A.R.T.

Application Redundancy Tool

User Manual

by Kristi Olson

Table of Contents

1.0 Introduction to A.R.T...
3

1.1 Description...
3

Illustration 1: A High Level Overview of A.R.T...................................
4

1.2 Overview Of Components..
5

2.0 Servers..
5

3.0 Applications..5

3.1.0 Modifications to Existing Code...5

3.1.1 Socket Connections...6

3.1.2 Modifications to main before infinite “while” loop.......................
7

3.1.3 Calls to evaluate_priority..7

4.0 MonitoringDatabase..
8

5.0 Routers..
8

6.0 A_R_T.pm ...8

6.1 get_config() ..8

6.2 create_multicast_objects ...
8

6.3 send_multicast_broadcast ...
9

6.4 receive_multicast_messages ...9

6.5 read_message ...
9

6.6 update_monitor ..9

6.7 evaluate_priority ...10

Illustration 2 evaluation_priority..11

7.0 Configuration Files ...12

7.1 allowable_missed_polls ...
12

7.2 broadcast_interval ..12

7.3 priority ..
12

7.4 Multicast group and port ..
12

7.5 configuration file format ..12

8.0 Installation ...13

9.0 Testing ...13

1.0 Introduction to A.R.T.

A.R.T. or Application Redundancy Tool was modeled after VRRP (Virtual Router Redundancy Protocol) and uses multicasting to pass messages between the running application and its standby(s). A.R.T. evaluates these messages to determine whether or not a backup application should come online. The state of each application is recorded in a database table and a web page displays the status of each application in near real time. A.R.T. also sends email alerts to notify administrators of a change in an application’s state. A.R.T. can be customized for any type of application with user configurable parameters.

1.1 Description

The concept of A.R.T. is simple. Master processes send status polls via multicast messages as they do their work. Backups to those processes wait in an infinite loop standing by if the master ceases to send status polls. A.R.T. determines if a process should be a master or a backup based on its “priority”, a unique integer value set it the processes configuration file.

The process with the highest priority becomes the master and will handle all data processing for the application. Processes with lower priority are backups to the master and will come online only if the master stops sending status polls.

The behavior of the status polls is determined by the variables “allowable_missed_polls” and “broadcast_interval”, also set in the configuration files. “allowable_missed_polls” is an integer value determining how many polls a backup process will ignore before assuming the master process is down. “broadcast_interval” is an integer value specifying how often A.R.T. sends and reads the multicast messages.

The bulk of A.R.T.’s processing is done with the evaluate_priority subroutine. This subroutine evaluates the multicast messages and determines which process should be the master and which should be backup(s).

Illustration 1: A High Level Overiew of A.R.T.

[image: image1.png]
1.2 Overview of Components

· Servers: Servers running the processes A.R.T. is monitoring. Note A.R.T. can operate with anywhere from one to multiple servers, however for most applications it would likely be impractical to run A.R.T. on more than two servers. Note also there are several Perl modules that must be installed on these servers. See section 2.0 Servers for details.

· Applications: The applications A.R.T. is monitoring. Note A.R.T. can monitor multiple processes, and these processes can be together in the same multicast group or on separate multicast groups.

· Database: The A.R.T. monitor database, which keeps track of the status of each application. See section 4.0 for details.
· Routers: The routers the processes use for communication. Note these must support multicasting.
· A_R_T.pm: The perl module defining the logic for how A.R.T. evaluates the status message and determines if a process should come online. This module contains the subroutine evaluate_priority, which processes status polls and determines the master process.
· configuration files: Each application using A.R.T. needs a configuration file containing the user configurable parameters and other details. See section 8 for a description of how the configuration file should be formatted.
2.0 Servers

The servers deploying A.R.T. need to have the Perl modules IO::Socket::Multicast, IO::Select, and Mail::Sendmail installed. A.R.T. also requires the “common_functions” perl module, which should be in the path /opt/scripts/shared on every NSG server. The A.R.T.pm and configuration file should be saved in the same directory as the processes using A.R.T.

3.0 Applications

A.R.T. is intended for use with applications which run continuously. It is assumed these applications will establish socket connections to complete their work. Applications using A.R.T. will need to be modified to include calls to the evaluate_priority subroutine.

3.1.0 Modifications to existing code

To integrate A.R.T. into existing applications which need to be monitored, their code will need to be modified. The first thing to modify are the socket connections. Next the main loop needs to be modified before the infinite while loop is entered. Lastly the infinite while loop needs to be modified to accomodate the socket connections and calls to the evaluate_priority subroutine.
3.1.1 Socket Connections

The application’s socket connection handling will need to encapsulated into a subroutine which can be called from anywhere within the application. This will allow A.R.T. to manage how which process can take over the socket. A global variable representing whether or not the process has already connected to the socket(s) needs to be set from within this subroutine. This will allow A.R.T. to determine whether or not a process with the status of passive needs to give up its socket connection. The variables for the socket handle(s) will need to be global so A.R.T. can direct a passive socket to release the socket connection when necessary.

Psuedo code for socket handling subroutine

create socket object(s) with host, port, and protocol variables.

If socket object is defined

set socket_already_connected = 1

add socket object to watched sockets array

else

if broadcast interval has been exceeded and process is a backup

call evaluate_priority

reset broadcast interval timer

This socket handling subroutine should be called twice within the existing code. The first is near the top of main in a conditional testing for the processes status. If the processes status is master, call the socket handling subroutine. This will allow the master process and backup process(es) to be invoked at the same time without the processes contending for the socket connection(s).

The other call to the socket handling subroutine should be made at the top of the infinite while loop, from within a conditional checking to see if the process is not connected to the socket but has a master status. Note there is a call to evaluate priority in the socket handling subroutine, which will send a status message if the process is master. This allows a returning master to send status messages and regain its socket connection.

3.1.2 Modifications to main before infinite “while” loop

Before the infinite while loop is entered, a call to “get_config” must be made. This allows A.R.T. to have access to the processes initial status and determine if this process needs to establish socket connections. A call must also be made to the “create_multicast_objects” subroutine before the while loop is entered, to create the multicast objects A.R.T. will used to pass the status messages.

3.1.3 Calls to evaluate_priority

There are two calls to evaluate_priority. The first call is outlined in section 3.1, Socket Connections. The second call is at the top of the while loop, in a conditional checking if the broadcast interval has been exceeded.

Pseudo code for modifications to main

beginning of main

command line parameters are read (if applicable)

get_config()

create_multicast_objects()

if status of process is master

{

call to socket handling subroutine

}

start of infinite while loop

{

if broadcast_interval has been exceeded

{

reset broadcast_interval timer

status of process = evaluate_priority()

if status of process == backup and socket is already connected

{

set socket already connected variable to 0

close the socket

}

if socket isn’t connected and status is master, call socket handling subroutine.

}

process data

}

4.0 Monitoring Database

The database the A.R.T. web page monitor uses is a mySQL database. There is one table, the ‘status_tab’. This table has five columns, “application_status” which contains an integer value. 0 indicates the process is in backup mode, 1 indicates the process is a master. “application_name” is a varchar containing the processes name. “application_config” is a varchar with the name of the processes configuration file. “application_host” is a varchar containing the name of the host the process is running on. “timestamp” is a datetime containing the time the process last sent a status poll. If this timestamp value has not updated in twenty minutes, the monitoring web page assumes the process is down hard and updates the status on the web page accordingly. The subroutine update_monitor() updates the status_tab based on the state of the process.

5.0 Routers

The routers in the network A.R.T. is running in need to support multicasting. Note the TTL (time to live) variable in the Perl multicast object should be set to a minimum of 16 if A.R.T. will need to communicate beyond a single router or hub.

6.0 A_R_T.pm

The Perl module A_R_T.pm contains the logic to handle the multicast messages and update the processes status, and the method calls from within the processes using A.R.T. Following is a list of the significant methods within A.R.T.pm. Note there are methods in A.R.T. not listed here, such as methods for handling database connections and notification emails.

6.1 get_config()

· Description: Parse the processes configuration file.
· Inputs: a configuration file.
· Processing: set the variables for a processes name, multicast group and port, process priority, initial state, allowable missed polls, broadcast interval, and host.
· Outputs: The broadcast interval is returned to the caller. This method is called from within the processes using A.R.T. and the broadcast interval is used to determine when the process sends and receives status polls.
6.2 create_multicast_objects()

· Description: Create the multicast objects for sending and receiving status polls.

· Inputs: There are no inputs to this subroutine. The variables for multicast port and IP address are global and set at the top of the module.

· Processing: Create a multicast object for receiving messages and a multicast object for sending messages.

· Outputs: There are no outputs from this subroutine.

6.3 send_multicast_broadcast()

· Description: Creates a multicast message containing the processes name, priority, and timestamp. It is formatted as a space delimited string. Sends the message.

· Inputs: There are no inputs to this subroutine. The variables are global.

· Processing: The subroutine makes a call to the perl method “time()” to create a timestamp on the message. This subroutine also uses the Perl “send()” method to send the message.

· Outputs: Sends the message on the multicast group.

6.4 receive_multicast_messages()

· Description: Check messages waiting to be read. Evaluate the message’s timestamp to determine if this is an old or a current message. Current messages are read and old messages are bypassed.
· Inputs: multicast messages which can be read off the socket.
· Processing: This subroutine is written in a “do until” style. Each time the method is called, messages contained in the “can_read” socket object are evaluated for a current timestamp. If there are no messages, return to the caller. If there are messages to be evaluated, enter the while loop which will continue evaluating messages until a current one is found. Current messages get pushed onto the message array and old messages are skipped over. The loop is exited when a current message has been found and pushed onto the array.
· Outputs: There are no outputs from this subroutine. Current messages are pushed onto the message array and will be read by read_message().
6.5 read_message()

· Description: Parse a multicast message for the processes name and priority.
· Inputs: A multicast message.
· Processing: The string is split at each space and each segment is put into an array. The variables are then assigned from each element of the array.
· Output: The variables which have been set from the array.
6.6 update_monitor()

· Description: Updates the status of the applications on the A.R.T monitoring database table.

· Inputs: There are no inputs to this subroutine. The variables for the application name and status are global.

· Processing: The application name and configuration file names are stripped of their .plx and .conf suffixes. The status of the application in the table is updated with a “0” if it is passive and a “1” if it is the master.

· Outputs: The A.R.T monitoring database table is updated.

6.7 evaluate_priority
· Description: This subroutine is the heart of A.R.T. It evaluates each message in the message queue and determines if the process should be master or passive.

· Inputs: Messages in the message queue.

· Processing: Each message in the message queue is examined. If the subroutine reads a message which has been sent from its own process, the subroutine assumes the application is present and has not missed any polls. If the subroutine reads a message sent from another instance of it’s own application, the message’s priority is examined. Evaluate_priority sets the state of the process by evaluating it’s priority and the priority of the message. Whichever process has the highest priority is determined to be the master. If evaluate_priority does not receive any messages for it’s application, the “missed_polls” variable is incremented. Once the “missed_polls” variable exceeds the processes “allowable_missed_polls”, the process state is changed to master.

Illustration 2: A High Level Overview of evaluate_priority.

[image: image2.wmf]

7.0 Configuration Files

All processes using A.R.T. must have configuration files containing the following elements.

7.1 allowable_missed_polls

“allowable_missed_polls” is an integer value determining how many polls a backup process will ignore before assuming the master process is down. Applications running over a less reliable protocol will likely have a higher number of allowable missed polls than one running over fiber optic.

7.2 broadcast_interval

“broadcast_interval” is an integer value specifying how often A.R.T. sends and reads the multicast messages. A process which spends a lot of time waiting on other elements may use a longer broadcast interval than a process capturing a constant stream of data.

7.3 priority

The process with the highest priority is determined to be the master. Priority is a unique integer value.

7.4 Multicast group and port

The master and backup processes need to be on the same multicast group. A multicast group essentially consists of an IP address and a port. Use a port number higher than 30000. If there are multiple applications using multicasting running on the same server, ensure each application set is running on different ports.

The IP addresses needs to be chosen with care. 224.X.X.X is reserved for multicasting, but anything in the 224.0.0.0 through 224.0.0.254 range is reserved for local link addressing, which has an inherent TTL (Time To Live) value of 1. If you need A.R..T. to travel over more than one hop, the IP addresses should be in the range above 224.0.0.0.

7.5 configuration file format
The configuration files are simple text files saved with the “.conf” extension. The configuration files should be in the following format:

Traffic_30_test_config1.conf

MASTER

Application Name = Traffic_30_Reports_Multicast5.plx

Multicast Group = 224.0.0.222

Multicast Port = 30010

Priority = 200

State = MASTER

Missed Poll Counter = 1

Broadcast Interval = 6

Host = squid

8.0 Installation

The fist step to install A.R.T. is to determine which servers the master and backups should be installed on and install the required components (see section 2.0 Servers for details). Next the configuration files should be completed (see section 8.0 Configuration Files). Then the processes should be modified to encapsulate the socket handling and calls to evaluate_priority. See section 3.1.0 Modifications to Existing Code for details.

9.0 Testing

Once the servers have all the required items installed, the multicast groups have been set, and the configuration files completed, it is time to begin testing A.R.T. Uncomment the debug statements in the A.R.T.pm. The debug statements will help you verify the multicast messages are being sent and received between the processes.

Verify the processes are each sending and receiving the status polls, and the backup(s) come online as expected.

PAGE
1
A.R.T. User Manual

_1194205715.doc
[image: image1.png]

