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Modeling of Morphogenesis in Multi-Cellular Chemical Systems

Heather T. Koyuk
Abstract



Multi-cellular chemical systems have been developed that exhibit surprisingly life-life characteristics, including budding and growth (Maselko). These complex chemical systems, which rely on oscillatory chemical reactions, have produced interesting patterns of growth reminiscent of biological system pattern growths. Computer simulations of chemical systems have historically relied on the typical cellular automata model, in 1-dimensional and 2-dimensional grids with discrete numbers of states and limited directions for diffusion or cell growth. This project was designed to develop a more realistic simulation of complex multi-cellular morphogenesis, a simulation that would be able to reproduce the kind of pattern growths that appear both in these types of chemical systems and in various related biological systems. 

1. Introduction



This project was developed as part of the Complex Systems Projects for the University of Alaska Anchorage, and the overall project consisted of three separate yet connected sub-teams. As part of the computer science sub-team, my task was to help develop a computer simulation for the modeling of the morphogenesis of multi-cellular chemical and biological growth. The project also entailed a biology sub-team, whose task was to consult on the relation between chemical and biological patterns of growth, and a chemistry sub-team who worked on implementing different chemical growths in the laboratory.

1.1 Personnel 

Dr. Jerzy Maselko, chair of the Chemistry Department at UAA, oversaw this project. I worked directly with Nick Armstrong, B.S. in Computer Science/Mathematics and currently a senior in the Natural Sciences program at UAA; our computer science advisor was Dr. Kenrick Mock of the Mathematical Sciences Department at UAA. 

Advising on the biology sub-team was Dr. Garry Davies of the Biology Department at UAA; chemistry student Heidi Geri worked on the laboratory implementation. 

2. Project Overview and Requirements



Our goal for the computer simulation was to design a program that could simulate a wide variety of cell growths. The simulation was to be three-dimensional, dynamic, capable of modeling complex growths given relatively simple input, and easy for a non-computer science major to use. We also were given various modeling assignments in the form of modeling specific patterns of growth, and we sought to come up with interesting patterns of growth on our own.

2.1 Requirements

The requirements as originally specified by Dr. Maselko were very broad. The intial project proposal stated:

“To simulate the morphogenesis of complex multi-cellular structures, a computer graphic program is necessary that will produce more realistic models. This model should be able to reproduce different morphogenesis seen in different biological and chemical cellular systems.“

By consultation with the faculty involved in this project, we were able to outline the following specifications:
2.2 Functional Specifications
1. Implement a 3-dimensional computer simulation program capable of accurately displaying cellular growth. 

2. The simulation should seek to model both biological and chemical systems as accurately as possible.

a. The simulation should consider cells as spherical objects.

b. The simulation should not limit growth to a finite number of directions.

c. The simulation should consider discrete cells as distinct objects as much as possible, and their behavior should be defined by parameters similar to those of true cells (as opposed to simply writing a program that will grow in a specific, artificial growth pattern).

d. It would be nice (but is not necessary) for the cells to include the following variations:

i. Different cell sizes

ii. Different cell shapes

iii. Different cell membranes

iv. Cell death

3. Conceive of a model for growth of chemical systems based on neighboring cells (i.e., a state-based/rule-based model).

a. The model should explore a variety of patterns of growth.

b. The model should implement concepts from different theories of computer science and other disciplines as necessary (such as cellular automata, the universal constructor, and so on).

c. Ideally, the model should result in a semi-self replicating system.

4. The simulation should have some form of capturing data. The ‘rules’ used to create specific patterns of growth should be retained in some manner that allows the reenactment of the growth of specific patterns.

5. Finally, a user interface allowing dynamic submission of rules (instead of hard-coded each time) would be extremely helpful. This user interface should be usable by people with little technology experience (i.e., a prior knowledge of programming languages should not be required).
2.3 Non-Functional Specifications

Non-functional specifications consisted of the following:

2.3.1 Timeline

The project is to be completed by the end of the Spring 2005 semester. 
2.3.2 Language and Environment

After considering a few different visualization and modeling tools, we decided on a modified version of the Collaborative Visualization Environment (see 4.2, below); all programming was therefore be completed in Java.
2.3.3 System Specification

Any computer with the Java 2 Platform, Standard Edition, should be capable of executing this program. Due to the possibly high resource requirements of the simulation, Windows XP (or a comparable operating system), 512MB of memory, and a 450 MHz processor are recommended.

3. System Architecture



3.1 User Interface

The VTK (Kitware’s Visualization Toolkit) and CVE (Collaborative Visualization Environment) tools provided 3-dimensional capabilities with little modification needed. Nick Armstrong did modify the CVE environment somewhat to better suit our needs; the CVE as originally designed included networking and distributed computing capabilities that were unnecessary for our project. 

The basic user interface includes the following buttons and functions:
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Play – sets the simulation in motion
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Step – step forward one time step in the simulation
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Pause – pauses the simulation
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Stop – stops the simulation
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Reset  - reset the simulation to the beginning
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Snapshot – This allows the user to take a snapshot of the current screen.
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In addition, I modified the user interface at the end to include an additional button allowing the user to dynamically specify rules.

Other user options allow the user to zoom in or out on a simulation, to rotate, and to translate the simulation in any direction. The user can also select between an opaque surface and a wire-frame surface for the cells, and a background of either black or white.
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User Interface
3.2 Rules Window

The Rules button brings up another window (the Rules Window) that allows the user to specify rule parameters based on a single if-then-else statement. Because the grammar for true dynamic parsing of rules is not yet implemented, this Rules Window is simply a very basic prototype with limited functionality, and it is expected that the specific layout of the Rules Window will be altered dramatically to accommodate the wider variety of options available once parsing is implemented. In its current form, the Rules Window accepts a limited number of functions (‘magnitude,’ which returns the magnitude of the current cell, and ‘nearest,’ which returns the magnitude of the cell closest to the current cell), integer values, and up to one arithmetic operation in the text fields. The user can specify a theta or phi for the spherical coordinates, or can enter X+, X-, Y+, Y-, Z+, or Z- into the theta field. The Radius field is non-operational.
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The aspects of the current Rules Window that will be kept are the buttons allowing the user to specify the rules as given (“OK”), to cancel the current operation (‘Cancel’), and to reset the rules to the default (‘Reset’). The reset button brings up yet another window asking the user to confirm the reset operation.
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3.2.1 Rules Window - Future Development
A Rules Window has been preliminarily designed that allows for true rules parsing. This Rules Window will accommodate both pseudo-programming input (for the advanced user) and drop-down menus, along with pop-ups that prompt for correct function parameters, for the beginner. It might look something like the following, with pop-up windows added to help guide the novice programmer:
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The idea will be that code can be written directly into the larger text fields, or statements/declarations can be added to the current cursor position via the guided functions specified under the text fields. This pseudo code can then be parsed and dynamically evaluated for each cell thereafter. This rules window should also allow for loading from and saving to external text files.

3.3 Data Structures

The main data structure to note is the XYZ Tree, which implements a relatively inexpensive method for storing and retrieving cell locations within the unbounded, three-dimensional space. The XYZ Tree will be addressed in detail in section 5.1 of this document, but in brief, it implements a 3-dimensional binary search tree with Cells as the nodes in the tree.

3.4 System Architecture

The major components of the system consist of:

· The CVE/VTK classes (including the User Interface),

· The Cell class (the agents for the simulation), 

· The Neighbors class, which takes care of all location-specific functions,

· The XYZ Tree which stores cell location, and 

· The Rules class which stores the rules that limit the Cell’s behaviors. 

Additional helper classes include:

· Direction, which holds two float values for a spherical-coordinate vector, 

· GrowthVector, which stores a Direction and a float-valued magnitude,

· State, which stores a vector of GrowthVectors as well as a magnitude, and which comprises the Cell’s current state in the simulation, and

· Point3D, which stores float-based X, Y, and Z coordinates for a point in the three-dimensional space.

The implementation of the dynamic rule entry necessitates not only the RulesWindow class but also all the classes that will be necessary for dynamic parsing. These will include (but are not limited to):

· Text Parser 

· Abstract Syntax classes 

· Concrete Syntax classes 

· Semantics class

The above will include various classes as defined by the grammar (see appendixes A, B, and C). Of those classes, only skeleton classes for Action (which will be part of the Abstract Syntax classes) and Bud (which inherits from Action) have currently been implemented.

The current system flow is outlined in the following UML diagram:
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The process begins when the user calls the program. The CVE/VTK classes then create the user interface and a set of seed cells. Each seed cell creates its own instance of the Neighbors class, for retrieving information about the space around it. The Neighbors class provides access to the static XYZ Tree, which the cells are each inserted into as nodes. During each time step, the following occurs: The CVE/VTK classes call on each Cell to perform its action. Each Cell then refers to the Rules class, which considers both the Cell’s state and/or the state of its neighbors (via the XYZ Tree) to decide on a specific Action. It then returns the Action to the Cell, which performs the Action and returns control back to the main window, which updates the visual display for the user. The cycle in blue is then repeated until the simulation is over. If the user calls the Rules Window and inputs new rules, the Rules that the Cells refer to are modified to operate based on the new rules.

4. System Design 



There are two parts to the system design. The first encompasses the basic functionality of the cells being modeled. This includes the ability for the computer-generated cells to mimic chemical and/or biological growth, the way in which rules are assigned, and other features that define a cell. The second part encompasses the way in which rules are implemented and is more theoretical than the first. Since the CVE visualization environment was largely designed and implemented prior to this project’s conception, I am omitting those details from this document.

4.1 Concrete Design: The Basic Cellular System

The cells have to be designed to support a variety of functions. They have to have the ability to bud based on rules, the ability to grow in any spherical direction, the ability to bud multiple times, and the ability to know where their neighbors are in order to implement the neighbor-based set of rules and to avoid growing ‘on top of’ other, preexisting cells. The cells implement these abilities via the following methods: 

Each cell keeps its x,y,z center coordinate and a float value for its radius. The x,y,z coordinate is encapsulated within the Point3D class. Each cell is also created with an initial State. This state includes a (vector of) growth vector(s) tau, which are the original directions in which a cell would choose to bud. These directions are described by the spherical coordinates theta and phi, which are used as typical spherical coordinates denoting the Z-axis angle and X-Y axis angles respectively. Additionally, each state has a magnitude value that indicates the chemical ‘strength’ of the cell. 

Cells contain the functionality to grow their own children cells, and do so based on the ‘rules’ for growth (which are contained within the Rules class). Cells also contain the functions necessary for coordinating with the VTK libraries.

The project was constructed to easily support a much wider variety of cell actions, such as movement, cell growth, and non-uniform cell shapes. Along those lines, I spent quite a bit of time this semester refactoring and restructuring the code, and adding functionality to pre-existing code (the specifics of my contributions to the code are outlined in section 6.1 of this paper as well as in the source code). The final design is highly modularized, with the following steps occurring each time step: 

1. The Visualization class calls on each Cell to ‘doAction(),’ with no knowledge of which action will be performed

2. The Cell class passes a copy of itself to the Rules.

3. The Rules either follows the rules as specified by the user (through the RulesWindow frame), or reverts to a default set of rules. The Rules class refers to the Cell’s current state and/or the state or distance of its neighbors to determine which Action the Cell should take, as well as the specific parameters for the Action (GrowthVector and magnitude for budding, direction to split along for dividing, etc.). The Rules class then passes the Action back to the Cell.

4. The Cell, upon receiving an Action back from the Rules class, implements the Action. If child cells are created, they are stored locally. When the Cell has completed its action, control is passed back to the Visualization class.

5. The Visualization class, which doesn’t know what action if any the cell performed, has to check the state of the cell (and check for new children) in order to update its own variables and its display.

Although the only currently fully implemented Action is budding, the modular design of the system should easily integrate additional actions.

4.2 Rules for Growth

Once a cell has been established, it has certain rules and parameters that influence its next action. The Rules class can decide action and action parameters from both a context-free and a context-sensitive perspective. For a simple context-free rule, the Rules class simply refers to the Cell itself. Through the Neighbors and XYZTree classes, the Rules can retrieve values (magnitude and/or distance) for neighboring cells from any section in the search space local to the current cell; context-sensitive rules can thus be specified to perform certain actions based on almost any test. This is conceptually similar to Wolfram’s cellular automata, where a cell grows and/or changes state based on the state of its neighbors. Of course, Wolfram’s cellular automata are two-dimensional at best, and have very limited options available to them (two or three colors to choose from, two or so directions in which to grow), whereas the cells in this project have an entire spherical coordinate system from which to choose a growth direction from - and other ideas being considered include giving cells the ability to increase in size or to grow in non-spherical shapes. Our project supersedes the typical cellular automaton: Nick Armstrong has successfully implemented Stephen Wolfram’s ‘Rule 110’ by specifying different patterns of growth based on the cell’s current state as well as the state of its immediate neighbors.

5. Algorithms 



5.1 XYZTree
This program implements a complex system with Cells as the individual agents. The cells operate in an unbounded and otherwise empty three-dimensional search space. Storage and efficient retrieval of data is a classic concern in computer science, and many algorithms have been designed to facilitate efficiency. In this case, we had to consider how to store the locations of cells in an unlimited three-directional spherical search space. This was necessary not only to avoid collisions (cells growing ‘on top’ of another) but also to facilitate the context sensitive rules.

After examining the built-in vtk structures for computing three-dimensional point recognition, I decided to write my own construct. The simple use of buckets to divide the search space seemed too inefficient due to the problems inherent with computing neighbors of cells that occupy the edges of the buckets; if the cell were in a corner space, up to 8 buckets (including the one currently occupied) would have to be searched for neighboring cells!  Even with the use of buckets, the space within the buckets would have to be searched for any neighbors within a specified radius. 

I finally decided on a three-dimensional binary search tree (basically, a 6-ary tree). Cells are first enclosed within a square box that encompasses their entire X, Y, and Z ranges, as specified by taking the floor of the minimum X value that a cell’s diameter contains, the ceiling of the maximum X value that a cell’s radius contains, and so on. The cells are then classified first by their X range, then by their Y range, then by their Z range. Consider the following sequence of insertions (with discrete values instead of ranges, for simplicity’s sake):

{5, 7, 2}{4, 9, 3}{12, 3, 3}{-2, 13, 4}{4, 11, -1}{4, 1, 6}{4, 13, 4}{4, 13, 7}{12, 3, 5}

{5, 7, 2} is simply inserted into the head. Because {4, 9, 3} has a smaller X value than {5, 7, 2} does, it becomes {5, 7, 2}’s left X child. And because {12, 3, 3} has a higher X value than {5, 7, 2} does, it becomes {5, 7, 2}’s right X child. {-2, 13, 4} has a smaller X value than {5, 7, 2} so we continue down the left side of the tree; it also has a smaller X value than {4, 9, 3} does, so it becomes {4, 9, 3}’s left X child. {4, 11, -1} has a smaller X value than the node of the tree, so we again go down the left side of the tree. Here, though, the X values overlap; {4, 11, -1} and {4, 9, 3} have the same exact X values. {4, 11, -1} has a larger Y value than {4, 9, 3}, however, so it is inserted as the right Y child of {4, 9, 3}. This process continues, with {4, 1, 6} becoming {4, 11, -1}’s left Y child, {4, 13, 4} becoming {4, 11, -1}’s right Y child, and {4, 13, 7} becoming {4, 13, 4}’s right Z child. Note that {12, 3, 5} becomes {12, 3, 3}’s right Z child, with no intervening Y branch, since {12, 3, 5} has the same X and Y values as {12, 3, 5} does, even though {12, 3, 5} is placed on an X branch of the tree. In the following figure, nodes inserted in black correspond to nodes inserted into the X branches, nodes in blue are inserted into the Y branches, and nodes in red are inserted into the Z branches.
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Overlapping ranges were dealt with by specifying that if a particular range in a node being inserted had a minimum value greater than the potential parent’s minimum range but a maximum value greater than the parent’s maximum range value, the child cell is inserted on the right side of the tree, and vice versa. Additionally, in order to accommodate different cell sizes, the following functionalities were added to the XYZTree: 

· Cells being inserted that occupy exactly the same X, Y, and Z ranges as a pre-existing cell (as might occur with a cell radius smaller than .5) are added (in linked-list fashion) behind the original cell that was inserted into the XYZTree, on the same node.

· Cells whose range is completely enclosed within a potential parent’s range of values (but is not exactly equal to the parent’s range – for instance, inserting a child with an X range of [-1, 0] after inserting a cell with an X range of [-2, 0]) are inserted as a right-side child of the parent node. The specification of right vs. left was arbitrary – all that mattered was that the scheme be consistent so that the tree could be correctly structured and searched.

· Cells larger than a currently inserted cell therefore necessitated restructuring of the tree to place the larger cell on ‘top.’ Methods were therefore written that would remove any branch of the XYZTree and re-insert all Cell nodes back into the appropriately restructured tree.

The XYZTree also accommodates cell ‘death’ (it simply ignores the dead cell, unless the node it occupies is needed, in which case the node is removed and the tree is restructured, as above) and the tree provides the methods to return vectors of Cells from any given rectangular area. To better accommodate cell-specific locations, methods were added that return a vector of Cells from any 1, 2, 4, or all 8 quadrants surrounding the cell in 3-dimensional space. This functionality is accessed by specifying a center point, the length of the quadrants to retrieve cells from, and integer-valued X- Y- and Z-factors. A positive factor indicates the quadrant(s) with higher values than the center point, a negative factor indicates the quadrant(s) with lower values than the center point, and the integer 0 indicates that that factor should be ignored. For example, X- Y- and Z- factors of (1, 1, 1) will return all cells in the purple quadrant below; factors of (0, 1, 1) will return the quadrants with higher Y and Z values regardless of X value (yellow and purple below), and so on. (0, 0, 0) will return all 8 surrounding quadrants. It is important to note that the XYZTree contains the functionality to return cells from any rectangular box of any width, height, and length; the quadrant system was implemented merely to accommodate a simple division of space local to each cell.
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Nick Armstrong has implemented a spherical based quadrant system for retrieving neighboring cells; either method can be used to retrieve neighbors from the surrounding space.

5.2 Neighbors Notification

A system to reduce computational overhead when searching for neighbors was implemented in the following manner:

1. When a cell is created and inserted into the XYZTree, it performs a search for its neighbors within a given (static) radius. 

2. The cell stores a link to each cell found within the surrounding space in a private vector list.

3. The cell ‘registers’ itself with each cell in its initial neighbors vector list, and is added to each of the other cell’s neighbor lists.

4. When a cell dies, it removes itself from each of its neighbor’s neighbor lists.

Using the above notification system results in a minimum of computation time for retrieving neighbors at some expense of space. A potential downside of this system is that it limits the neighbor radius to a relatively static and uniform value, which may not be desired. The radius can be changed, but this would result in the XYZTree having to be searched again, and if regular changes in the radius are anticipated, this system loses its usefulness. It is still undecided whether or not to keep the neighbors notification system, but in general, it has proven useful: the spherical coordinate based quadrant system implemented by Nick Armstrong utilizes the fact that a relatively small space needs to be searched to find neighbors within a specified spherical direction.

6. Development 



6.1 Coding 

As with any joint project, it is often difficult to delineate one person’s contributions to the project vs. another person’s. The majority of my time was spent on restructuring and refactoring the code, implementing and debugging various functions and adding new classes (such as the XYZTree), and in general, increasing the capabilities and modularity of the system.
The classes that I personally implemented were: 

· The XYZTree (and all associated functions to use the XYZTree in other classes),

· The Neighbors class, and 

· The RuleWindow and Action classes. 

Classes that I added functionality to and/or refactored or restructured include:

· The Visualization and Visualization Frame classes (to implement the RuleWindow; also, I moved cell-specific functions to the Cell class)

· The Cell class (moved Cell-specific functions to this class, changed the code structure to have this class refer entirely to the Rules class when deciding on an action, etc.)

· The Rules class (to refer to RulesWindow rules when appropriate, and to refer to the XYZTree to avoid collisions), and

· The State class (to implement a cell-specific magnitude).

Most, if not all, of my updates to the code are noted with my initials in the source code that accompanies this document.

6.2 Research 

Some time was spent on research, though not nearly as much as I had originally planned. Cellular automata, models for plant morphogenesis, and models for chemical systems were explored. From my research, I determined several areas to focus on in future development (see section 7.2) as well as identifying, or helping to identify, potential issues in implementing these developments.

6.3 Grammar  

Finally, time was spent on designing a preliminary grammar and system for implementation of the dynamic rules specification. The specifics of the grammar I have composed so far can be found in Appendices A, B, and C; it is largely based on the grammar for Jay as designed by Noonan and Tucker. The current expanded grammar for this project is not guaranteed complete or correct, but should provide an adequate foundation with which to begin implementation of a dynamic rules specification. The dynamic specification of rules should operate in the following manner:

1. The user can load a text file, write their own pseudo-code, or allow themselves to be guided by the more limited functions available to them via the buttons, text fields, and drop-down menus on the window.

2. The resulting text string is parsed into tokens.

3. The tokens are examined for syntactic errors.

4. The tokens are examined for semantic errors.

5. If any errors are found, the user is notified.

6. Otherwise, the ‘code’ is stored as a series of instructions on a heap-type structure accessible by the Rules class.

7. Each cell is then evaluated by the rules specified by the instructions on the heap rather than by the default (hard-coded) rules.

8. At any point during the simulation, the user can elect to save the ‘code’ as an external text file (that can then be re-loaded later if desired).

9. Extensive help options should be available for the non-computer science student; somebody without extensive technological or programming experience should be able to learn to write simple rules relatively quickly.

10. Along the same lines, extensive prompting should be built into the system; thus, if a user selects the action ‘Bud’, the system should prompt for a direction and a magnitude value for the new child cell, explaining what purpose each parameter serves.
6.4 Breakdown

	Week
	Anticipated
	Actual
	Hours
	Other (description)
	Hours

	1
	Finish neighbors problem, coding
	Debugging XYZTree
	10
	 
	 

	2
	Explore different rules configurations/ Coding interface
	Research, design
	10
	 
	 

	3
	Research/Coding interface
	Code modularization, prepare for parsing
	10
	 
	 

	4
	Research, rules
	Code modularization, research
	10
	 
	 

	5
	Research, rules
	Experiment with context-free rules (not very successful)
	10
	 
	 

	6
	Research, rules
	Research/reading/designing
	10
	 
	 

	7
	Research, rules
	Aggregation functions, expand XYZTree for bins
	10
	 
	 

	8
	Research, rules
	Experiment with context-sensitive rules (not successful)
	10
	Begin writeup
	10

	9
	Collaboration for possible publication
	Rules Window, ‘parsing’ mockup, Neighbors class
	10
	Prepare for presentation, writeup
	10

	10
	Preparation for leaving the project*
	Work on grammar, research
	10
	Final Presentation
	2

	11
	Documentation, User's Manual
	Documentation, User's Manual
	?
	 
	 

	12
	
	
	?
	Demo
	1


7. Analysis and Future Directions



7.1 Analysis

There remains much work to be done on this project. Although I initially anticipated being able to spend a lot of time conducting research and testing new rule configurations, the majority of my time was instead spent on the code and on beginning a design for a parsing system that would implement a dynamic rule selection. Although currently the only fully implemented action performed by the cells in the model is budding, the work I did should greatly facilitate future actions, and should a dynamic rules parser be implemented, this will greatly ease the discovery of useful rules for creating interesting patterns of growth. As evidenced by Armstrong’s implementation of Wolfram’s Rule 110, the system as it stands already supersedes the conventional cellular automaton system; it is also capable of modeling cellular growth patterns based on context-free and context-sensitive rules, which meets the original requirement as specified in the project proposal. With some added functionality, this system should be fully capable of modeling both chemical and biological systems of growth in an even wider variety of configurations. 

7.2 Future Directions

Future work on this project should focus on the following:

· Implementation of a grammar for dynamic rules parsing. As stated before, this would greatly facilitate the discovery of useful rule configurations for creating interesting patterns of growth. 

· Cell division. This action is almost fully implemented (by Nick Armstrong) but needs some work.

· An L-System type of action for the cells. There are some issues concerning the search space should an L-System action be implemented that were noted during our last team meeting, namely, that the entire XYZTree would need to be restructured when cells move other cells; this is an issue that will need to be dealt with.

· Cell movement and cellular growth/shrinking actions. If L-Systems are implemented, movement and growth will be trivial to implement.

· A chemical reaction-diffusion system for the surrounding space. This would better model the chemical systems that are currently being implemented in the laboratory, which rely on gradients in beakers to create different chemical growths.

· Non-uniform (non-spherical) cell shapes/pliability.

Finally, the use of a genetic algorithm could prove very useful in conducing research into rule configurations, especially in the case of ‘the backwards problem,’ i.e., given a specific structure, what initial conditions and rules for growth can duplicate that structure?

8. Summary and Conclusion



Our task for this project was to develop a computer simulation for accurately modeling complex chemical and biological multi-cellular growths. We did not get quite as far as we had originally expected, but we succeeded in satisfying the basic requirements for this project, and we have laid the foundation for future work in this area. 

I learned many things from this project, not the least of which was (yet another) confirmation of the fact that projects invariably take longer than expected. Despite the fact that we did not get as far along in this project as I had hoped, we did an adequate job of laying the foundation for future embellishments, and I learned a lot about various theoretical models - from Wolfram’s concepts to L-Systems, chemical reaction-diffusion systems, and other models for pattern growth. Unfortunately, I did not have time to explore Chaos theory as I had originally hoped; that is one subject that I would explore further with regards to this project if given the chance.

8.1 Conclusion

Simple cellular automata can be used to model pattern growths. They are also used to explore the frontiers of complexity and computability, and according to Stephen Wolfram, cellular automata based on simple states and simple rules have implications far beyond the field of computer science and the issue of computability. Wolfram defines a “Principle of Computation Equivalence” by stating, “Whenever one sees behavior that is not obviously simple – in essentially any system – it can be thought of as corresponding to a computation of equivalent sophistication. And this one very basic principle has a quite unprecedented array of implications for science and scientific thinking” (5). Wolfram suggests that simple rule- and state-based cellular automata can have widespread implications in almost any area, including the areas of mathematics, physical systems, theoretical physics and the discovery of a unified theory, biology, economics, psychology, art, and technology (to name a few). 

It is my personal opinion that Wolfram has a valid point in that complex (i.e., ‘un-computable’) systems may indeed have their basis in very simple interactions, and the discovery of these simple interactions could revolutionize many areas of science. In my estimation, however, one-dimensional and two-dimensional automata with discrete values for direction and state are incapable of simulating the actual (three-dimensional and continuous) world we live in, and that a similarly three-dimensional and continuous model must be developed to further develop this concept. 

Our project goal was simply to create a three-dimensional, dynamic computer simulation of complex cellular growth. I don’t claim that our system could be used to solve the mysteries of the universe, but it could, nevertheless, be a step in the right direction.
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Appendix A: Proposed Lexical Syntax

InputElement -> WhiteSpace | Comment | Token

WhiteSpace -> space | \t | \r | \n | \f | \r\n

Comment -> // (…) (\r | \n | \r\n)

Token -> Identifier | Keyword | Literal | Separator | Operator

Identifier -> Letter | Identifier Letter | Identifier Digit

Letter -> a | b | … | z | A | B | … | Z

Digit -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

Keyword -> boolean | case | else | float | for | if | int | new | switch | void | while 

Literal -> Boolean | Number

Boolean -> true | false

Number -> Integer | Float

Integer -> Digit | Integer Digit

Float -> Integer . Integer

Separator -> ( | ) | { | } | ; | . 

Operator -> AssignmentOp | NonAssignmentOp

AssignmentOp -> = | -= | += | *= | /= | ^= | %=

NonAssignmentOp -> + | - | * | / | <= | >= | == | != | ! | && | || | ^ | ++ | -- | % 

*Note: Lexical Syntax based on Jay (Noonan and Tucker) and the Java language by Sun Microsystems.

Appendix B: Proposed Concrete Syntax

ProductionRules -> ‘public static Action‘ Identifier ‘(Cell cell) {‘ Declarations Statements ‘return null;}‘

Declarations --> {Declaration }*

Declaration -> Type Identifiers ‘;‘

Type -> LiteralKeyword | ActionKeyword | ‘Cell‘ | ‘GrowthVector‘ | ‘State‘ | ‘Direction’

LiteralKeyword -> ‘boolean‘ | ‘int‘ | ‘float‘

ActionKeyword - > ‘Bud‘ | ‘Divide‘ | ‘Grow‘ | ‘Move‘ | ‘Die‘

Identifiers -> Identifier {, Identifier }*

Statements-> { Statement }* 

Statement -> Block | AssignmentStatement | IfStatement | WhileStatement | ForStatement | SwitchStatement | ReturnStatement 

Block -> ‘{‘ Statements ‘}‘

AssignmentStatement -> Assignment ‘;‘

Assignment ->  Identifier AssignmentOp Expression

AssignmentOp -> = | -= | += | *= | /= | ^= | %=

IfStatement -> ‘if’ ExpressionBlock Block ElseStatement

ElseStatement -> ‘else’ Block |  

WhileStatement ( ‘while’ ExpressionBlock Block

ForStatement ( ‘for‘ ForBlock Block

ForBlock ( ‘(‘ (Assignment | ) ‘;‘ Relation ‘;‘ (Assignment | ) ‘)‘

SwitchStatement ( ‘switch‘‘ (‘Identifier ‘)‘‘{‘ CaseBlock ‘}‘

CaseBlock ( Case EndCase | Case CaseBlock EndCase

Case ( ‘case‘ Actual ‘: /r‘ Statement ‘/r‘

EndCase ( ‘default: /r‘ Statement 

Actual ( Literal | Identifier

ReturnStatement ( ‘return‘ { Action  | ‘null’ } ‘;‘

ExpressionBlock ( ‘ (‘ Expression ‘)‘

Expression (Conjunction { || Conjunction }*

Conjunction ( Relation {&& Relation }*

Relation ( Addition {RelationalOp Addition}* 

RelationalOp (  < | <= | > | >= | == | != 

Addition ( Term {[+ | -]  Term}* 

Term ( Exponent {[* | / ] Exponent}*

Exponent ( Negation {^ Literal}

Negation ( Factor | ‘!’ Factor

Factor ( Identifier | Literal | Expression

Action ( Identifier | ‘new’ ActionKeyword ActionParameters

ActionParameters ( ‘(‘ [Identifier | ExpressionBlock]*‘)’ 

*Note: Concrete Syntax based on Jay (Noonan and Tucker). 

Appendix C: Proposed Abstract Syntax 
Production ( Declarations decpart Block body

Declarations ( Declaration*

Declaration ( Type t Variable v

Type ( LiteralKeyword | ActionKeyword | ‘Cell‘ | ‘GrowthVector‘ | ‘State‘ |  ‘Direction‘ 

LiteralKeyword ( ‘boolean‘ | ‘int‘ | ‘float‘

ActionKeyword ( ‘Bud‘ | ‘Divide‘ | ‘Grow‘ | ‘Move‘ | ‘Die‘

Variable ( String id

Block ( Rule*

Rule ( Statement*, Action 

Statement ( Skip | Block | Assignment | Conditional | Loop

Assignment ( Variable target, Expression source

Conditional ( Expression test, Statement thenBranch, Statement elseBranch

Loop ( Expression test, Statement body

Expression ( Variable | Value | Binary | Unary | Aggregation

Value ( int intValue | boolean boolValue | float floatValue 

Binary ( Operator op, Expression term1, term2

Unary ( UnaryOp op, Expression term

Operator ( BooleanOp | RelationalOp | ArithmeticOp | UnaryOp

BooleanOp ( ‘&&’ | ‘||’

RelationalOp ( ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘!=’ | ‘==’

ArithmeticOp ( ‘+’ | ‘-‘ | ‘*’ | ‘/’ | ‘^’ | ‘%’

UnaryOp ( ‘!’ | ‘++’ | ‘—‘

Action ( Grow | Divide | Move | Die | Bud

Grow ( ‘grow( ‘Expression radius ‘)’

Divide ( ‘divide(’ Direction direction ‘)’

Split ( ‘split(‘  Direction * ‘)’ // angle(s) along which to split the cell

Move (‘move(’ Direction direction, Expression distance ’)’} // distance from old to new

Die (‘die()' // no parameters for die

Bud ( ‘bud(’ [Direction dir Expression magnitude]* ’)’ 

Cell ( Direction dir Expression magnitude [Expression radius]0,1
Direction ( Expression theta, Expression phi  

Aggregation ( AggregationFunction  TopologyVectors

AggregationFunction ( ‘sum’ | ‘average’ | ‘count’ | ‘max’ | ‘min’

TopologyVectors ( Direction dir, Expression arclength, Expression arctheta  // first float is length of arc, second is theta of arc (it will sweep out from the cell conically)

*Note: Abstract Syntax based on Jay (Noonan and Tucker). Abstract Syntax may be ambiguous; this is just to be used as a guide.

Appendix D: User Manual

System Requirements



Windows 2000 or XP

512 Mb of memory

450 Mhz CPU

Beginning the Simulation



Double-click on the runclient.bat icon in the first subdirectory of the included source code files. This will begin the program and will bring up the user interface:
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Buttons and Interaction Functions



The following buttons and interaction functions are available:


Play – sets the simulation in motion


Step – step forward one time step in the simulation


Pause – pauses the simulation


Stop – stops the simulation


Reset  - reset the simulation to the beginning


Snapshot – this button brings up a save file dialog, allowing the user to save the current screen as an image file*.


Rules – brings up the Rules Window**.

Other user options allow you to zoom in or out on a simulation, to rotate, and to translate the simulation in any direction. You can also select between an opaque surface and a wire-frame surface for the cells, and a background of either black or white.

*Saving the Image



To save the current screen as an image file, click on the snapshot button. This will open a file dialog box like this one:

[image: image9.png]
Browse to the desired file as necessary and specify a name and an extension type for the image, such as ‘cell.jpg.’  Select ‘Save’ and the image will be saved.

**Specifying Rules



The Rules Window provides a minimally functional method for dynamic rule specification. To use the Rules Window, click on the Rules button at any point during the simulation. This will bring up the following window:

[image: image10.jpg]
This dialog allows the user to enter one ‘if-then-else’ statement with up to three resulting growth vectors if the if statement is true, and up to three resulting growth vectors if the statement is false. Enter the conditional to test for in the textfield for parameter1, select a comparator from the dropdown list, and enter the corresponding value in the textfield for parameter2. Each text field can accept a simple function (see next) or an integer value. For each child that is desired, you can specify integer values for theta or phi (the integers will be translated to radians), or you can enter ‘x’, ‘y’, or ‘z’ followed by a ‘+’ or a ‘-‘ sign into the theta field (leaving the phi field empty). You can specify the magnitude of the resulting child cell with a function or an integer value; the radius field is non-functional. 

There are two available cell-based functions available for use:

· ‘magnitude,’ which retrieves the current cell’s magnitude, and

· ‘nearest,’ which retrieves the magnitude of the cell closest to the current cell. Note that ‘nearest’ will return the current cell’s magnitude if no cells have been registered as the cell’s neighbor within the cell-specified radius for neighbors

Additionally, each text field that takes input allows up to one mathematical operator [+-*/] and one additional operand in the function. This means that any of the following are, for example, acceptable inputs:


magnitude+1


20/nearest


31


magnitude+nearest

A statement such as ‘magnitude+2/3’ will not be accepted and will cause the program to output an error and stop the simulation. 

Thus, to specify a rule that states:

If the current cell’s magnitude is less than 20, then grow the following children:

· 1 cell in the X+ direction with a magnitude equal to the cell’s nearest neighbor’s magnitude + 5, 
· 1 cell in the X- direction with a magnitude equal to the cell’s nearest neighbor’s magnitude + 5, and

· 1 cell in the Y- direction with a magnitude equal to the cell’s nearest neighbor’s magnitude + 3,

And otherwise, grow: 
· 1 cell in the Z+ direction with a magnitude equal to the cell’s magnitude - 11, and

· 1 cell in the Z- direction with a magnitude equal to the cell’s magnitude – 11,

The RulesWindow would be filled out as follows:

[image: image11.jpg]
This rule results in the following pattern of growth:

[image: image12.jpg]
Cancelling the Rules Window



Canceling vs. resetting: Canceling the RulesWindow reverts back to the latest set of rules. If you wish to revert entirely back to the original hardcoded rules, you must select the ‘Reset’ button on the RulesWindow. This will bring up a pop-up window asking you to confirm the reset operation. Select OK or cancel to confirm or cancel the reset operation.

[image: image13.png]
Hard-Coding Rules


The other way to specify your own rules is to write the code for them. This can be accomplished by browsing to \src\client\ in the current folder and modifying the Rules class and the Cell class to perform your desired actions. This method is only recommended for the experienced programmer, and the specifics of how to do this are beyond the scope of this document (an advanced user’s manual will be created by myself in the weeks following the end of this semester). 

Notes



Two things to note: 

· Cells will not grow in space that is already filled. Thus, the resulting pattern may be affected by this fact.

The current dynamic parsing is very computationally expensive, and it is recommended that single steps be taken and that the simulation only be run for a few such time steps.

Simplified diagram of XYZTree structure
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