoticons
· Ability to choose different happy faces to go along with the message
· Ability to send a private message to another user

· Ability to view profile of another user

· Ability to ignore a user

· Ability to filter messages posted by other(s) for curse words

· Ability to auto ignore a user who posts curse words

· Ability to change background color

· Ability to change text color

· Ability to change the status of the chat session

· Ability to change room

· Ability to be in more than one room at a time

· Ability to have different font settings in private message windows

II. STRATEGY DEPLOYED
The development of the java client/server chat application involves thorough planning and adapting a working strategy. To manage the development of this project, a three pronged approach was implemented beginning with the development of the Communication API, moving on to the server and finally the chat client.
Before designing the client or server, I needed to develop a procedure that would enable the client and server to communicate with one another. I decided to start with communication API and then break each server and client into subparts. Figure 2 shows a diagram view of this project.

[image: image2]
Figure 2. Project Structure
III. DEVELOPMENT PROCESS
A. Communication API
In this project, the design enables many clients to be connected to the server at any point in time. Hence, a fast and reliable communication between the server and the client is important. The communication API was developed to increase the efficiency of data transferred between the client and the server and to recognize the different types of data that a client sends to the server or the server sends to the client. The methods created to increase the efficiency and recognize the data types will be discussed.
1. Recognizing Data Types and Efficiencies
 The following are examples of the data types that could be transferred between the server and the client.
· Nickname

· Room name

· Public message

· Private message

· Bold font

· Italic font
· Underline font
· Font color

· Emoticons

· Status message

· Log in

· Log out

To recognize the data types being transmitted, a header was created and attached to each packet for each of these data types. There were two reasons involved as to why one character was used for each of these data types. The first reason is to keep the header short. The second reason is to keep the header simple. The header will be of varying length for each user because each user’s settings vary from another. To distinguish between header and actual message, each complete header ended with one ‘*’ character. The following is the format of messages being transmitted between client and server.

header_chars*senders_nickname:senders_message

header_chars*senders_nickname:senders_message:pm_with_nickname
To accomplish the creation and recognition of the header, a Command class was created. The Command class uses some final variables of type char to distinguish each packet type. The Command class provides one access function for each of the packet type. These functions return true if the specified data exists in the header of transmitted packet, otherwise they return false.
The Command class is made available to both client and server since they both need to know what kind of data is being transmitted so that they can handle the packet correctly. For example, the following lines define a single character for underlined font and a single character for bold font:
static final char FONTSTYLEUNDERLINE= ':';

static final char FONTSTYLEBOLD= ',';
The following method will return true if the header contains an underlined font:

public boolean isFontStyleUnderline() {

if (header.indexOf(FONTSTYLEUNDERLINE) >= 0)

return true;

else

return false;

}
The following method will return true if the header contains a bold font:

public boolean isFontStyleBold() {

if (header.indexOf(FONTSTYLEBOLD) >= 0)

return true;

else

return false;

}

As an example, let us examine the following packet.

“:,*This is a sample text.”
‘*’ is the delimiter between the header and actual message. Therefore, the header of this message contains the following two characters: ‘:’ and ‘,’
Using the Command class, it is apparent that ‘:’ stands for underline font and ‘,’ stands for bold font. Now the incoming message can be formatted and displayed in the intended format:
This is a sample text.
The aforementioned sample header described headers and their methodology, but to complete the topic of headers one has to know other information that a header will carry. (i.e. the source and destination of messages) The following are hierarchical data types used in the header.
· System Command
· System Message
· Log in

· Log out

· Nick Name

· Room Name

· Update User List

· User Command
· User Message

· Public Message

· Regular

· Emotion

· Whisper Message

· Regular
· Emotion

· Status

B. Server
The server consists of the following four classes with the corresponding methods:

· class ChatServer implements Runnable

· public static void main(String[] argv)

· public ChatServer()

· public ChatServer(int k)

· public RoomServer getRoom(int i)

· public int getRoomsSize()

· public void setMaxRoomCapacity(int i)

· public int getMaxRoomCapacity()

· public void setMaxRoomsServers(int i)

· public void setMaxChatters(int i)

· public void addRoomServer(String roomname)

· public void removeChatter(Chatter chattertoberemoved)

· public void run()

· class RoomManager implements Runnable

· public RoomManager(ChatServer cs)

· public void run()

· private void readAndSetParameters()

· class RoomServer

· public RoomServer(String roomname, ChatServer cs)

· public Chatter getChatter(int i)

· public int getChattersSize()

· public void setMaxRoomCapacity(int i)

· public synchronized boolean addChatter(Chatter newchatter)

· public synchronized boolean removeChatter(Chatter chattertoberemoved)

· public synchronized void setName(String newname)

· public String getName()

· class Chatter implements Runnable
· public boolean isRunning()

· public String getName()

· public Chatter(Socket s, ChatServer cs)

· public boolean startThread()

· public void run()

· public void sendToChatter(String msg)

· private boolean doHandShake()

· public synchronized void broadcastTheMessageToTheRoom(String strMessage)

· public synchronized void sendWhisperMessage(Chatter fromChatter, String fromnickname, String toChatternickname, String strMessage)

· public String askRoomName()

· public String askNickName()

· public String receiveStream()

· public void terminateConnection()

· public void closeConnection()

The purpose of the ChatServer class is to start the server, create some listener threads, and hold information about rooms and chatters. The ChatServer class starts in the main function by creating a server socket on the specified port.
ss = new ServerSocket(PORTNUMBER);

If the port opens successfully, the ChatServer creates an instance of itself so that other classes in the server can reference the ChatServer.
mainChatServer = new ChatServer();

Once a ChatServer is instantiated, the system will create an instance of RoomManager. The role of RoomManager will be discussed later in this section.
Code was written to initialize vector variables to hold the information about rooms and chatters. Vector was chosen rather than array because there are multiple threads to manipulate these values, and this manipulation has to be done in a synchronous way. Though operations on arrays are much faster than on vectors, arrays do not provide us with any synchronous operations.

chatservers = new java.util.Vector(MAXCHATSERVERS);

chatters = new java.util.Vector(MAXCHATTERS);

rooms = new java.util.Vector(MAXROOMSSERVERS);

The ChatServer then creates and starts some instances of itself as listeners to listen for new connections so that it can handle a heavy load of new chatters.
for(int i = 0; i<MAXCHATSERVERS; i++) {

chatservers.addElement(new ChatServer(i));

}

public ChatServer(int k) {

chatserverID = k;

new Thread(this).start();

}

After a listener thread has performed its job, instead of destroying itself, the listener thread puts itself back in the pool, so that it can be used again.
Now, the ChatServer class is ready to listen and handle incoming new connections. The ChatServer includes some int variables to hold information about the rooms like maximum capacity of each room, and maximum desired server capacity. A new connection will be accepted or rejected based on the total capacity of the server, total capacity of the desired room, and the maximum available memory on the server hardware.

Once these listener threads are started, they are ready to listen for new connection. If the ChatServer can accept more chatters, the listener thread will accept the new connection and create a new Chatter. If the connection is accepted, the listener thread goes on to start the Chatter thread. This chatter thread may start successfully or it may fail depending on the hardware capability. So I attempt to start the chatter thread in a separate method, startThread(), that will return a boolean value. The chatter thread is then added to chatters vector if it successfully starts.
if (chatters.size() < MAXCHATTERS) {

ctr = new Chatter(ss.accept(), mainChatServer);

if (ctr.startThread())

chatters.addElement(ctr);

else

ctr = null;

}

From this point on, it will be the Chatter class’s responsibility to handle this new connection.

To digress, let me describe the RoomManager class that was created in the main method of ChatServer class. The RoomManager class is a thread and it intends to manage rooms and the server. RoomManager class’s run method falls in an endless loop that loops in a specified intervals. While in this loop, it polls the last modified time of serverconfig.txt file. If the file is modified, then the RoomManager will go thru the file and update the server accordingly. The modified time of the file is used to prevent the RoomManager from unnecessarily reading the file and updating the server while nothing has changed in the serverconfig.txt file.
if (configfilelastmodified != f.lastModified()) {

 configfilelastmodified = f.lastModified();

 readAndSetParameters();

}

readAndSetParameters method in RoomManager opens the file, reads and sets the number of RoomServers, the maximum number of chatters that the ChatServer is allowed to handle, and maximum number of chatters in each room. It also reads the location of room names and puts it in a string variable called RoomNamesFileIn. Then it reads the desired room names from RoomNamesFileIn file, and asks the ChatServer class to create the rooms if they have not already been created. Finally, it goes through the existing rooms and generates a report on the room’s name and number of active chatters in that room.
The simplest of all of these classes is the RoomServer class. ChatServer class creates RoomServers and passes room name and a reference to ChatServer in RoomServer’s constructor.

public RoomServer(String roomname, ChatServer cs)

RoomServer class provides us with the information on room name and chatters connected to that room as well as ability to add and remove chatters from the room.

public synchronized boolean addChatter(Chatter newchatter)

Based on maximum room capacity, the RoomServer will add or reject this new chatter.

if (chatters.size() < MAXROOMCAPACITY) {

chatters.addElement(newchatter);

return true;

}

Now everything is ready to handle a new chatter connection. After a new connection is accepted, the ChatServer listener thread will pass this connection to a new Chatter class. The Chatter class is responsible for all communications between the server and the user, and the security of the communication. The Chatter class is also responsible for interpreting the transferred data with the help of the Command class.
The Chatter class begins with opening a socket connection with the chat client/user. After the connection is opened, the ChatServer listener thread will attempt to start the chatter thread. The Chatter thread’s run method begins the communication with the user in a handshaking process.
doHandShake();
doHandShake() returns true if the client successfully connects to the server. The handshaking method has four stages. The following is a description of what happens when the doHandShake() method is called.
1) The Chatter calls askNickName() method. askNickName() creates “Sh*” packet and sends it to the user and waits for user’s response with user name. sendToChatter(""+outcommand.SYSTEMCOMMAND+outcommand.NICKNAME + "*");
User applet then creates “Sh*someusername” packet and sends it to chatter.
2) Once a user name is received, the Chatter class calls askRoomName(). askRoomName() then creates ‘Sg*’ packet, sends it to user, and asks for the desired room name. The user will then create “Sg*someroomname” packet and sends it to chatter.
At this point, we have both nickname and room name of the user.
3) With this information in hand, the chatter class will try to connect to the RoomServer for that room and ask the RoomServer to add this new Chatter to its chatter list. Now three scenarios might happen:

a) The RoomServer for that room already exists and the Chatter is successfully added to the room.

b) The RoomServer exists but we can not add the Chatter to the room for two reasons:

i) The room is full.
ii) There is a user with the same name in the room and adding this new chatter will create a duplicate name in the room, which is not desirable.

c) The RoomServer for that room may not exist.

In cases of (i) and (ii), the chatter asks the ChatServer to create a new RoomServer with the same name, and add the chatter to this room. Of course, the ChatServer will have to create this room based on the maximum number of rooms allowed. At this point, if the new user is rejected for any of the aforementioned reasons, it will get a failure message and will be asked to try again later.
4) Once the handshaking process adds chatter to the room, it continues to send the list of chatters in that room to the user.

for(int i=0; i<myRoom.getChattersSize(); i++) {

 if (myRoom.getChatter(i).isRunning())

sendToChatter(""+outcommand.SYSTEMCOMMAND+outcommand.UPDATEUSERLIST+"*"+myRoom.getChatter(i).myName);

}

All the steps in the handshaking process have to be done in the sequence explained above. At any point, if the handshaking process encounters any problem, the chatter will be considered as an intruder and will be disconnected from the server.

If the handshaking process returns successfully, the chatter is formally connected to the room and announces its log in to all the users in the room; and it can actively participate in the discussion with other users.
if (doHandShake()) {

broadcastTheMessageToTheRoom(""+mptyCommand.SYSTEMCOMMAND + emptyCommand.LOGIN + "*" + myName);

}

Now the chatter is ready to send and receive messages to and from the other users in the room.
C. Client
· ChatApplet
· MyScrollPane

· DoubleBufferedStyledTextArea

· DoubleBufferedStyledNameArea

· MyImageButton

· SmileyFacesMenu

· ColorChooser

· ChatServerConnection
· PMBox
Creating a GUI client applet involves three important issues to consider. It has to be user friendly, aesthetically pleasing to the user, and have the ability to communicate with the server efficiently.
Using swing components may be appropriate in designing GUI. However, I chose not to use swing for the following reasons:

i) They are not already available on the client machine.

ii) Their large file takes time to download.

iii) There is a chance that their installation may not be successful.

To design the applet, besides buttons and labels, components were developed that support a text area with multiple text colors and images. AWT text area is not a suitable choice because it only supports one text style and no images. Therefore, a panel was extended to create the message area that would support multiple font colors and images. Moreover, while testing, it was discerned that AWT scrollpane is not a good choice for scrolling panel either. Hence, the design of the GUI commenced with creating a custom scrollbar labeled MyScrollPane.
1. MyScrollPane:

MyScrollPane is an extended panel with borderlayout. By adding a scrollbar on the side, I was able to create my scrollpane.
public class MyScrollPane extends java.awt.Panel

verticalScrollbar = new java.awt.Scrollbar();

add(verticalScrollbar, java.awt.BorderLayout.EAST);

By adding code to MyScrollPane, this would enable MyScrollPane to accomplish what it is designed for: scroll. Myscrollpane’s paint method was modified to achieve a double-buffered effect with no flickering.
public void paint(Graphics g) {

if(offscreen == null) {

offscreen = createImage(getSize().width, getSize().height);

}

Graphics og = offscreen.getGraphics();

og.setClip(0,0,getSize().width, getSize().height);

super.paint(og);

g.drawImage(offscreen, 0, 0, null);

og.dispose();

}

By incorporating methods into MyScrollPane, I was able to obtain and set the position of the scrollbar, and its viewing area.
public int getVValue() {

return verticalScrollbar.getValue();

}

public void setValueNewMax(int m) {

if ((verticalScrollbar.getMaximum()-verticalScrollbar.getVisible() - 50) <= verticalScrollbar.getValue())

 verticalScrollbar.setValues(m,10,0,m+10);

else

verticalScrollbar.setValues(verticalScrollbar.getValue(),10,0,m+10);

for (int i= 0; i<getComponentCount(); i++)

getComponent(i).repaint();

}

With the completion of MyScrollPane, the next step in the project would be concentrating on designing the text area that would support putting multiple lines, colors, and images on it; I called this component DoubleBufferedStyledTextArea.

2. DoubleBufferedStyledTextArea:

To create DoubleBufferedStyledTextArea, there were two options available: canvas or panel. During testing, the panel showed to be a better choice because it repaints slightly faster and smoother.
class DoubleBufferedStyledTextArea extends java.awt.Panel

Methods were incorporated into the DoubleBufferedStyledTextArea to achieve desired functionalities of the text area.

 The append method was incorporated so that content could be added to the text area.
public void append(String fromname, String s, java.awt.Font f, java.awt.Color c, String isunderline) {

…

}

The append method gets the name of the sender, message, the font of the message, the color of the font, and whether or not the font is underlined. Then it adds these values to the corresponding vectors.
fromnames.addElement(fromname);

lines.addElement(s);

fonts.addElement(f);

colors.addElement(c);

underline.addElement(isunderline);

However, the content has to be adjusted (wrapped if needed) to fit within the boundaries of DoubleBufferedStyledTextArea. In addition, the content has to be placed on the panel in the right position. As soon as the append method gets the content, it calls addToAdjustData method to make this adjustment. addToAdjustData will have a new set of vectors for this adjusted information. The vectors in the append method cannot be used for adjusted data for following reason: the user may change the size of the applet, and hence, the size of DoubleBufferedStyleTextArea will change and as a result, the text will have to be wrapped again if needed. The original information must be kept so that it can be recalculated to replace the adjusted data; this may seem redundant, but it is necessary. Java has a very useful method, called FontMetrics, to find the font properties. Using FontMetrics, addToAdjustData calculates the size, color, and position of the text and image and saves them in their respective vectors.

adjlines.addElement(str.substring(0,position));

adjfromnames.addElement(fn);

adjfonts.addElement(font);

adjcolors.addElement(color);

adjleftmargins.addElement("" + leftmargin1 + "");

adjunderline.addElement(isunderlined);

The last step in the process is to modify the paint method of DoubleBufferedStyledTextArea to go through the adjusted vectors and draw the text and images on the screen with their respective color and position. The paint method starts with going thru the adjusted data, setting the font, colors, position of text, and puts them on the screen. In doing so, it takes the size and position of images, if any, into account. In addition, since java does not have any underline style for fonts, the font metrics must be used to calculate the font size so that an underline can be placed under the text.
3. DoubleBufferedStyledNameArea:
DoubleBufferedStyledNameArea is another text area with image support for use in the names area. The same concept used for the DoubleBufferedStyledTextArea also applies to the DoubleBufferedStyledNameArea. The append method in the DoubleBufferedStyledNameArea is modified and called addName. addName will then get the name and accompanying image name, sorts the names, and puts them in their proper place on the screen.
public synchronized void addName(String imagefilename, String name, java.awt.Font font, java.awt.Color color) {

if (newname.indexOf("guest_") >= 0)

 newname = "~" + newname;

for (i= 0; i<names.size(); i++) {

existingName = names.elementAt(i).toString().toLowerCase().trim();

 if (existingName.indexOf("guest_") >= 0)

 existingName = "~" + existingName;

 if (existingName.compareTo(newname) > 0) {

 break;

 }

 }

}

This symbol ‘~’ is used in order to sort guest names and put them at the end of the list. In addition, an update method was added to support updating the name if the name is ignored or if its associated image changes.
public void updateElementAt(int i, String imagefilename, String name, java.awt.Font font, java.awt.Color color) {

…

}

Moreover, a mouse click support was added to this component so that it would work as if the clicked name was selected. Adding this selection effect involves calculations to find which name was selected. An overview of the calculations involved in finding the name clicked is as follows:

1. Get the position of mouse click.
2. Start from the top of names’ list, add the height of the font metrics of the names, and create a box around the name.
3. Once the location of the mouse click falls inside any of these boxes, the name that has been clicked on is found.
4. A colored box is drawn behind the name, and hence, shows the name as if it is highlighted.
5. Once the clicked name is found, this information is saved so that it can be used to repaint the names if changes occur to the names list (i.e.if someone enters or leaves the room, or a name is ignored).
4. MyImageButton:

AWT does not support putting an image on a button; the image buttons for the GUI were created from scratch. This component is called MyImageButton. To show an image, the panel was extended and the paint method was modified.
public void paint(java.awt.Graphics g) {

g.drawImage(parentapplet.getAnImage(imagename), imageX, imageY, this);

}

 Mouse click support was added to the image. To make it more realistic and appealing, a mouse press and mouse release event were added to the component so the user could distinguish when the button is pushed. The location of the image was changed by one pixel when the mouse pressed; the image was placed in its original location when the mouse released. Each time during this process, the buttons paint method is called to paint the image on the correct location.
private void formMouseReleased(java.awt.event.MouseEvent evt) {

 imageX--;

 imageY--;

 repaint();

}

private void formMousePressed(java.awt.event.MouseEvent evt) {

 imageX++;

 imageY++;

 repaint();

}

5. SmileyFacesMenu:

[image: image3.png]| ey Face]
2193

®
[Tava Arpetwindon

Figure 2 (Smiley Face Menu)

To create this component, in addition to a popup window, images were needed so that the user can select from these images. A dialog box for the popup window with flowlayout was used so that it can popup on the screen and images can place themselves on it. Images on SmileyFacesMenu component are instances of MyImageButton that will provide clicking support on the image. Once an image is clicked, the SmileyFacesMenu will add the symbol associated with the image to the send message area of the applet, and close the SmileyFacesMenu so that the user can continue chatting.

Image:
[image: image4.bmp]
Symbol:
:)

6. ColorChooser:

[image: image5.png]ok cancel

Java Applet Window

Figure 3 (ColorChooser)

I designed ColorChooser dialog box so that user can choose a color for the background and/or for text. ColorChooser is a simplified version of the DoubleBufferedStyledNameArea, but instead of text, it draws some colored polygons on its panel.
I got the RGB color values from Microsoft color palette, and stored these values in an array. I used java.lang.Math.cos and java.lang.Math.sin functions to find the exact value of these polygons’ corners. Then I saved these values in an array of polygons. The next step in the process is to go thru this polygons array and draw the polygons with the designated color.
public void createPolygons() {

…

int pCos = (int) (polygonRadius * java.lang.Math.cos(java.lang.Math.PI/6));

int nCos = (int) (polygonRadius * java.lang.Math.cos(5*java.lang.Math.PI/6));

int pSin = (int) (polygonRadius * java.lang.Math.sin(java.lang.Math.PI/6));

int nSin = (int) (polygonRadius * java.lang.Math.sin(7*java.lang.Math.PI/6));

…

}

These polygons are drawn on the screen one row at a time. Polygons on each row are drawn one at a time. From each polygon to the next, I shift the center of the polygon by x and y pixels, so that these polygons lay next to each other nicely.
To find the selected color, I will go through the polygons array and check to see if the location of mouse click is inside the polygon area. If it is, then I have found the polygon number and therefore, I can use this number to index into color array and get the selected color.

private void formMouseClicked(java.awt.event.MouseEvent evt) {

 int mouseX = evt.getX();

 int mouseY = evt.getY();

 for (int i=0; i<colorarray.length; i++) {

 if (polygons[i].contains(mouseX, mouseY)) {

 tempSelectedColorHexString = colorarray[i];

 selectedPolygon = i;

 previewPanel.setBackground(colors[i]);

 previewPanel.repaint();

 repaint();

 break;

 }

 }

}
7. ChatApplet:
Using my custom components and some buttons and labels, I can design a nice chat applet interface like the one in Figure 1. Once a button on this applet is pushed, or font style is changed, a header is re-created and is ready for attachment to the message. When the user pushes the send button, the header is attached to the user message, and the data is transmitted to the server. On the other hand, once the user receives a message, the chat applet goes thru the header, finds the destination of the message (public or a specific PMBox), and formats the message accordingly for display. In case of a private message, the chat applet will have to find which PMBox should receive the message. Then it will send it to the appropriate PMBox.

8. PMBox:

[image: image6.png][@whisper oz conmeng=Tp|

21 1 Y e G T

[Tava Apetwindon

Figure 4 (PMBox)

PMBox class in our chat client is the same as the chat applet with the exception of user list and room options.

However, the real work is behind the scene. The chat applet is not communicating with the server. To communicate with the server, I developed a private class inside the ChatApplet class. This new class is called ChatServerConnection.
9. ChatServerConnection:

private class ChatServerConnection implements Runnable
ChatServerConnection is responsible to communicate with the Chatter class on the server side. In its constructor, the ChatServerConnection receives the server URL, port number, and the name of the user. Then it tries to open a connection to the server. Once the connection is established, it tries to start the thread.
Immediately after run method is called, the ChatServerConnection calls doHandShake() method to authenticate itself with the server. In this method, it waits for the server to ask for its user name and room name. Each time it reads the header of the packet and responds accordingly. Then it receives the list of users in the room. And finally, it receives a message saying that its handshake with the server is complete and the user is logged in the room successfully.
Once the doHandShake() method returns true, the ChatServerConnection enters a while loop to receive messages from the server. The ChatServerConnection will then categorize and handle these messages according to the communication API hierarchy.
IV. PROBLEMS ENCOUNTERED
While developing this project, I encountered problems that will be addressed in this section.
The first problem was when I was testing the program to handle more chatters. I was able to create as many as chatters as I wanted. I could even create tens of thousands of chatters. I figured that being able to run this many chatters is unrealistic. My computer does not have enough resources to handle this many chatters. Therefore, I began to troubleshoot. At first glance, everything looked fine. However, when I paid more attention, I realized that the ChatServer is able to successfully create the chatter and add it to the chatter vector, but it was unable to start the chatter thread. Therefore, I had many chatters that were not running. This was not desirable. To fix this problem, I decided to start every new thread in a separate method that return true if started successfully. This method solved the problem.
public boolean startThread() {

 try {

 if (connected) {

 me = new Thread(this);

 me.start();

 return true;

 }

 else

 return false;

 }

 catch(some exceptions) {

 …

 }

 return false;

 }

The second problem arose when I was running the applet in Netscape. Neither Netscape 4.7 nor 6.0 provide good support for repainting the chat applet. They do not paint the applet immediately, and when they do, it is not smooth. To solve this problem, I had to force the applet to repaint itself on several different occasions.
· When background color changes

· When a message is received
· When either ColorChooser dialog box or SmileyFaceMenu dialog box closes

This solved the repainting problem in Netscape.

Another problem was again in Netscape browser. I realized that when a Netscape user tries to refresh the applet page repeatedly in short intervals or if the user tries to hit the forward and back button on the browser in short intervals, the user remains connected to the server instead of connecting/disconnecting to/from the server as the buttons are pushed. The server shows that the old user is still connected and again it accepts and creates a new chatter. This will add to the users while there is only one real user who is utilizing the chat applet. I tried different techniques to prevent this from happening. However, I concluded that this is a problem related to old versions of Netscape browser and there is no problem with my design. It appears that Netscape fails to stop and destroy the applet as quickly as it should. Therefore, it keeps some of them running probably in its cache.
The next problem occurred was when two users try to communicate with each other and their status message is something other than ‘I am available.’ I designed the system to send the status message of a user to the other user automatically when the receiving user’s status is not ‘I am available.’ In this scenario, we will fall in an endless loop while each user tries to send his/her status message to the other. To solve this problem, I had to distinguish the status message from other types of messages. In doing so, I could ignore the message the second time around and therefore, stop the message from falling in a loop.
V. EXPERIENCE GAINED
It is true that programmers gain more experience with each new program they write. I am not an exception to this. While working on this project and using the reference material, I learned the following:

· Java socket programming

· Multi-threaded programming

· Synchronization

· Sharing resources among different threads
VI. DEVELOPMENT ENVIRONMENT AND TOOLS
Forte for Java 4.0 Enterprise Edition with java SDK 4.0 from Sun Microsystems was the primary tool used in this project. Microsoft java was also used to check for compatibility of the code and to make sure the software will run under MS Windows and Internet Explorer.

Reference:
[1]

Sun Microsystems. (Online). Available: http://www.sun.com
[2]

jGuru. (Online). Available: http://www.jguru.com
[3]

P. Hyde, Java thread programming. Indianapolis, Ind.: Sams Pub., 1999.
[4]
Y. Daniel Liang, Introduction to Java programming. Upper Saddle River, N.J. : Prentice Hall, 2001
[5]
Elliotte Rusty Harold, Java network programming. Cambridge : Sebastopol : O'Reilly, 2000.
[6]
Herb Schildt and Joseph O'Neil, Java 2 : programmer's reference. Berkeley, Calif. ; London : Osborne, 2000
[7]
Robert Orfali and Dan Harkey, Client/server programming with Java and CORBA. New York : Wiley Computer Pub., 1998
[8]
Kenneth L. Calvert, Michael J. Donahoo. TCP/IP sockets in Java : practical guide for programmers. San Francisco, CA : Morgan Kaufmann ; London : Academic Press, 2002.
Client A

Comm. API

Client B

Server

- 1 -

