Simon Blocks

A DirectX 9.0 3D Puzzle Game
Joshua Torrijos
CS 470 – Senior Project Write-up
December 5, 2005
Table of Contents

1Abstract

1. Introduction
1
2. Project Overview
1
2.1 Data Files
1
3. Project Requirements
2
4. System Design
5
4.1 User Interface Design
5
4.2 Data Structures
10
4.3 System Architecture
10
4.4
Algorithms
11
5. Software Development Process
11
5.1 Testing and Debugging
12
5.2 Development Challenges
12
5.3 Work Breakdown
13
6. Results
14
6.1 Future Steps
14
7. Summary and Conclusions
14
8. References
14
Appendix A: User Manual
15
Appendix B: Code Listing
16

Simon Blocks – A DirectX 9.0 3D Puzzle Game
Joshua Torrijos
 TC Abstract Abstract

Many people enjoy playing simple puzzle games like Memory or Simon Says. Those games along with the electronic handheld game Simon inspired the game Simon Blocks. Simon Blocks is a simple memory game where a 3-dimensional grid of objects is displayed to the player and a sequence of blocks is highlighted. The player must complete sequence of blocks without any mistakes between selections before the time runs out to proceed to the next level. Player score is determined by the amount of time left on the clock and the level time bonus. The object of the game is to win all of the levels or to beat the other player’s score. Goals of the project include learning Visual Studio .NET 2003, C#, and DirectX.

1. Introduction
This project was developed for myself, my friends, and to complete the requirements of CS470.

2. Project Overview

Many people enjoy playing puzzle games. They may not have enough time to play other longer, more involved games, or they simply prefer puzzle games over games of different genres. The simplicity of these types of games makes them accessible to wide range of players, regardless of their familiarity with computers.

The scope of this project includes initial game design, implementation, and testing. Simon Blocks is written using C#, Visual Studio .NET 2003, and the DirectX 9.0 December 2004 Software Development Kit (SDK). The goal of this project is to develop a puzzle game for one to two players. My personal goal for completing this project is to become familiar with C# and DirectX, with emphasis on DirectX since many modern games are now implemented with it.

2.1 Data Files
There is NO requirement for players to supply any data files to play Simon Blocks.
3. Project Requirements

3.1 Functional Specifications

1. The system must display a main menu where the user can begin a new game and select the number of players.

2. The main game display must present the 3x3 grid and all currently selectable objects.

3. The computer must visually highlight the objects in the order that the player must select them.

4. A countdown timer must be implemented and displayed.

5. The system must recognize when the countdown timer reaches zero, terminating the game and recording whether the player(s) finished the level.

6. The player(s) must be able to interact with game using the keyboard.

7. Player scores must be computed and displayed onscreen.

8. The system must compare the scores for two player games and award the winner to the player who either has the highest score or who finished the last level.

9. Elements to increase the difficulty such as disappearing objects and reappearing in different locations, shorter level times, and faster instruction sequences.

3.2 High Priority Project Additions

Although this section contains features that are not necessary to create a functioning game, these system components are highly desirable since the goal of this project is to create a game that is entertaining. These additions are presented in order of decreasing desirability.

1. Sound cues for player actions such as menu selection, block selection, level completion, and game over.

2. Music during the course of the game level.

3. Networking capability to allow players to play each other over a LAN or over the internet.

3.3 Interface Mock-Up

The majority of the game time will be spent on the main game screen where users are presented with a grid containing objects, from which they must select the objects in the proper order.
[image: image1.jpg]Simon Blocks

Player 1 Score Level 1 Sequences Correct A
230 Timer 00:30:59 2/4

Figure 1. Mock-up for a one player game of Simon Blocks

[image: image2.jpg]Simon Blocks

Level 1 4
Timer 00:30:59

Player 1 Score Sequences Correct Player 2 Score Sequences Correct
250 204 230 3/4

Figure 2. Mock-up of a two player game of Simon Blocks

3.4 System Specifications

Simon Blocks will be created using Windows XP Professional, C#, Visual Basic .NET 2003 and the Microsoft DirectX 9.0 SDK December 2004 update. Simon Blocks must run using Windows XP and have DirectX 9.0 installed. At a minimum, the user system should have 256 Mb of RAM and a speed of 1.5 GHz or higher. The video card must be DirectX 9.0 Compliant.

4. System Design

Simon Blocks will be designed around an object oriented approach. Data structures and objects created specifically for this project will be used in addition to the ones provided by the DirectX API. The overall system design structure and basic framework to initialize DirectX will be taken from the sample framework provided with the DirectX SDK and the book Beginning 3D Game Programming by Tom Miller.
4.1 User Interface Design

Upon starting the game, users are presented with a beginning screen where they can select either a one player or two player game. Standard window conventions are used so that if the user wishes to quit the game, they can click the close window button at the top right of the window
[image: image3.png]Simon Blocks

One Player Game
Two Player Game

Figure 3. Startup Screen
After the user selects the number of players a screen then pops up that indicates which objects should be selected in specified order. Objects appear in their grid position and show their appropriate color.
[image: image4.png]

 Figure 4. Selection Instruction Sequence
Then the entire playing grid is shown with the player tokens. The player moves his token on top of the objects in the playing grid and selects the object. Statistics like time, score, blocks correct, and blocks remaining are indicated onscreen.
[image: image5.png]Time Remaining: 00:00:40
Player One Score:0

Blocks Remaining 5 - Correct 0

Figure 5. One Player Screenshot
[image: image6.png]Time Remaining: 00:00:33
Player One Score:0 Player Two Score:0

Player One: Blocks Remaining 5 - Correct 0
Player Two: Blocks Remaining 5 - Correct 0

Figure 6. Two Player Screenshot

After winning a level the player who won the level is announced and the scores are tallied.

[image: image7.png]Congratulations! You win this level!
Player One Score:615

Blocks Remaining 0 - Correct 5

Figure 7. One Player Level Win Screenshot

[image: image8.png]Ha HA! Player Two won this level!
Player One Score:435 Player Two Score:555

Player One: Blocks Remaining 0 - Correct 5
Player Two: Blocks Remaining O - Correct 5

Figure 8. Two Player Level Win Screenshot

4.2 Data Structures

Simon Blocks will primary consist of commonly used data structures such as arrays to store information like the player’s currently highlighted grid position and the sequence of objects the player must choose. In addition to these common data types and structures, DirectX makes use of the mesh data structure which contains information such as the position of the collection of points that make up 3-dimensional objects.
4.3 System Architecture

1. UIScreen: Used as a base class for UI things like the player select menu.

2. Player: Holds relevant player information such as score, player mesh, and position.

3. Level: Holds the game rules and constraints of Simon Blocks.

4. Timer: A timer that will be used by Simon Blocks.

5. Blocks: An object that maybe selected by the player. This contains information such as position, color, and various other display information.

4.4 Algorithms

Since this is a simple puzzle game set against a timer, I don’t expect to use very complex algorithms in my code. The most complex operations have to do with drawing the Blocks onto the screen. This requires a basic understanding of the use of matrices to transform and move points, also called a vertex, in a 3-dimensional space. Since moving a vertex implies a direction and magnitude, this movement is called a vector.

Matrices are important when programming in 3-dimensional space because it helps us to simplify the number of calculations when doing the same vector transformation on a large number of vertices. For example, if you wanted to rotate a vertex 90 degrees around the x axis, 45 degrees on the y axis, and then enlarge its radius to the center of the object, then that is 3 transformation calculations on the three vertex coordinates that make up that point.

If an object has hundreds or thousands of vertices, then the cost of these transformations becomes very high. Without going into a long and detailed explanation, it is sufficient to say that matrices allow any transformation combinations (rotation, scaling, and translation) very simply without having to create many different functions or algorithms to handle each transformation. The Matrix object simplifies this for us into an easy to use interface.

To put it in simple terms, I create an array of Blocks where the size of the array indicates the length of the block sequence that must be selected to win a level. This is passed along with relevant information such as max level time, level completion bonus, and the player object into a new level. The level keeps track of the player’s index as he moves on the board. When he selects an object, the level uses his player index to check if it matches the win order specified. The level keeps track of correctly selected Blocks and flags if the game is won or lost.
5. Software Development Process
Since I started this project with limited development time on Visual Studio .NET 2003 and no experience with both C# and DirectX, I spent quite a bit of time doing tutorials and examining example programs before and during this project. Because of my unfamiliarity with coding in C# and DirectX, I used the sample framework provided by Microsoft and a Maze Puzzle Program in the Beginning 3D Programming book as a starting block for my coding.

5.1 Testing and Debugging

I spent a great deal of my time in testing and debugging. The majority of time was spent on creating and modifying the level rules, player movement, and level creation. Since I first started working on the game with only one player, adding a second player required me to run through the code again and modify it to work with 2 players. This especially caused problems when I was specifying win conditions and I ran across several bugs. These bugs included locking out player input when the other player finishes first, player movement out of bounds anomalies, and non-updating graphics for one or both players.
This required me to test out several possible player combinations, such as one player, player one wins first, player two wins first, no player wins, and multiple key presses at the same time.

5.2 Development Challenges
This project contained some large development challenges. Although I had experience working with OpenGL and to a small extent C, DirectX was very challenging for me. While I at first thought that the Microsoft sample framework would be very helpful it turned out to be confusing and verbose with a lot of functions that I didn’t use. While some of the principles and ideas translated well from OpenGL, the function calls and the order in which they were called are different and, in my case, confusing.
Working with C# was also somewhat of a challenge. Since I am familiar with Java, many of the Java programming conventions translate very well to C#. However, to make my DirectX programming job more difficult, there are few examples of C# DirectX code available on the Internet or in Book form. This limited my source material and since I was basically teaching myself, became a learning block.

The largest major challenge was equipment failure. When I first began coding this project I was working exclusively on my fairly new laptop. I didn’t have a recent backup when my hard drive crashed. This caused me to lose approximately 20-30 hours worth of work. As a result, I was not able to finish this project during the normal Spring semester and had to complete it in the Fall. I was able to save my computer and start coding again, and my hard drive crashed for the 2nd and final time. This again caused me to lose another 20-30 hours of work and required me to replace my hard drive. Fortunately my laptop was still under warrantee so I received a free replacement.

This second crash caused me to lose some 3d models I was planning to use as selectable objects. As a result, I decided to scale back and use the supplied DirectX meshes instead of investing more time recreating those models. These were major setbacks in the development process and required a lot of duplicate, and in some cases, triplicate work.
5.3 Work Breakdown

The following two Gantt charts show the projected and actual work timelines for this project. Most of the discrepancies from the projected and actual timelines are due to hard drive failures and lost work.
[image: image9.png]Roquirements

Design

G and DiraciX Research

[Creat Ul and Game Objedts

Lovel Implementation

Game Tesing

Sysiom Refining and Revising

Documentation

Presentaton

Figure 9. Projected timeline
[image: image10.png]T Hle Et Vew Domment Took Advenced Vndow Hep

Rosen B [sove (Pt @, enan "M

Project Assignment Key

Requirements
Desizn
C# and DitectX Research
= Create UL and Game Objects
Level Implementation
= Game Testing

System Refining and Revising
= Documentation

Preperation

Pages “{_Layers “{_Signatures.

Start date: 01/17/ 2005

Project: Simon Blocks

Current Week|

Tasks

Weeks|

02/1402/21{02/2803/07|03/1403/21

to [to | o | to

1|02/2803/07|03/14 03/21|03/28.

Create Requirements

Create Design

C# and DirectX Research

Create UI and Game Objects

Level Implementation

Create UI and Game Objects

Level Implementation

Create UI and Game Objects

Level Implementation

Game Testing

System Refining and Revising

Documentation

Presentation

Tasks

Weeks|

02/1402/21{02/28[03/07|03/14| 03/21

to | to | o | to

1{02/28|03/07|03/14 | 03/21| 03/28.

Current Week

] ssxin <

4 10f1 b PO Ol

Figure 10. Actual timeline
6. Results

Simon Blocks was completed successfully. Several user tests confirm that the controls are sound and that the game play concepts are familiar to players. All of the requested requirements were met.

6.1 Future Steps

There are several features of Simon Blocks that would be nice to implement at a later date. Currently there is a window resize bug that terminates the program. Also while the level timer and instruction time length decreases and meets the requirements for making subsequent levels harder, I would like to implement moving and disappearing Blocks as a further challenge for the player. Other modern game staples such as sound, network two player support, and more detailed 3D Block models would also be considered for the future.
7. Summary and Conclusions
Simon Blocks was created with the intention of creating a game and learning C#, DirectX, and Visual Studio .NET 2003. This project was delayed because of hardware failure but was completed within the extended due date. While it was enjoyable to see a working program, it was much tougher than I thought it would be to develop in DirectX. OpenGL is clearer to me due to past experience and had I developed in OpenGL I believe I could have significantly reduced my development time. However, this was an interesting project and I learned a lot about game development.
While I had difficulties, I believe that I am now more comfortable and more proficient programming in C# than I was at the outset of this project. DirectX was also a challenge and I don’t think I would try to program with it again until more examples are available for DirectX 9.0+ coding in the C# environment. The most important lesson I learned during this project is to have current backup copies of your work in cause of catastrophic hardware failure.
8. References

[1] Gittleman, Art. (2003). Computing with C#. Jones and Bartlett Publishers, Sudbury MA.

[2] Miller, Tom. (2005). Beginning 3D Game Programming. Sams Publishing, Indianapolis, ID.

Appendix A: User Manual
Minimum System Requirements
Windows XP

DirectX 9.0c SDK December 2004 Update

Microsoft Visual Studio .NET 2003 or later

256 Mb of memory

1.5 Ghz CPU

Video resolution of 1024 x 768

Installation

If you haven’t already installed DirectX 9.0c SDK 2004 on your computer do so before installation of Simon Blocks. Unzip the file TorrijosCS470Project.zip. Inside the unzipped SimonBlocks folder doubleclick SimonBlocks.cproj. Under the Solutions explorer Tab of Visual Studio find the file App.config and double click on it. You will need to modify the line

<add key="MediaPath" value = "C:\Josh's Files\CS 470\SimonBlocks\media\" />

to reflect the path to the unzipped Simon Blocks\media folder. For example, if you unzipped TorrijosCS470Project.zip to C:\ modify that line of code to

<add key="MediaPath" value = "C:\SimonBlocks\media\" />
Build the solution and run the program from within Visual Studio. If the media folder path is not correctly specified then the program will not
Use

The first screen you encounter is a player select screen. Use either the mouse to click on the desired number of players or press NumberPad1 for one player, NumberPad2 for two players.

The level begins to show you a sequence of Blocks. Memorize it. When the full Block grid displays with the player token(s), status information, and timer the level has begun.

When a level ends it will display the level winner and the scores. Afterwards either the next level will begin or the game will exit.

Player One Keys
Up Arrow – Move Player Token Up

Down Arrow – Move Player Token Down

Left Arrow – Move Player Token Left

Right Arrow – Move Player Token Right

Enter Key – Select Block Player Token Hovers Over

Player Two Keys
W Key – Move Player Token Up

S Key – Move Player Token Down

A Key – Move Player Token Left

D Key – Move Player Token Right

TAB Key – Select Block Player Token Hovers Over
Appendix B: Code Listing
Please see zip file

PAGE
16

