A.R.T.

Application Redundancy Tool

CS 495 Fall Semester 2005

by Kristi Olson

Table of Contents

1.0 Abstract ..4
2.0 GCI Network Support Group ...4
3.0 Introduction to Application Redundancy..
4

4.0 Software Development..
5

4.1 Research..
5

4.2 Priority..
5

4.3 Polling...
5

5.0 Implementation..
6

5.1 User Configurable Parameters...
6

5.1.2 allowable_missed_polls..
6

5.1.3 broadcast_interval...6

5.1.4 priority ...
...........6

5.2 Software Lifecycle ...
7

5.2.1 Initial Coding...
7

5.2.2 Continued Development...
7

5.2.3 Testing..
7

6.0 Functional Specifications...8

6.1 Requirements...
8

6.1.1 Description..
8

6.1.2 Functional Capabilities...
8

6.1.3 User Characteristics...
8

6.1.4 User Operations...
8

6.1.5 Constraints...
9

6.1.6 Assumptions...
9

6.2 Specific Function Descriptions...
9

6.2.1 send_email() ..
9

6.2.2 connect_to_database()...
10

6.2.3 disconnect_from_database() ...
10

6.2.4 get_config() ..
10

6.2.5 create_multicast_objects() ...
10

6.2.6 send_multicast_broadcast() ..
11

6.2.7 receive_multicast_messages()
11

6.2.8 read_message() ..
11

6.2.9 update_monitor() ...
12

6.2.10 evaluate_priority() ..
12

6.2.11 connect_to_socket() ..
13

6.3 External Interfaces ..
13

6.3.1 Monitor web page ..
13

6.3.2 Software Interfaces ..
13

6.3.3 Communication Interfaces ...
13

6.4 Performance ..
14

6.4.1 calls to evaluate_priority ..
14

6.4.2 User Configurable Parameters
14

6.4.2.1 broadcast_interval ...
14

6.4.2.2 allowable_missed_polls
14

6.4.2.3 dropped data ...
14

6.5 Attributes ...
15

6.5.1 Deployment ...
15

6.5.2 Usability ..
15

7.0 Use Scenarios ..
16

7.1 Master process stops sending status messages..........................
16

7.1.1 Goal / Context ..
16

7.1.2 Scenario / Steps ..
16

7.1.3 Extensions ...
16

7.2.1 Original master begins sending status messages again
17

7.1.2 Goal / Context ..
17

7.2.2 Scenario / Steps ..
17

7.2.3 Extensions ...
17

8.0 Design ..
18

8.1 Algorithms ..18

8.1.1. A.R.T. ..18

Illustration 1: A High Level View of A.R.T.
18

8.1.2 evaluate_priority ..
19

Illustration 2: A High Level View of evaluate_priority ..
19

8.2 Monitor Database ..
20

8.3 System Components ...
20

9.0 Future Improvements ...
21

9.1 Refactoring ..
21

10.0 References ...
21

1.0 Abstract
GCI’s Network Support Group is responsible for the development and maintenance of numerous applications which run twenty-four hours a day, seven days a week. Many of these applications are needed to support services which are considered mission critical. There is currently no formal system of redundancy to support these applications, and many applications are not redundant at all. The purpose of this internship was to develop a “hot standby” system of redundancy and monitoring for these applications. A.R.T. or Application Redundancy Tool was modeled after VRRP (Virtual Router Redundancy Protocol) and uses multicasting to pass messages between the running application and its standby(s). A.R.T. evaluates these messages to determine whether or not a backup application should come online. The state of each application is recorded in a database table and a web page displays the status of each application in near real time. A.R.T. also sends email alerts to notify administrators of a change in an application’s state.

2.0 GCI Network Support Group

GCI’s Network Support Group is responsible for all applications facing GCI’s core network. These include systems designed and built internally as well as supporting software leased from outside venders. Systems within their scope include applications monitoring various aspects of GCI’s network, applications which provision GCI services and products, and internal support applications such as data collection and storage. Other departments in GCI may depend on these applications to complete their own tasks. For example, an install technician out in the field requires the NSG provisioning system to be operational in order for them to successfully complete the installation of a piece of network equipment. If the NSG provisioning system is down, the technician is unable to complete their task. This affects the install technician’s productivity, and also delays the delivery of service to the customer.

3.0 Introduction to Application Redundancy

When an application crashes or becomes hung up, it not only ceases to be productive but is unable to send a message alerting users to it’s non-productive state. The problem is often not discovered until it becomes service affecting, ultimately resulting in a trouble call from the user to the developers. Often the developers are obligated to drop whatever else they were working on and restore the application.

In telecommunications an application may be transmitting and receiving data over a variety of technologies. Some applications may communicate entirely within the same server while others may communicate between multiple hosts. Others will communicate over fiber optic, a fast and reliable method of transmission. However some may use satellite, which has an inherent minimum delay of 600 milliseconds and is prone to maintenance and outages in extreme weather conditions. Worse still, some applications may use microwave which is considerably more vulnerable to weather related outages.

Applications also vary in their complexity and goals. Some establish a single socket connection and process streaming data off of that connection, while others open and close multiple socket connections as they process data. Any system of redundancy would need to be adaptable to all types of applications regardless of the transmission technologes they use and how they handle socket connections.

4.0 Software Development

4.1 Research
VRRP, Virtual Router Redundancy Protocol is a networking protocol which provides dynamic redundancy similar to this project’s goals. VRRP provides redundancy in a network by dynamically assigning responsibility for virtual routers to the VRRP router, allowing routers sharing a multicast link to use the same virtual IP address. One router on the multicast link is designated the master and the other routers act as backups to the master. The backups have the ability to detect when the master has gone offline and can automatically come on line in place of the master.

VRRP is implemented with multicasting, which is the ability to transmit and receive messages simultaneously using a single IP address. This allows related applications to be put together on the same multicast address. Modeled after VRRP, logic could be written so a process would send periodic polls advertising its status to all processes listening in the same multicast group. Essentially, backup processes would run in an infinite loop listening for messages from the master process and act accordingly if the messages ceased.

4.2 Priority

To distinguish between a master process and its backups, I again looked to the VRRP example and decided on the concept of priority. Each process would be assigned a priority and whichever process had the highest priority would be the master.

4.3 Polling

Multicasting uses UDP, an unreliable protocol that could potentially drop some multicast messages. Dropped messages could be interpreted by the backup processes as missed polls, and could potentially cause the backups to attempt to come online prematurely. In a related matter, the inherit unreliability of transmission technologies such as microwave and satellite increased the potential of messages occasionally getting lost. Therefore A.R.T. would need to anticipate the possibility of polls occasionally being dropped when the system was not actually experiencing a service affecting event. Since some applications would be running over more reliable technologies such as fiber optic, the number of polls a process could miss would need to be variable from process to process.

How often should a process send and receive its messages? Polling too often could cause the process to waste time doing un-necessary work, and not polling often enough could cause a backup process to stay offline long after the master has gone down. Some processes would need to poll quite often while others would need to wait much longer between polls. The interval of time between sending and receiving messages would again need to be variable, and determined by the type of work the process is doing.

5.0 Implementation

NSG uses Perl for the majority of their applications. I decided on a Perl module to define the multicast objects and the processing of the status messages. This would allow any existing code to be modified to include method calls to the A.R.T. perl module.

5.1 User Configurable Parameters

For A.R.T. to accomodate the needs of all the possible applications, the variables controlling the polling would need to be user configurable. I used configuration files to set the polling parameters and store other information about the process. These are simple perl .conf files which contain the application’s name, host, multicast group, and the three polling variables of priority, allowable_missed_polls, and broadcast_interval. A.R.T.’s first step would be to read the config file for each process and set these parameters.
5.1.2. allowable_missed_polls

This parameter is an integer value determining how many polls a backup process will ignore before assuming the master process is down. Applications running over a less reliable protocol will likely have a higher number of allowable missed polls than one running over fiber optic.

5.1.3. broadcast_interval
This parameter is an integer value specifying how often A.R.T. sends and reads the multicast messages. A process which spends a lot of time waiting on other elements may use a longer broadcast interval than a process capturing a constant stream of data.

5.1.4. priority
This parameter is a unique integer value. Quite simply, the process with the highest priority becomes the master and will handle all data processing for the application. Processes with lower priority are backups to the master and will come online if the master goes down. This allows multiple backups to be running on any number of alternate servers.

5.2 Software Lifecycle

5.2.1 Initial Coding

A.R.T. was developed iteratively. The first step was to code up the A.R.T. perl module and verify I could send and receive multicast messages.The next step was the implementation of the logic to evaluate the messages and determine the master process. Initially I used a simple test script which did nothing but sleep during an infinite loop. Once the basics of A.R.T. were fleshed out with this simple test script, it was time to plug A.R.T. into a script which more closely resembled what it would eventually be working with.

5.2.2 Continued Development

I had access to a test port on one of the GCI telephone switches. Data streams out of this port once every thirty minutes, twenty four hours a day. I copied a production version of a data collection script over to the test environment and began modifying it to include A.R.T. It quickly became apparent the fewer modifications to the existing code, the better. I restructured the A.R.T. perl module several times trying to keep the method calls to a minimum.

It was fairly simple to get A.R.T. to the point where it would bring a backup process online if the master process disappeared. However getting the backup to give up control if the master process returned was a little more complicated. In the end I encapsulated the socket handling into a subroutine, which allowed me to test for a process’s status before allowing it to connect to it’s socket(s). See the diagram in section seven for details.

5.2.3 Testing

While getting A.R.T. to flip back and forth between a master process and it’s backup(s), I began to notice a performance issue with latency. There could be a delay between when a master began sending polls after it had been down, and when the backup process would recognize the polls and release the socket connection allowing the master to reconnect. To eliminate this potential problem, I added functionality to evaluate a message’s timestamp, and disregard messages which were outdated.

Once A.R.T. could successfully switch between a master and backup process, it was time to put it on two different servers. There were no problems running A.R.T. across two different servers which shared the same hub, however I was unable to get A.R.T. to work between two different servers on different segments of the network. The multicast messages would not pass between the servers. Upon further research I discovered I was using the wrong segment of IP addresses. 224.X.X.X is reserved for multicasting, but anything in the 224.0.0.0 through 224.0.0.254 range is reserved for local link addressing, which has an inherent TTL (Time To Live) value of 1. Applications which need to travel over more than one hop should be in the range above 224.0.0.0. Once I modified the IP addresses of the multicast groups A.R.T. worked as expected across the network.

6.0 Functional Specifications

6.1 Requirements

6.1.1 Description

A.R.T. is a dynamic method of redundancy, where a backup process automatically detects when it needs to come online and proceeds to do so. A.R.T. has user configurable parameters to set how the applications send and receive status polls, allowing it to be customized to a wide variety of applications and transmission methods. A.R.T. includes a web based monitor allowing users to quickly ascertain the status of all processes, and also sends network administrators email notifications when there is change in status.

6.1.2 Functional Capabilities

· A.R.T. provides “hot standby” redundancy of applications.

· User configurable parameters control the status polling.

· Administrators are notified of a change in a process’s status by a web based monitor and email notifications.

· The addition of new processes to A.R.T. is dynamic. Processes may join or leave the service at any time without bouncing A.R.T.

6.1.3 User Characteristics

A.R.T. is intended to be used by software developers and network administrators who are responsible for applications running around the clock.

6.1.4 User Operations

Parties interested in using A.R.T will first need to perform a simple analysis of the applications involved and the network elements they use. The user configurable parameters of priority, missed_polls, and broadcast_interval should be tailored to the needs of each process.

6.1.5 Constraints

· The user configurable parameters in A.R.T. must be set according to the needs of the applications using it in order to ensure A.R.T. functions properly.

· A.R.T. cannot be guaranteed to function properly if the network it is using suffers heavy congestion.

· All routers in the network A.R.T. is to run must support the Multicasting protocol.

· If A.R.T. will need to communicate between servers which have multiple routers between them, the TTL option in A_R_T.pm will need a minimum setting of 16.

· The multicast groups must be in the IP range between 224.1.1.1 and 224.255.255.255 in order to ensure the multicast messages will travel across the network.

6.1.6 Assumptions

· A.R.T. is intended for applications which need to be fully redundant.

· It is assumed applications using A.R.T. will need to establish a socket connection(s).
6.2 Specific Function Description

Following is a description of the significant methods in A.R.T.

6.2.1 send_email()

· Description: The send_email subroutine is located in the A_R_T.pm and sends email notifications when a process’s status has changed.

· Inputs: The only input parameter to this function is a variable for the message type. For example if the message type is “PASSIVE_ONLINE”, the administrators receive an email informing them of the process, status, and host involved.

· Processing: The only processing in this subroutine is the type of message to be sent.

· Outputs: The only output of this subroutine is the email.

6.2.2 connect_to_database()

· Description: Establish a connection with the A.R.T. monitor database.
· Inputs: There are no inputs to this subroutine. The variables for connecting to the database are global and set at the top of the module.
· Processing: Connect to the database. If there are problems connecting, send a notification email and exit the subroutine.
· Outputs: There are no outputs from this subroutine.

6.2.3 disconnectFromDatabase()

· Description: Disconnect from the A.R.T. monitor database.

· Inputs: There are no inputs to this subroutine. The variables for disconnecting from the database are global and set at the top of the module.
· Processing: Disconnect from the database.
· Outputs: There are no outputs from this subroutine.

6.2.4 get_config()

· Description: Parse the process’s configuration file.
· Inputs: A configuration file.
· Processing: Sets the variables for a process’s name, multicast group and port, process priority, initial state, allowable missed polls, broadcast interval, and host.
· Outputs: The broadcast interval is returned to the caller. This method is called from within the processes using A.R.T. and the broadcast interval is used to determine when the process sends and receives status polls.
6.2.5 create_multicast_objects()

· Description: Create the multicast objects for sending and receiving status polls.

· Inputs: There are no inputs to this subroutine. The variables for multicast port and IP address are global and set at the top of the module.

· Processing: Create a multicast object for receiving messages and a multicast object for sending messages.

· Outputs: There are no outputs from this subroutine.

6.2.6 send_multicast_broadcast()

· Description: Creates a multicast message containing the application's name, priority, and timestamp. It is formatted as a space delimited string. Sends the message.

· Inputs: There are no inputs to this subroutine. The variables are global.

· Processing: The subroutine makes a call to the perl method “time” to create a timestamp on the message. This subroutine also uses perl’s “send” method to send the message.

· Outputs: Sends the message on the multicast group.

6.2.7 receive_multicast_messages()

· Description: Check messages waiting to be read. Evaluate the message’s timestamp to determine if this is an old or a current message. Current messages are read and old messages are bypassed.
· Inputs: Multicast messages which can be read off the socket.
· Processing: This subroutine is written in a “do until” style. Each time the method is called, messages contained in the “can_read” socket object are evaluated for a current timestamp. If there are no messages, return to the caller. If there are messages to be evaluated, enter the while loop which will continue evaluating messages until a current one is found. Current messages get pushed onto the message array and old messages are skipped over. The loop is exited when a current message has been found and pushed onto the array.
· Outputs: There are no outputs from this subroutine. Current messages are pushed onto the message array and will be read by the read_message subroutine.
6.2.8 read_message()

· Description: Parse a multicast message for the application’s name and priority.
· Inputs: A multicast message.
· Processing: The string is split at each space and each segment is put into an array. The variables are then assigned from each element of the array.
· Output: The variables which have been set from the array.
6.2.9 update_monitor()

· Description: Updates the status of the application on the A.R.T monitoring database table.

· Inputs: There are no inputs to this subroutine. The variables for the application name and status are global.

· Processing: The application name and configuration file names are stripped of their .plx and .conf suffixes. The status of the application in the table is updated with a “0” if it is passive and a “1” if it is the master.

· Outputs: The A.R.T monitoring database table is updated.

6.2.10 evaluate_priority()
· Description: This subroutine is the heart of A.R.T. It evaluates each message in the message queue and determines if the application should be master or passive.

· Inputs: Messages in the message queue.

· Processing: Each message in the message queue is examined. If the subroutine reads a message which has been sent from it’s own instance of it’s own application, (ie: the subroutine is reading it’s own message) the subroutine assumes the application is present and has not missed any polls. If the subroutine reads a message sent from another instance of it’s own application, the message’s priority is examined. Evaluate_priority sets the state of the application by evaluating it’s priority and the priority of the message. Whichever application has the highest priority is determined to be the master. If evaluate_priority does not receive any messages for it’s application, the “missed_polls” variable is incremented. Once the “missed_polls” variable exceeds the application’s “allowable_missed_polls”, the application’s state is changed to master. For a detailed graphic view of evaluate_priority’s processing, please refer to section diagram 2, section 7.1.2.

6.2.11 connect_to_socket()

· Description: Establish a socket connection for the process. A process that uses A.R.T. and connects to a socket will need the abilities to both connect and disconnect from it’s socket based on its status.

· Inputs: There are no inputs to this subroutine, the variables for establishing the socket connection are global.

· Processing: The variable “socket_already_connected” is set to 1 when the socket has successfully connected. This variable will be used when a passive application has previously taken over processing as the master, and recently had it’s status changed to passive. If the state is passive but it’s “socket_already_connected” is “1”, a call is made to close the socket, thus allowing the master application to take over the socket connection. If an application cannot connect to the socket, a call is made to “evaluate_priority”. This is where passive applications make their call to “evaluate_priority”, and where master applications which need to re-connect to their socket also call “evaluate_priority”. Before the call to “evaluate_priority” is made, the subroutine verifies the broadcast interval has been exceeded.

6.3 External Interfaces

6.3.1 Monitor web page

The A.R.T. monitor web page provides the status of all processes in a simple graphic resembling a traffic light. A master process shows a status of green, a backup process shows a status of yellow, and a process which has not updated its status in the last twenty minutes shows a status of red. The monitor web page uses the A.R.T. status database to get the data status data. See section 7.3 Monitor Database for details.

6.3.2 Software Interfaces

· A.R.T. needs to run on servers supporting Perl. The servers need to have the Perl modules IO::Socket::Multicast, IO::Select, and Mail::Sendmail. A.R.T. also requires the “common_functions” perl module, which should be in the path /opt/scripts/shared on every NSG server.

· The A.R.T monitor database needs to be a mySQL database. Refer to the A.R.T. User Manual for specifications.

6.3.3 Communication Interfaces

· All routers in the network need to support multicasting.

6.4 Performance

6.4.1 Calls to evaluate_priority

The applications using A.R.T. will need to make calls to evaluate priority somewhere in their main processing loop. How often and where these calls take place warrant consideration. Evaluate_priority needs to be called often enough so that if a change in status has occurred, the passive backup can come online soon enough to avoid a service affecting outage. Yet if evaluate_priority is called too often, it is possible the application could spend too more time evaluating the messages than is either practical or necessary. See the A.R.T. User Manual for details.
6.4.2 User Configurable Parameters

6.4.2.1 broadcast_interval

The broadcast_interval variable has considerable impact on how A.R.T. functions. The length of the interval determines how often evaluate_priority is called, as evaluate_priority is called from within a conditional branch which verifies the broadcast interval has been exceeded. The broadcast_interval also determines how A.R.T. evaluates whether or not a message is current. In the receive_multicast_messages subroutine the timestamp of each message is checked to see if it is older than twice the value of the broadcast interval. This allows A.R.T to ignore old messages. In short the broadcast_interval variable should be set according to the behavior of the application using A.R.T.

6.4.2.2 allowable_missed_polls

The allowable_missed_polls variable is a buffer to account for messages which may be dropped due to UDP, and also to allow for messages dropped due to the unreliability of the transmission protocols the process may be using, such as microwave or satellite. How this variable is set requires consideration. If allowable_missed_polls is set too low, the processes may be switching between master and passive more often than is productive. If it is set too high, a passive application will wait longer than is necessary before coming online and data may potentially be lost during this time.

6.4.2.3 dropped data

Depending on the application using A.R.T., it is possible for data to be dropped during the transition of an application’s status. For example an application processing a constant data stream could potentially loose data as the socket connection is re-established for the master application.

6.5 Attributes

6.5.1 Deployment

· Installers: Since deploying A.R.T. involves making modifications to existing code, only developers with a sufficient understanding of the applications to use A.R.T. should be involved in it’s deployment.

· Planning: The first step in deploying A.R.T. is to review the applications to use A.R.T. and determine the best place in the existing code to add the calls to evaluate_priority. Please refer to the A.R.T. User Manual for further details.
· Testing: The key items to test for are the placement of the calls to evaluate_priority and the values of the broadcast interval and allowable missed polls. If these items are not set in a manner appropriate to the process(es) using A.R.T. unpredictable results may occur. When testing please verify the following points:
· When the master process stops sending polls, the backup process come online quickly enough to meet the application’s needs.
· If there is more than one backup process, the priorities of each process is set so the proper one comes on line when the master ceases to function.

· The backup processes are not coming online prematurely due to polls being missed. This may happen if the allowable missed polls variable is set too low for the transmission protocol the process is using.

· Updates: The primary logic of A.R.T. is in the perl module. Updates to the module should be made and verified in an appropriate testing environment before updating the production environment module. Once the update has been tested and is ready for deployment, simply replace the previous module with the new one.

6.5.2 Usability

· Status messages:

· Email alerts notify administrators when A.R.T. has detected a change in the status of an application.

· Error messages:

· If A.R.T. is unable to execute updates to the monitor database, email alerts are sent to the process administrator and an error message is printed to standard output.

7.0 Use scenarios

7.1 Master process stops sending status messages

7.1.1 Goal / Context

The master process stops sending status messages. This could be due to any number of possibilities, such as a system crash, network interruption, or the process entering a hung state.

7.1.2 Scenario / Steps

1. Each time a broadcast interval is exceeded and no status message is received from the master process, the backup(s) increment the missed_polls variable.

2. Once the allowable_missed_polls variable has been exceeded, the backup process(es) change their state to MASTER.

3. The process now running as MASTER calls connect_to_socket until it is able to successfully connect.

4. The new MASTER begins processing data.

7.1.3 Extensions

1. If there are multiple backup processes, each one may attempt to come online as master. The processes with the lower priority will go back to a passive state once they receive status messages from the backup with the highest priority. The backup process with the highest priority will become the new master.
7.2 Original master process begins sending status messages again

7.2.1 Goal / Context

The original master process (the one labeled “MASTER” in it’s configuration file) has started sending status messages again and needs to come online to begin processing data again. Note the master process does not yet have control of the socket connection as the backup process is still processing data.

7.2.2 Scenario / Steps

1. The master process comes online again, after having dropped off the network.

2. The master process enters the infinite while loop and continues sending status messages once per broadcast interval.

3. The backup process receives the status message from the master and recognizes its priority is lower than that of the status message.

4. The backup process closes its socket connection.

5. The master process connects to the socket and begins processing data.

7.2.3 Extensions

1. The master process sends several status messages before the backup process receives them. This may prolong the amount of time before the backup process gives up the socket connection allowing the master to come back online. A.R.T. will examine each message and discard messages which have exceeded a time limit of twice the broadcast interval. This decreases the chance A.R.T. will be delayed in bringing the backup process on line, but a delay is still possible.

8.0 Design

8.1 Algorithms

8.1.1. A.R.T.

 Illustration 1: A High Level View of A.R.T.

[image: image1.png]process is
invoked.

process's
configfile is read for
name, priority,
muticat group,
missed poll counter,
broadcast interval

create a muticast

object for receiving
messages and one for

sending messages.

is application's. no
state MASTER?,

yes

call connect_to_socket

'&

hile shutd
% = “ISFALSE S

call evaluate_priority

interval been
exceeded?

* Note data cannot

be processed if the . dat Is SSTATE =

process is not connected K process data PASSIVE and ves | setsocket_already_connected
o the socket sockel_alieady_comect 20 and close Socket

no

no

is

SSTATE = MASTER

d socket_already_connec
?

yes

process data

8.1.2 evaluate_priority

The primary logic A.R.T. uses to evaluate messages and determine the status of a process is in the evaluate_priority subroutine. It is represented in the following diagram:

 Illustration 2: A High Level View of evaluate_priority

[image: image2.png]read messages in
mulicast
message queue

re-set application
to "not present”.

Kinis applcation
SSTATE =

MASTER?

Send message.

s this applicatio
receiving its
own message?,

yes

retum $STATE.

setmissed polls
=0andthe

application to presenf

N

yes
is this application
presentand is
the STATE =
MASTER?

no
has the broadcast
interval been

exceeded?.

yes

Subroutine: evaluate_priority

is_applicatio_present helps the PASSIVE application
track whether or not the MASTER application s on line.

missed_polls: tracks how many pols have been missed

s this a message
regarding this
application?

S this applicatior
priority lower than
the msg priority?,

set STATE
=PASSIVE,

missed ol to 0,
application
to present

S this applicatior
priority higher than
the msg priority?,

0 |we have received
an eroneous
message.

increment
missed_polls.

no

fave the allowable
missed pols been
exceeded

ye:

set STATE
= MASTER,
send m.cast
message, set
missed polls to 0,
and application to
present

8.2 Monitor Database

· The A.R.T. Monitor database is a mySQL database. The name of the database, status table, and connection parameters are global and set at the top of the A.R.T. Perl module.

· The status table has the following columns:

· application_status: An integer value of 0,1,2.

· 0 indicates the status of the process is passive.

· 1 indicates the status of the process is master.

· 2 indicates the process has not sent any update polls in the past twenty minutes and is considered down.

· application_name: A varchar of 30 characters with the name of the application.

· application_config: A varchar of 30 characters with the name of the configuration file.

· application_host: A varchar with the name of the host the application is running on.

· timestamp: A timestamp indicating the time of the most recent status poll. The web page uses this timestamp to determine if an application is down.

8.3 System Components

· Servers: Servers running the applications A.R.T. is monitoring. Note A.R.T. can operate with anywhere from one to multiple servers, however for most applications it would likely be impractical to run A.R.T. on more than two servers. Note also there are several Perl modules that must be installed on these servers. See section 5.3.3 Software Interfaces for details.

· Applications: The applications A.R.T. is monitoring. Note A.R.T. can monitor multiple applications, and these applications can be together in the same multicast group or on separate multicast groups. Note also the method calls to evaluate_priority must be added into these applications.

· Database: The A.R.T. monitor database, as described elsewhere in this document.

· Routers: The routers the applications use for communication. Note these must support multicasting.

· A_R_T.pm: The perl module defining the logic for how A.R.T. evaluates the status message and determines if a process should come online.

· evaluate_priority: The applications using A.R.T. will need to make calls to the evaluate_priority method.

· configuration files: The configuration files for the applications using A.R.T. contain the following variables: application name, multicast group (IP) and port, priority, original state of the application, missed polls, broadcast interval, and host. See the A.R.T. User Manual for a description of how the configuration file should be formatted.

9.0 Future Improvements

9.1 Refactoring

In retrospect, I would like to refactor A.R.T. to decrease the amount of modifications necessary in the existing code of the applications to use A.R.T. To do this I would need to pass the socket objects between the A.R.T. perl module and the existing applications. At one point early in the implementation process I tried this as an experiment and wound up abandoning such a design. However I think the long term benefits of decreasing the modifications to existing code are potentially substantial enough to warrant revisiting the alternate design.
10.0 References

I relied heavily on information from the internet while putting A.R.T. together. Following is a list of the many links I used.

10.1 Functional Specifications Guide: http://www.epri.com/eprisoftware/processguide/fscontents.html
10.2 Multicasting references:

http://www.w3.org/2002/06/ws-example
http://www.tldp.org/HOWTO/Multicast-HOWTO.html
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ipmulti.htm#xtocid1 (Good information about layer 2 switching ideas).

http://ftp.ux0.de/pub/network/Cisco/multicast/tutorial/Module1.pdf
http://freshmeat.net/articles/view/1185/ (How to set up Linux, etc machine for multicasting).

http://www.enterasys.com/products/whitepapers/igmp/ good implementation notes.

10.3 VRRP

RFC: http://www.ietf.org/rfc/rfc2338.txt
10.4 Perl and Multicasting

http://www.modperl.com/perl_networking/source/ch21/

http://www.cpan.dk/CPAN/modules/by-module/IO/

http://cpansearch.bulknews.net/markup/IO-Socket-Multicast-1.00/Multicast.pm

http://www.modperl.com/perl_networking/source/ch21/IO/Socket/Multicast.pm

http://search.cpan.org/~lds/IO-Interface-0.98/
PAGE
1
Application Redundancy Tool Final Write Up

