

University of Alaska
Anchorage

Jason Bailey Home 907 746 5117
533 N Denali St Work 907 273 1715
Palmer, AK 99645 baileyj@math.uaa.alaska.edu

Applied Software Development
Project

Automating Traveling Cylinder Map Creation

Abstract
This report describes the methods used in creating a program to automate

certain tasks involved in creating a traveling cylinder diagram. The program

performs the mundane tasks involved in drawing the diagram, thus significantly

reducing the number of random errors introduced. Hence, the engineer focuses

on the task of drawing the tolerance lines.

The program consists of various components. These components are the

graphical user interface, data model, report reader, drawing writer, and data

processor. These components allow the engineer to specify depth ranges for the

diagram, set the depth tic intervals, and set the intervals for the no-go circles.

This modular design allows for future enhancements or changes without having

to rewrite the whole program.

Also included are subsections which discuss the development of some of the more

mathematically involved algorithms. These sections present an informal

presentation of the logic upon which these algorithms are based.

PAGE 1

Table of Contents

Abstract...1

Introduction ..3

Review of Literature ..5

Statement of Problem ..6

Problem Solution..7

Analysis of the Solution ...8

Graphical User Interface .. 8

Data Structure... 9

Report Reader .. 10

Output Writer .. 11

Algorithm Development.. 11

Multiple Tangents.. 12

Tangents Between Circles... 13

Limitations of Study ..14

Conclusion...14

References...15

Bibliography ...15

Page 2

Introduction
Modern oil well drilling techniques involve a process known as directional

drilling, which is a method of deviating the well from a vertical inclination and

steering it towards the pools of oil within a reservoir. This technique has allowed

production of many square miles of reservoir from a single drilling pad. Allowing

oil companies to cut production costs and pipeline expenses while reducing their

environmental footprint.

The drawback to these densely

populated drilling pads stems from

the possibility of drilling into an

existing well. Should another well

be hit there are a number of

possible environmental, safety and

economical concerns ranging from

the loss of a productive well to a

blowout with fatalities. For these

reasons, it has become increasingly

important that overlapping

methods of collision avoidance be

used.

KOP / BUILD 1/100
500 MD 500 TVD
 0.00° INC 35.00° AZ
0 N 0 E

BUILD 1.75/100
700 MD 700 TVD
 2.00° INC 35.00° AZ
3 N 2 E

END 2.5/1
1876 MD
29.37° INC
291 N 85

150 100 50

150 100 50

150

100

50

50

100

150

200

300

350

400

MPF-46

13

14

15

16

17

18

MPF-25

17

18

19

20

21

MPF-37

23

24

25

MPF-13

18

19

20

21

MPF-30

12

13

14

15

16

17

18

19

20

21

22

MPF-22

6

8
9

10

11

12

13

14

15

16

MPF-14

11

13
14

15

16

17

MPF-10 8

10

11

MPF-18

8

10

11

12

13

MPF-29

22

23

24

25

26

MPF-58

1

MPF-42

13

14

15

16

17

18

MPF-5
19

20

MPF-26

17

21
22

23

24

25

26

27

28

54

55

MPF-30

M

0

250

The first method is known as a

spider plot, which shows the

position of the wells on a 2D

Cartesian coordinate plot with tics

on the well traces representing the

depths. This view is the easiest for

Page 3
Typical Spider Plot
KB

CURVE 2.5/100
900 MD 900 TVD
 5.50° INC 35.00° AZ
14 N 10 E

00 CURVE
1825 TVD
 11.52° AZ

 E

CURVE 2.5/100
1922 MD 1865 TVD
29.37° INC 11.52° AZ
313 N 90 E

50 100 150 200

50 100 150 200

150

100

50

50

100

150

200

300

350

400

1" = 50 ft
PLAN VIEW

MPF-17P

11

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

9
10

11

12

13

14

15

16

17

18

19

20

6
8

10
11

12

10

12

13

14

15

16

9

11
12

13

14

15

16

17

18

19

20

21

22

MPF-45

13

15

16

17

18

19

20

21

22

23

24

25

26

MPF-53

9
10

11

12

13

14

15

16

17

18

19

20

21

MPF-53OH

9
10

11

12

13

14

15

16

17

18

19

20

21

MPF-61

6
9

11

13
14

15

16

17

18

MPF-69

6
9

11

MPF-78

7

9
10

11

12

13

14

15

MPF-70

7

10
12

14
15

16

17

18

19

20

21

22

MPF-62

14

16

17
18

19

20

21

22

23

24

25

9
10

11

12

13

14

15

16

17

18

19

20

21

22

10

11

MPF-74

6 8 9
10

13
14

15

16

17

18

19

20

21

MPF-33

14

24

27

28

29

30

31

32

33

34

35

36

37

38

MPF-215

MPF-66

6

8
9

10

11

12

13

6

8
9

10

11

12

13
MPF-66PB1

6

8
9

10

11

12

13

5
6

7

8

9

10

11

12

3 MPF-54

7
8

9

10

11

12

13

14

15

16

17

MPF-49
4 6 7 8 9

6

8

9

10

11

12

MPF-577 8 9 10

MPF-656

0

10
11

12

13

14

15

16

17

18

MPF-41
6

8 9
10

11
12

13

MPL-13

51

52

53

PF-38

800 TVD 35.00° AZ

999 TVD 26.25° AZ

1098 TVD 21.52° AZ

1196 TVD 18.59° AZ

1293 TVD 16.60° AZ

1389 TVD 15.15° AZ

1483 TVD 14.05° AZ

1577 TVD 13.19° AZ

1668 TVD 12.49° AZ

1758 TVD 11.91° AZ

1932 TVD 11.18° AZ

0 250

0 250

0

250

those not well versed in anti-collision techniques to understand, but it can be

deceptive, hence the need for additional method.

The traveling cylinder, the second method introduced, is a polar plot in which the

planned well is always at the center of the diagram. The other well traces move

about in relation to their

distance and direction on the

plane normal to the planned

well. This method gives the

directional driller a better

idea of the position of other

wells in relation to his

location. Also, as he deviates

from the plan he knows how

far he can drift before a

collision becomes a concern.

The greatest advantage to

the traveling cylinder comes

from the ability to add what

we refer to as “no go” circles.

These are circles, whose

centers are place on the

offset wells and whose radii are defined

existing well, the survey uncertainty o

Once these circles are drawn, contour

arbitrary depth ranges can be added.

lines, known as “Tolerance Lines,” in

driller gets too close to one of these line

assessment and plug-back the well if ne

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170
180

190

200

220

230

240

250

260

270

280

290

300

310

320

330

340

350

210

10

10 10

20

20 20

30

30 30

40

40 40

50

50 50

60

60 60

70

70 70

80

80

90

90 90

100

10
0

110

11
0

120

120

12
0

130

130

13
0

140

140

14
0

150

150

15
0

M
PF

-1
4

M
PF

-1
4

MPF-18

M
P

F-21
M

P
F-21P

B
1

MPF-22

M
P

F
-2

5

M
PF

-2
6

M
P

F-29

MPF-30

M
PF-33

M
P

F
-3

7

MPF-38

MPF-41

M
PF-42

M
PF-45

MPF-46

MPF-50

MPF-53

M
P

F
-5

3

MPF-53OH

M
P

F-53O
H

M
PF

-5
4

M
PF

-5
4

M
P

F-54

MPF-54

M
PF-

62

M
P

F-62

M
PF

-7
0

M
P

F
-7

0

MPF-78 tru
ncated

MPF-78 truncated

10
0

10
0

16
1

103 200

200 300 400

500

60
070
080
0

9 0
010

00

10
30

33100 100
200

300

400
435

33100 100
200

300

400
435

33 100
200
300400

500

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
0013

46

10
0

10
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

12
47

10320020
0

30
0

40
0

50
0

600

700

800

900

1000

1100

1200

1296

103 200

20
0

30
0

400

500

600

700

800

900

1000

1100

1200
1204

33

10
0

20
0

300
400

500
600

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

17
40

34 10 0
100
200
300
400
500

600
700

800

900

1000

1100

1200

1225

9910010020030040
050

0
60

0
70

0

80
0

90
0

10
00

110
0

1200

1300

14
00

150
0

160
0

17
00

98100 100 200
300
400
500

60
0

700

80
0

90
010
00

11
00

12
00

13
00

1

1

160
0

17
00

180
0

19
00

20
00

21
00

21
28

10
3

20
0

200
300

400

500

600

700 764

33100

100200
300

400
500

600

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
001 5

0015
28

99100

100 200 300
400
500
600

700

800

900

1000

1100

1200

1300

1400

1500

1593

3810
0

10
0

20
0

30
0

40
050
060

0

70
0

90
0

10
00

13

14
00

15
00

16
00

16
14

103 200
200 300 400 500

60070
0

80
0

90
0

10
00

11
00

13
00

14
00

0

18
00

19
00

20
00

20
29

1415

1500

160
0

1700

1800

1900

2000

2100

2200

2300

24
00

25
00

26
00

27
00

27
82

1398
1400
1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2534

103 200
200
300 396

16
41

17
00

18
00

19
00

19
84 1219

1300

1400

1500

1600

1700

1900

2000

2034

1565

1600

1700

1800

1900

2000

2100

2200

2300
2303

2500 2500 2500

2600

2700

2800

2900

3000

100
200
300
400
500
600

Hig
hs

id
e

at
 K

O
P:

 3
5.

00

0 -
 8

00

1100 - 1400

2000 - 2500

0
-
 8
00

 20
00

17
00
 -
 2
00
0

17
00
 -
 2

00
0

1700 - 2000

17
00
 -
 2
00
0

17
00
 -
 2
00
0

2000 - 2500

N

80

400

500

80
0

12
00

0 - 1700

14
00
 -
 1
70
0

140
 -

170
0

140
0 -

 17
0

0

700

0

Pa
Traveling Cylinder with no-go circles & tolerance
 by addin

f the pla

lines bas

The dire

collision

s, the oil

cessary.

ge 4
00

0

17

11
00

12
00

15

16
00

00

Tolerance Line
g the surve

nned well,

ed on these

ctional drill

 avoidance.

 company h
100

110

Well Trace

140
y un

and

 “no

er u

Wh

as t
1800No-Go Circles
 -
170

Depth Tics
0

certainty of the

 a safety factor.

-go” circles and

ses the contour

en a directional

o perform a risk

Review of Literature
I have found an extremely limited amount of information in print on the subject

of traveling cylinders and tolerance lines. For this reason, much of my work is

based on theory learned over my years as a well planning engineer. To cite exact

reference for my knowledge proves quite difficult, whereas it is the culmination

of countless conversations with drilling engineers from BP, Arco and

Schlumberger.

Thurogood and Sawaryn, while explaining the theory of using traveling cylinder

diagrams as tools for anti-collision, give a visualization aid to understand what

the traveling cylinder represents.

To obtain a clearer understanding of what is happening, imagine the normal
plane represented with a polystyrene disk set at right angles to the planned
well. The planned well passes through the center of the disk. If the adjacent
wells are represented as hot wires, then that burn traces in to the disk as the
disk is pushed down the well. Wells that are nearly parallel to the planned well
tend to have a single large hole burned in the disk; those with high
convergence rates have lines that move rapidly across the disk with depth.
(31)

The technique involved in constructing the no-go circles and tolerance lines

became my next focus. I was able to find a document written by Hugh

Williamson of BP Exploration’s Drilling Technology Group. This document lays

down some basic rules, but the example is so simplistic that much is left to

interpretation. To illustrate his explanation, an extremely simple well was

chosen. All offset wells depart rapidly and do not double back. It becomes quite

obvious that this example is neither taken from a platform nor from a congested

drill pad.

Page 5

For validation of my mathematical formulae, I turned to Graphic Gems. Here I

was able to locate a proof that was mathematically similar to the proof I had

worked out on my own.

Statement of Problem
The process of creating close approach diagrams manually is very long and

tedious; as a result, it is prone to many errors. It involves using engineering

scales, a calculator, and a compass to create circles on a traveling cylinder

diagram. There are scores of circles that must be drawn by hand for every well

that appears on the diagram. More error is introduced when the circles’ radii

become too large for a standard compass and the engineer must resort to using

string and a thumbtack to create the circles.

Typically it takes six to twelve hours to generate a traveling cylinder plot with

tolerance lines. This is primarily due to the time spent calculating circle radii

and drawing the circles. The quality control check of the diagram tends to take

about an hour, as the reviewer, usually the engineer’s supervisor, has to perform

manual calculations of radii and check circles with a scale.

The calculation methods used in creating a normal plane traveling cylinder also

create a problem. Since this method involves performing calculations at 100-foot

intervals on the offset wells and back calculating where that point is on the

subject well, the depth ranges for circles are not at the same increments. For

example, Well A may have circles at a measured depth of 98, 175, 256, while

Well B may have circles at a measured depth of 115, 228, 306. For this reason it

would be of great benefit to normalize the data by interpolating to 100-foot

increments.

Page 6

Problem Solution
Since all the data needed to generate the traveling cylinder and the “no go”

circles are available in an ASCII text “Anticollision Report” exported from

Compass, a program can be written that can parse out the pertinent data and

load it into a linked list. The engineer will specify certain aspects such as depth

ranges to analyze, interpolation intervals to use for the circles and depth tic

marks. This data will then be used for calculating coordinates and radii of the “no

go” circles as well as the coordinates of the well traces. After which, the program

will produce a graphical representation of this data. In this case, I proposed that

the output of the program would be a Data Exchange Format (DXF) file, as

defined by Autodesk, which can then be opened in a CAD program for the

drawing of the actual tolerance lines. This program is a revision and extension of

three earlier projects.

As this project is one that has evolved over the last five years with many

enhancements along the way, my project report will showcase many of my earlier

programs. These programs parsed reports from DEAP, an engineering

application that BP abandoned in favor of Compass. These programs rendered

images by using BasicCAD to create the images within the CAD environment. I

decided to eliminate this step due to the poor performance of BasicCAD (the Y2K

compliant version of the software takes three times longer to generate the

drawing as did the previous version).

This project has been written in a variety of languages (i.e. Delphi 3/BasicCAD,

Java/BasicCAD). The implementation, which I will be working on, is coded in

Borland Delphi 5. This language is an object-oriented, visual Pascal. I have

chosen this language to allow ease of integration into a larger program, designed

to aid the well planning engineer, which has already been written in Delphi.

Page 7

Analysis of the Solution
One of the earlier versions of this parsing program read the data file, parsed out

the information needed and stored it in a temporary file. Then through several

iterations of reading data from the a temporary file performing a few calculations

and storing the results in another temporary file the desired output was collected

and saved into the output file. This process worked, but it was clumsy, poorly

documented, and difficult to modify. To resolve this problem, I have adopted the

use of the linked list data structure. The primary advantage comes from the

elimination of constant I/O activity. A secondary advantage involves code that is

less cluttered and thus easier to read and maintain.

I’ve broken the process into a few general modules:

• Graphical User Interface (GUI)

• Data Structure

• Report Reader

• Output Writer

Graphical User Interface

The graphical user interface has been

designed in such away that all data can

be easily input on one simple screen.

Many of the default settings are

actually loaded from data provided in

other fields. For instance, once a

“Traveling Cylinder File” has been

selected, the “Drawing Exchange Format File” name is automatically input with

a simple switch of the file extensions. In addition, the “Header Data” and “Survey
Page 8

Program” data are filled in based on data parsed out of the traveling cylinder file.

This data can then be corrected if it is incorrect or incomplete.

Drop down boxes for the “Drawing Options” make it simple to enforce standards

while still enabling the engineer to make the changes that he deems necessary. It

is simple, yet powerful.

A status bar and the “Currently Analyzing” box provide a means for determining

the progress of the analysis. I have provided a

variety of messages that will popup for various

known “errors” that can crop up. These are not

fatal errors; rather they serve as a flag for the

engineer to verify that his data was in fact

correct. An example of this would be a warning that there are no reference

casings on a particular well. This would prevent the proximity analysis necessary

to create the no-go circles for certain sections of that particular well. The diagram

can still be created.

Data Structure

By separating the data abstraction from the data parser, I have expanded the

flexibility of the system. Should the data file change format we will be able make

a new data parser without having to change the graphical user interface or the

output writer. If we decide that we want the output written into any other format

(a T-graph or an XY file), all we have to do is write a new output writer that

understands the data structure.

The first step to design the data structure was to determine what data was

available from the report. Then I narrowed down the structure to the data that I

knew was important for generating the graph. Once I had this data, I then

analyzed what was related in a one-to-one relationship and what was related in

one-to-many relationship. From these lists I was able to establish which items

would be in the parent linked-list and what data would be in the child linked list.

Page 9

The linked-list appealed to me

over any other data structure

for a number of reasons.

Surveys have a varying number

of stations, so they are not well

suited to an array. Trees do not

lend themselves to this situation

since the data is already

sequential. For these reasons

the linked-list fit the data best

out of all the data structures

available.

The first linked-list holds the

data pertinent to the offset

wells. Here we store the name of

the well, a pointer to the next well, and pointers to the first and last nodes in the

child list. It also provides the implement to load data into the child list.

TCSurveyRpt = class(TObject)
// Holds important data from a station
public
 next,prev : TCSurveyRpt;
 sMD : real; //subject well
 sTVD : real; //subject well
 oMD : real; //object well
 oTVD : real; //object well
 aziTN : real; //True North Azimuth
 aziHS : real; //Highside Azimuth
 ctr2ctr : real; //distance to no-go center
 allowDev : real; //distance to no-go edge
 constructor create;
 destructor destroy; override;
end;
TCWell = CLASS(TObject)
 Next : TCWell; // Link to next well
 Head : TCSurveyRpt; // Child/Data List
 Tail : TCSurveyRpt; // Child/Data List
 Size : integer; // # items in Child list
 Name : String; // of the the well
 constructor create;
 destructor destroy; override;
 function AddStation(Sender: TObject; sMD :
 real; sTVD : real; oMD : real; oTVD :
 real; aziTN : real; aziHS : real; ctr2ctr
 : real; allowDev : real): boolean;
end;

The second linked-list, or child list, contains the actual data points. Each node

represents a row of data from the report while the pertinent columns are stored

in the corresponding variable within the data structure.

Report Reader

Report reader is the module of this program which will read the data file and

load the data into the data structure. The primary function is to parse the data

out of the reports. It will also be responsible for catching certain indicators within

the file and must remind the engineer of the potential problem. In the example

listed above in the section on the GUI, it was the report reader that told the GUI

to send the error message alerting the engineer that casing references were

missing.

Page 10

The strict adherence to format simplifies the writing of the parser. The program

reads a line and test for certain flags. If a flag presents itself then the program

launches into a subroutine to handle that part of the report.

In the future, I will likely add more report parses. Currently, my program only

supports files from Compass, but I plan to add a module that will read

PowerPlan reports as well. Currently there is no demand for such a module, so I

will reserve this enhancement until such time as it is deemed necessary.

Output Writer

The output writer is the key part of the program. The output is really what

concerns the engineer, who really is not concerned with the journey so much as

the destination. I have planned two output writers in my program. The first is

the circle file creator. Circle files are used by a macro which I wrote for

DesignCad. These files have all the information needed by the macro for it to

create the traveling cylinder diagram.

The second output writer will create the DXF (data exchange format) file. DXF is

a portable file that can be read by most graphics packages and all CAD packages.

The primary advantage to DXF is speed. The DesignCad macros were too

sluggish in the new versions of the software. A secondary advantage is that DXF

does not tie you down to one software vendor since it is so widely supported.

A major challenge surfaces with the DXF format. As I hunt for a description of

the DXF scheme, I chase many red herrings, but am eluded on the actual

standard. Now I must reverse engineer the files and test my theories as to what

is the actual format. Due to time and money constraints, the DXF writer was

removed.

Algorithm Development

In the past, this program has just added circles to the traveling cylinder. I want

to work towards an intelligent system that will not only draw the circles, but will

Page 11

also draw the tolerance lines. Tackling something this ambitious slows down the

turnaround time in software development. So, I’ve decided to just add one step,

which will bring me closer to my goal. I have developed a method for adding

tangent lines between the circles. Unfortunately, this is one of the many things I

was unable to implement due to the cancellation of this project.

Multiple Tangents

Before I find the end points for the tangents, I need to find out if there are

tangent lines. There are six possible scenarios for

tangents between circles. If the circles have the

same focus and radius, they are the same circle

and therefore have an infinite number of

tangents. The next we can look at the case where

one circle encompasses the other; in this case

there are no tangents. Another possibility is the

circles may have exactly one tangent point if the

smaller of the two circles is inside the larger and

touches the larger circle in exactly one point. Two

tangent lines will result when two circles overlap.

Three tangents result when the two circles touch at exactly one point, but the

smaller is not inside the larger. Four tangents exist when the two circles do not

intersect.

Zero Tangents

Two Tangents Three Tangents

Four Tangents

One Tangent

I then broke these up into two general cases based on whether it was necessary

to add tangent lines. This was actually quite simple once I started to think about

it. If the sum of the radius of the smaller circle and the distance between centers

is greater than the radius of the larger circle, then I need to draw in the outer

tangent lines. Otherwise there are no tangent that need be drawn.

Page 12

Tangents Between
Circles

I searched online for resources that

would help me write this algorithm,

but I found that the solutions that were

posted all involved very specialized

cases and did not describe the actual

trigonometry involved. I was resigned

to solving the problem myself. I started

up CAD and began to draw two circles

of different size with their center in different axis. I then began to draw in all the

things that I knew about these circles. This consisted of the x and y coordinates

and the radii. I then added the outer tangent line segments between the circles

and labeled them G, G’ , H, and H’. Next I drew some lines of reference which

consisted of a line through the centers of both circles, as well as two lines parallel

to the X-axis through the centers of both circles.

theta
Ac

Bc

Br

Ar

Gx = Acx + Ar (cos (rho))

G'x = Acx + Ar (cos (rho'))
Gy = Acy + Ar (sin (rho))

G'y = Acy + Ar (sin (rho'))

Hx = Bcx + Br (cos (rho))

H'x = Bcx + Br (cos (rho'))
Hy = Bcy + Br (sin (rho))

H'y = Bcy + Br (sin (rho'))

phirho

G

G'

H

H'

rho = theta - phi
rho = arccos ((Ar - Br) / (Ac - Bc)) - arctan ((Ay - By) / (Ax - Bx))

rho' = -theta - phi

rho = -arccos ((Ar - Br) / (Ac - Bc)) - arctan ((Ay - By) / (Ax - Bx))

theta = arccos ((Ar - Br) / (Ac - Bc))
phi = arctan ((Ay - By) / (Ax - Bx))

I needed to find theta, the angle between the line connecting the centers of the

circles and the point G; phi, the angle of rotation between the X-axis and the line

connecting the centers; rho, the angle between the X-axis and the point G; and

rho’, the angle between the X-axis and the point G’.

I find theta to be the arccosine of the radius of circle A divided by the distance

between the centers of the two circles. I calculate phi to simply be the slope of the

line between the centers of the circles, so I simply take the arctangent of the

change in y divided by the change in x. A quick examination of the drawing and a

remembrance of the postulate that opposite interior angles of parallel lines are

the equivalent, reveals that rho equals theta minus phi. Furthermore, rho prime

must equal negative theta minus phi.

Page 13

Limitations of Study
In the future, should someone decide to pursue this again, I will develop an

algorithm that will be able to generate the tolerance lines. Linking arcs and

tangents together will do this, but I must analyze the logic employed by the

engineer. The difficult part will be converting this logic into something that can

be represented in a programming language. I do believe that this will be

something that should be done algorithmically and that there is no need to get

heuristics involved.

Unfortunately, there is no funding for further development, so many of these

ideas will likely never come to fruition. While working on this project I was told

that I could no longer work on it, as it was no longer under the scope of my job. I

had to quickly tie up the loose ends to provide my coworker with a program that

he could use.

Conclusion
Through careful study of the problem and its current, manual solution, I have

created an algorithmic approach to solve the problem. The solution appears quite

complex at first; but after thoroughly examining the methodology it becomes

quite clear that it is merely a chain of simple concepts and procedures which

solve the problem.

The underlining purpose of computer science is algorithm development. Through

the understanding of how to formulate efficient algorithms, computer scientists

are able to solve engineering problems. I was able to solve the well planning

Page 14

engineers’ dilemma of random, human errors by providing a program that

performed these tasks for the engineer. This program was a simple compilation

of algorithms designed to perform the monotonous tasks.

The program was a success because it saves man-hours of time-consuming labor.

It introduces a warning system that alerts the engineer to potential errors that

he may otherwise overlook. Additionally, it has the potential for growth into a

program that will create the entire diagram automatically, thus further reducing

the time burden on the engineer.

References
Thorogood, J.L. and S.J. Sawaryn, “The Traveling-Cylinder Diagram: A Practical

Tool For Collision Avoidance”, SPEDE 19989 (Mar 1991): 31.

Glassner, Andrew S. Ed., Graphics Gems, Palo Alto: Academic Press, 1990.

Bibliography
Williamson, Hugh, “How to Draw an Anti-Collision Diagram”, rev 2, XTP-

Drilling Technology Group, BP Exploration, 3 Feb 1996.

Pacheco, Xavier and Steve Teixeira, Delphi 5 Developer’s Guide, Indianapolis:

Sams, 2000.

Kruse, Tondo, Leung, Data Structures & Program Design in C, 2nd ed.

Englewood Cliffs: Prentice, 1997.

Page 15

SCHLUMBERGER OILFIELD SERVICES
Traveling Cylinder Map Creator

User’s Guide

Version

3

T R A V E L I N G C Y L I N D E R M A P C R E A T O R

User’s Guide

 Schlumberger Oilfield Services
3940 Arctic Blvd • Suite 300

Phone 907 273 1700 • Fax 907 561 8417

Table of Contents

 2

Chapter

1
Introduction

T he traveling cylinder has become the industry standard for oil companies that are serious
about collision avoidance while drilling an oil well. It has proved itself to be much more
reliable than the simplistic spider plot. The strength of this polar plot lies in the

functionality of adding no-go circles and their accompanying tolerance lines.

For the well planning engineer, there are few tasks more time consuming and monotonous as
creating tolerance lines on a traveling cylinder document. This software takes great strides towards
automating the more time intensive and tedious tasks. This allows the engineer to focus on the
engineering rather than technician tasks.

Close approach analysis has never been so easy. You will be able to provide close approach
avoidance maps in minutes instead of hours.

Here is what the software does:

• Reads an ASCII close approach report from Compass

• Creates a CAD compatible file (based on user criteria) that has

o Well traces with depth tics and the well’s name

o No go circles at specified intervals

o Tangent lines between circles to further aid in creation of tolerance lines

 3

Chapter

2
Getting Started

N o installation is necessary. You simply click on the TCyl.exe icon and the
program will launch. You can download this file from Schlumberger Intranet
at http://www.anchorage.oilfield.slb.com/D-and-M/Tcyl.exe.

You should see a window just as the
one to the left of this text. This is where
you specify the look of your traveling
cylinder.

First one must select the traveling
cylinder data file. Once this is selected,
header fields and output file names are
auto-populated.

Next, fill in any data the application did
not auto-populate or was incorrect.

Then, click “Convert” to create the
CIR file.

Finally, in DesignCAD 3000, run the
BasicCAD “TravCyl.BSC” program.
The TravCyl.BSC program will ask you
for the CIR file location and then it will
draw a raw traveling cylinder file which
must be edited by a trained Well
Planning Engineer.

http://www.anchorage.oilfield.slb.com/D-and-M/Tcyl.exe

Chapter

3
Interfacing with CAD

 Run the TravCyl.BSC
program by typing percent
(%) and selecting the

TravCyl.BSC file. Then type in the
name of the file that you converted
and the enter in the highside angle.

The program will then begin to
draw the well paths, depth tics,
and circles. Once this is
complete, the well planner can
begin to edit the drawing by
adding the tolerance lines.

4

	Abstract
	Introduction
	Review of Literature
	Statement of Problem
	Problem Solution
	Analysis of the Solution
	Graphical User Interface
	Data Structure
	Report Reader
	Output Writer
	Algorithm Development
	Multiple Tangents
	Tangents Between Circles

	Limitations of Study
	Conclusion
	References
	Bibliography

