
Final Dragon

Final Dragon
CS470
Applied Software Development

Design Documentation

Jesse Harris
April 25, 2005

Abstract

Final Dragon is a single player role playing game that will be played on the Game Boy Advance system. The game is designed to be played by only one player. A player will take on the role a lone heroine whose quest is to save the gnome kingdom from the Blue Dragon. The game will be played in a series of two dimensional maps which will provide a world for the heroine to move around in. The player will interact with non-playable characters in city areas and battle random monsters in non-city areas. As a player defeats random monsters they will gain experience levels and become more powerful. A player will win the game when they kill the Blue Dragon at the end of the final dungeon. A player will lose the game when their hit points reach zero in a random monster battle. The game is designed to be more of a proof of concept than a production game and as such will meet the minimum requirements but not the expectations of typical consumers.
Table of Contents
11.0 Introduction

12.0 Planning Process and Overall Game Design

12.1 Initial Process

22.2 Design

2.3 Data Structures and Arrays
3
3.0 Algorithms
5
3.1 Metamap Decoder
5
63.2 Mersenne Twister

4.0 Analysis and Discussion
6
75.0 Conclusions

76.0 Lessons Learned

77.0 Requirements

Appendix A: User Manual
7
Story so far
7
Getting Started
8
Controls
8
Game Overview
8
Battle
8
Hints
8
Winning
9
Credits
9

1.0 Introduction
Final Dragon is a single player role playing game that will be played on the Game Boy Advance system. The game is designed to be played by only one player. A player will take on the role a lone heroine whose quest is to save the gnome kingdom from the Blue Dragon. The game will be played in a series of two dimensional maps which will provide a world for the heroine to move around in. The player will interact with non-playable characters in city areas and battle random monsters in non-city areas. As a player defeats random monsters they will gain experience levels and become more powerful. A player will win the game when they kill the Blue Dragon at the end of the final dungeon. A player will lose the game when their hit points reach zero in a random monster battle.

Designing and implementing Final Dragon will require many features. By addressing each feature separately and then finding a way to combine the features, the final product can be created. Below is a list of the features Final Dragon will need to be successful:

· Sprite Based Graphics

· Tile Based Graphics

· Map Display and Collision Detection
· Music

· Sound Effects
· Input detection
· Save/Load

· Character Development System

· Battle System

· Game Logic and Plot
2.0 Planning Process and Overall Game Design
2.1 Initial Process
I started this project and had a fairly good idea of where I wanted this game to go. I thought I knew how it should be designed and what the requirements should be. Since my only client was myself, I spent little time on formal requirements. As I started learning the Game Boy Advance development environment, many of the requirements became easier to prioritize. Requirements that would be extremely hard to implement were removed from the project and requirements that would be easy to implement were added or better defined.

I began by making small demos of tile based graphics and music. As I started learning sprite based graphics I felt it was time to start a final framework. The final framework consisted of a main method which called different modules depending on the current game state. As I learned to implement more features, their appropriate game states and modules were added. For example once I learned how to save and load data, a module for saving and loading was added along with an additional game state. This allowed me to add features to existing modules or new modules without disrupting the program structure. I decided to use this type of frame work as many other Game Boy Advance source codes use a similar design.
I decided to separate the requirements into two categories: Absolutely must be met, desirable but not necessary.

Absolute

· Main menu with new game or load game option
· Tile based map graphics
· Sprite based player graphics
· Random battle encounters
· Level based character development system including HP/MP

· Battle system that includes physical attack, magic, and fleeing

· Non-playable characters for plot interaction

· City maps, dungeon maps, and a world map

· A win situation(i.e. defeating the boss)

· A lose situation(i.e. reaching 0 HP)

· Music
· Sound Effects

· Collision detection for maps

· A status screen

· Run successfully on the Game Boy Advance hardware

· Maintain a fantasy theme

Desirable

· Several dungeons of varying complexity
· Complex character development system
· A variety of monsters
· Different magic types
· Text display system
· Appropriate music and sound effects
· Production grade graphics
· In depth plot
· Fade in and out screen transitions

2.2 Design
Due to the nature of the Game Boy Advance and how it executes code there was only one effective way to structure my code overall. I create a main method that continuously ran and every time the screen stopped refreshing which happens 59.7 times a second a case statement was entered. This case statement executes a module based on current game state. If the module returns a certain value the game state is changed for next iteration of the main method’s case statement. This ensures that graphics updates are done during the screen refresh downtime to prevent flickering. My final program has 10 different game states. Many of which are initialization states.

Object Oriented Programming was not used as the Game Boy Advance hardware tends to suffer serious performance losses when it is used. Instead a traditional functional C style approach was used. C++ allowed for easier syntax but other than that was not needed.

Although most of my modules are sub-modules of the main method, I have three modules that serve a utilitarian purpose and are called very rarely by other modules. They listed below:
- Metamap Decoder

- Mersenne twister random number generator

- Drawtextbox for displaying frames for text
Having these modules separate from the other code allowed me to tune them to my specifications without impacting other code. This allowed for more efficient algorithm development and implementation.

Design was kept as modular as possible both for future updates and clarity of existing code. Some of the modules have grown quite complex and do need to be cleaned up as far as small sub-functions or better organization. Due to time constraints such reorganization is not possible. The battle and map movement modules are the ones that would most benefit from this kind of revamp. The rest of the modules are manageable the way they are and may not be benefit from such reworking.
Plot code that had to be put into to modules is clearly marked by comments and can be easily modified at any time. I would like to have implemented a way to check for plot changes outside of established modules but such a system is beyond the scope of this project. Below is an example of the design for the main method.
[image: image1.png]MyMaplnit

MyMap

MyStatus

2.3 Data Structures and Arrays
Because of my non-object oriented approach and the nature of the Game Boy Advance development kit all of the data is imported in arrays. This includes graphics and maps but excludes music and sound as those are imported directly through the compiler.

Listed below are the types of files that are imported and their arrays:

Map:

· Metamap

· NPC location list

Tile set:
· Metamap lookup table

· Palette based tile graphics

· Palette
Monster, NPC, and Main Character:

· Palette based sprite graphics

Monster, NPC, and Main Character Palette:

· Palette for sprite graphics

The main method contains array for several different types of data. These are listed below:
· Text: each text entry is indexed for easy access
· Text Length: each text needs a length entry for display

· Background Music: each song is indexed for easy access

· Experience Table: for easy lookup of level requirements

· Monster list: An array of monster data structures for quick lookup

· Map list: An array of map data structures for quick lookup

There are also three data structures I created: map, monster, and player.
Map contains entries for map graphics and metamap decoding information, a reference to monster array, a reference to the background music array, and map transfer coordinates.
Monster contains monster name, monster graphics information, HP information, and experience gain.
Player contains player coordinates, current map, current music, current direction faced, current monster, current text entry, HP/MP information, experience, and level. Player also contains a player state variable. Player state is an integer that uses bit-flags to represent combinations of state. This technique is used because of limited save space on Game Boy Advance cartridge’s ROM. I would not be able to save all the Boolean values for player state in the ROM due to the overhead needed for each entry.
3.0 Algorithms
3.1 Metamap Decoder
I needed a way to combine game logic and background graphics. I figured since the background graphics I was going to use were 16x16 pixels and the sprite graphics were also 16x16 pixels and collision was tile based I could load the graphics as tiles of 16x16 pixels. I was wrong as the Game Boy Advance supports 8x8 pixel tiles in hardware. I searched some forums of other Game Boy Advance developers and they mentioned a metatile algorithm. I researched this topic using the internet and found some great explanations of the theory but no implementations. Below is an explanation of how the metatile algorithm works.
Start with a metamap, a map that contains tiles of a larger size than you would like, and send it to the decoder. These metatiles are each read in one by one and looked up in a lookup table. This lookup table gives the appropriate regular tiles to put in the regular map and returns this regular map once it is finished. Below are two pictures showing the difference between metatile size and hardware supported tile size.

[image: image2.jpg]

[image: image3.jpg]o T R T BT)

T3 2% A A% A9 Frw
ERE T T
< B ATS Ay

This algorithm is used for two reasons, to save space when storing maps and to perform game logic on map files whose tile size is not supported by hardware. Both reasons persuaded me to use the metatile algorithm. It has performed superbly in both areas.
3.2 Mersenne Twister
The Game Boy Advance has no timer and no random number generation support in hardware. This presents a serious problem for generating random numbers. I remembered an algorithm I had heard of for such situations. I found a free implementation of the Mersenne Twister random number generation algorithm at http://www.math.keio.ac.jp/matumoto/emt.html. The Mersenne Twister is a very complex algorithm and its explanation is beyond the scope of this paper. More information about how Mersenne Twister works can be found at http://home.ecn.ab.ca/~jsavard/crypto/co4814.htm. It should also be noted that the Mersenne Twister does not produce true random numbers and pseudo-random numbers with a period so great that it will never be repeated while playing Final Dragon.
4.0 Analysis and Discussion

Although the requirements were met, there are several areas that need improvement with regards to the initial requirements. One is the quality of the graphics used for the maps and characters. I used graphics from the original Dragon Warrior which were 8-bit graphics. The Game Boy Advance supports 16-bit graphics. This makes the graphics seem blocky and unattractive. I would have also liked to implement a more complex character development system. The current system is very simple and could use more depth. This would require more time to develop the system and more time to implement it. Time constraints prevented a more complex system.

Since this project was so time-constrained a few of the features and most of the content that would make a production game have been left out. These include features such as dynamic text boxes, better graphics and a more complex battle system. The content needed to make the game more polished would involve more maps, a more complex plot, and more monsters.
5.0 Conclusions

Final Dragon allowed me to display my skills in many of the areas covered in my computer science education. They include low-level programming, graphics, algorithm development and implementation, object-oriented design, and C++ programming. This project has been challenging and enjoyable and has shown my capabilities as a programmer and developer.

6.0 Lessons Learned
This project was definitely larger than a single person could handle in a semester if the requirements were the same as a production video game. Fortunately the requirements were less that that of a production video game. I did run into time constraints because I had to learn a new development platform. I discovered that learning a new platform can be more time consuming than the implementation itself. I learned to factor in time to master the tools and software you will be using if you are not already familiar with them.

My next Game Boy Advance will be a puzzle game. Role playing games are too time consuming in terms of development for one person to complete successfully in a moderate amount of time. If I do decide to develop another role playing game it will be with a team. I learned a lot about the difference between developing a program and adding content. Adding content can be much more time consuming than developing a new system, especially for role playing games.
7.0 Requirements
You must have at least one of the following to run Final Dragon

· A computer than has a Game Boy Advance emulator installed
· A Game Boy Advance
· A Game Boy DS
A flash ROM cartridge is needed to run Final Dragon on the Game Boy Advance or Game Boy DS systems.

Appendix A

Users Manual
Story So Far

You find yourself in the Castle of the gnomes. The king has sought your help in killing the Blue Dragon which has plagued their land. You must first find the tools you need to reach the Blue Dragon’s lair. There are crystals in the dungeons nearby you need to earn the tools you need to reach the Blue Dragon. And so you quest begins…

Getting Started

First thing you will want to do is find the inn and the save point in the city. Once you know where those are you should battle some enemies outside of town. It is recommended you reach level 2 or 3 before venturing to see the old man to the south. After seeing him you will have the tools to reach the Ice Cave. Retrieve the crystals from the Ice Cave and continue your quest from here.

Controls

Button

Menu Action

Map Action

Battle Action
A -

-

Talk to someone
Select current action

B -

-

-

-

Up -

-

Move up

Move selection arrow up

Down -
-

Move down

Move selection arrow down

Left -

-

Move left

-

Right -
-

Move right

-

Start -

Select current option
Toggle status screen
-

Select -
Change selection
-

-

L -

-

-

-

R -

-

-

-

Game Overview

Final Dragon uses a random battle system with a simplified levels based character development system. This means that as you move in non-city areas you will encounter monsters. As you defeat these monsters you will gain experience points. Once your experience points reach certain totals your level increases. As your level increases so does your attack, attack magic, and heal magic. Your HP and MP maxes will also increase and your current HP and MP values will max out. If a dungeon seems too difficult, try gaining a couple more levels and then attempt it again.

Battle

Enemies become stronger the further you progress in Final Dragon. The higher the max HP of a monster, the more powerful it will be. You have four choices in the battle menu: Attack, Attack Magic, Heal Magic, and Run Away. Attack does a semi-random amount of damage to an enemy. Attack magic does a semi-random amount of damage twice that of regular attack at a cost 3 MP. Heal magic heals a semi-random amount of HP that increases with level at a cost of 2 MP. Flee allows you to leave the battle but only works about half the time and can be very effective if you are trying to escape a dungeon as quickly as possible.

Hints
· Use the Level Up HP/MP restoration to your advantage

· Save as often as you can

· Sometimes using Attack Magic is better than using a regular attack twice

· Find weak monsters to battle when healing yourself if possible
Winning

You win the game when you defeat the Blue Dragon located in the final dungeon. The Blue Dragon is very tough and it is recommended you use all out attack magic on him. With a high level and a little luck you should make short work of the Blue Dragon and save the gnome kingdom.

Credits

Written by Jesse Harris

donotfeariamhere@hotmail.com

PAGE
8

