HTML Test Cases Standardization

Heather Koyuk

HTML Test Cases Standardization
Heather Koyuk

CS395

November 2003
Table of Contents

11. IBM: The Company

22. Project Overview

43. Design

4Part 1: Formatting

6Part 2: Parsing

7Part 3: Reading, Writing, and Editing

7Part 4: Variables/Scripts

7Part 5: Additional Functionality

84. Implementation

8Part 1: Parsing

9Part 2: Formatting

10Part 3: Renumbering, Linking, and Scripts

11Part 4: GUI

13Part 5: Editing

145. Analysis

156. Conclusion

16Appendix A

1. IBM: The Company

The Computing- Tabulating- Recording Company (C-T-R), a conglomerate of three companies, was incorporated in New York in 1911. C-T-R began with about 1,300 employees, and manufactured and sold a wide variety of machinery, from time recorders to cheese-slicers. Thomas J. Watson, Sr. joined the company in 1914, and 10 years later, the company officially changed its name to the International Business Machines Corporation. By then, the company had established plants and sales offices in Latin America, Europe, and Asia. For the next two decades, IBM continued to expand both geographically and operationally, managing to flourish even through the Great Depression. WWII spurred IBM to produce its first large-scale computer, the Automatic Sequence Controlled Calculator (ASCC), also known as the Mark I. Completed in 1944, the Mark I, which was 50 feet long and weighed almost 5 tons, could perform additions in under a second. Four years after that, the Selective Sequence Electronic Calculator - the first computer capable of modifying stored programs - was produced, and the mainframe computer age had begun. Today, IBM remains in the forefront of the computing and IT industry, maintaining hundreds of thousands of employees across almost every corner of the globe, and producing servers, PCs, notebooks, workstations, storage systems, networking hardware, microchips, industrial and personal printers, computing accessories and parts, software solutions, and a variety of business and IT services.

IBM at Rochester, MN employs about 5,000 regular employees in more than 20 different divisions, most of them involved in the development, manufacture, and support of IBM eServer products. “The Blue Buildings” at IBM Rochester constitute the largest IBM structure under one contiguous roof, and consists of 32 buildings connected by wide corridors and wrapped around extensive courtyards. For 12 weeks last summer, I worked with the LP Install team as a “Co-op Pre-Professional Programmer” under Curt Amiot of the OS/400 Base Functions Division.

[image: image1.png]

The ‘Blue Buildings’ at Rochester, MN
2. Project Overview

For years, the Licensed Products Install Team at IBM, Rochester, Minnesota has stored its test cases (step-by-step instructions, designed to identify bugs, and useful in the testing process) on the IBM internal server, ‘VM’. Recently, however, IBM employees were informed that VM was being phased out, and they were advised to begin the process of moving their data off of the system. The LP Install Team considered various options for moving and storing their test cases. The basic requirements for the new test case system were as follows:

1. No data loss should occur during the conversion; there were a total of about 260 test cases that had been painstakingly developed over a number of years, and the information should remain intact.

2. The test cases had to be secure, as they were considered confidential material.

3. The test cases had to be easily editable, as they were updated often.

4. The test cases had to be both screen-friendly (for editing and viewing purposes) and printer-friendly (for hard copy). A similarity to the current and familiar test-case format would be preferred.

The LP Install Team also identified certain utilities they wanted, which were identified as follows:

1. VM had provided them with the ability to use variables for often-used keywords, such as the version number of the release, and such a function would be desirable in the new system.

2. The test case steps themselves numbered up through the hundreds, and VM had provided no method for renumbering these steps after they had been edited, with the result that many test cases either skipped numbers or had duplicate-numbered steps. A method for easily renumbering the steps was desired for the new system.

3. Another function suggested was the ability to copy and paste from the actual test case steps, which often specified exactly which instructions to enter into the command-line based user screen. The test case steps, as written in VM, consisted of text ‘columns’ separated by vertical bars. Because the instructions often spanned lines, copying and pasting from VM resulted in lines of text that included empty spaces and vertical bars, which would then have to be edited out. Some way to circumvent this effect was requested.

4. Finally, VM had allowed a tester to make comments from within the text editor that would not appear in the hard copy version, and it was determined that the same comments should be transferred to the new documents.

The LP Install Team decided that the test cases would be implemented in HTML and stored on CMVC, the IBM Configuration Management and Version Control product. CMVC provided many of the required functions, including security and access, and also provided ‘locking’ of documents for editing, easy search capabilities, and the ability to revert back to previous versions. The conversion to HTML was accomplished with a pre-existing, internally developed tool, which, with a little tweaking by another team member, also converted the original comments to HTML-style comments (satisfying the 4th requested function above).

While the converter did an adequate job, many errors occurred in the format of the converted test cases, and the rest was up to me – I had to check the documents for data loss and formatting errors, provide the ability to edit and update the test cases, present a method for accessing variables within the HTML (updating the test cases accordingly, for the variables had been converted into their values during the conversion), figure a way to circumvent the copy-and-paste errors, and provide a method to easily renumber the test case steps. Additional functionality was to be implemented as I saw fit, including the creation of a GUI to provide easy user access to my tools.

3. Design

Part 1: Formatting

My foremost concern was the formatting of the HTML test cases. While the HTML converter had done an adequate job, there were various formatting errors in the documents. Font sizes and font types varied, many headings contained the wrong heading tags, and some of the actual test case steps sections had completely lost their original formatting. I quickly determined that editing 260 long documents by hand would be futile, so I needed an automated method. This was complicated by the fact that, although the test cases as a whole generally followed a basic format, there was considerable variation between individual test cases. I would need a program that could accurately differentiate between the parts of the test cases, and that would insert HTML tags (including the updating of hyperlinks) as needed, to standardize the documents.

The test cases could (generally) be divided into the following sections:

Title Page

The test cases began with the words “IBM CONFIDENTIAL”. This was followed by information such as name, description, version numbers, date, author, and author’s address. Beneath this information, there might or might not be comments concerning the specifics of the test case.

Contents

The Contents section began with the word “Contents” in Heading 1 style, and was followed with linked menu items listing the contents of the test case.

Description and Diagnostics

Next was the name of the document and the short description again, and, in some cases, a standard ‘Diagnostics’ section.

Test Description and Scenario

This consisted of the headings “Test Description” and “Scenario”, followed by various subtitles and information based on the test case scenario to be performed.

Variation(s) Being Tested

This section began with the statements, “This executable test case includes the following variations: They are listed in alphabetical order without regard for the order of execution within this test case.” Then, the variation names were listed, followed by a brief description of their purpose.
Setup

This section began with the title “Setup”, and contained instructions on how to prepare the system for running the test case.

Test Starts Here, Where You Are, What You Do

The setup section was followed by a heading of “Test Starts Here”, a “Where You Are” section describing where the tester should be after completing the setup steps, and a “What You Do” heading followed by the test case steps themselves.

The steps themselves were in plain text format. They consisted of four vertical columns, and looked something like this:

1 | X | Did Insert the tape into the tape drive.

There were more separate instructions to perform than there were numbers. A ‘blank’ line served as a separator between instructions (though it could also be included within the instruction itself):

 | |

In conclusion, each section could therefore be analyzed individually to determine whether the formatting was ‘correct’, and specialized instructions could then be applied to update the formatting as necessary.
Part 2: Parsing

I decided that the parsing classes should be structured to provide functionality above and beyond the current project (as opposed to the formatting classes, which had to be highly specific to the test case format itself). The most obvious parsing consideration was that HTML contains both tags and text. Any text to be displayed on the HTML page would constitute ‘Text’; everything else was a ‘Tag’. The parsing classes, then, would be:

1. Token class – all HTML source code would be parsed into tokens.

2. Tag class - subclass of Token.

3. Text class – subclass of Token.

4. Parser class – parses the original HTML source code file into Tag and Text tokens.

6. Code class – data structure for Tokens.

Additionally, I wrote the BW (Buffered Writer) class as its own entity, to provide the correct stripping of <end> tags, which the Parser class used to mark newlines.

[image: image3.png][T e 66|

Diectons[CADosuments and setingseatverDeskspCsss |
Fio namos:

© Use thesefile:

L

HTML Parser

PSEUDOZ B

© Select allfiles.

[] Output Without Seripts
I-] Renumber Test Case Stens
I7] Update Veariation Links

[-] Format Title Page

[7] Format Contents

[-] Format Diagnostics

[7] Format Description

[-] Format Variations

[7] Format Setun

[7] Format ‘Test Sarts Here"
[-] Format Test Case Steps

Some design considerations for parsing tags vs. text were:

1. Assigning a type for Tags (more about that later).

2. A newline splitting up a tag should not interfere with the parsing of that tag, whereas a newline that split text would have to be noted (so as not to lose the original formatting).

3. HTML text has certain attributes, such as ‘bold’ or ‘heading 1’, that should be determined during the parsing phase.

Part 3: Reading, Writing, and Editing

The program would need a reader to read the original file, and a writer to write the formatted code.

A method would have to be provided for editing the HTML. There were a variety of HTML editors available, and it would have to be determined which would work best with the current project, as well as how they could be used from within CMVC.

Part 4: Variables/Scripts

The variables function would be implemented using JavaScripts. Keywords used as variables would have to be identified from the test cases on the VM system, and those keywords would have to be replaced with scripts in the HTML test cases. Additionally, a means should be provided so that the LP Install Team could easily update those variables, without having to directly access the HTML source code.

A side effect of using scripts was that the value of a javascript variable would not appear in an HTML editor such as Microsoft Word. Some method to view the entire document (without scripts) and edit it simultaneously would be useful.

Part 5: Additional Functionality

Implementing a method to automatically renumber the test case steps would be fairly simple once the parsing of the document was completed.
The text-based structure of the test case steps themselves, including the use of vertical bars to separate the columns, was primitive. Converting the text to a table-based structure would improve the overall ‘look’ of the documents, and, if implemented correctly, would solve the copy-and-paste problem as well.

Hyperlinking the variation names and descriptions in the “Variation(s)” section of the test cases to their actual use in the test case steps would be desirable.

The usage of an HTML editor such as Microsoft Word increased the size of the source code (from its original format) by a factor of up to 10. Whether or not this effect could be circumvented (or moderated) was worth looking into.

Finally, all the functionality of the final product would be much more accessible if contained within a GUI. The LP Install Team decided that the actual implementation of such a GUI would be up to my discretion, but that the classes should be configured so that another team member could easily implement the GUI at a later time if I did not get around to it.

4. Implementation

Part 1: Parsing

The implementation of the classes to parse the HTML source code proved surprisingly difficult. The following code structures were ultimately used:

Text: Text tokens contain a list of attributes, a string body (inherited from Token), and methods to check for specified attributes.

Tags: In addition to the Token body, Tags have a type assigned to them. The type of a Tag is usually determined by the first word within the ‘<’ and ‘>’ characters constituting the Tag body - for instance, “<p class=MsoNormal>” has the type “p”. In certain other cases, such as scripts and XML style tags, the type is based on the type of the Tag beginning the sequence. Beginning and ending tags (such as ‘<H1>’ and ‘</H1>’) are identified separately.
Tokens: Tokens have methods for determining the kind of Token (Tag or Text), a String ‘body’ variable to hold the actual text of the Token, and various methods for working with the tokens.

Code: This class is the data structure that holds the tokens. It contains a private vector of Tokens, and provides a variety of methods for accessing and modifying them.

Parser: This class parses HTML source code into Text and Tag tokens. It takes an HTML source code file as input, and returns a Code vector of parsed tokens. To deal with the carriage return issue, it parses text that spans lines into separate Text tokens, separated by ‘<end>’ tags. These end tags are removed (and a newline inserted) when the file is written, since they are not valid HTML tags. The <end> tags are also used in a more general manner wherever a carriage return occurs, to let the writer know where to begin a new line.

An additional issue arose concerning CMVC and carriage returns: after editing an HTML file with Microsoft Word and attempting to save the modified file to CMVC, CMVC would often not accept the file. I finally realized that the difference was dependant upon line length. If a file contained lines that numbered beyond a certain number of characters, CMVC would reject it. The parser therefore adds <end> tags after every 10 valid tags, if a newline has not yet been found.

TestCase: This class links the test case with the user. It calls the Parser to obtain a Code vector of Tokens, chunks the Code into the various test case sections outlined previously, and then calls the Format class on the various sections, depending on the user’s specifications. It then combines the sections back into one Code and uses the BW (Buffered Writer) class to output the updated source code.

Part 2: Formatting

The Format class applies a variety of section-specific methods to format the different test case sections. Unless otherwise noted, all methods in the rest of this chapter refer to Format class methods.

makeTable() changes the vertical-bar based steps section into rows and columns within a table. Counting the vertical bars to track the column count was easy, but there were a few other considerations that had to be taken into account:

1. The number of spaces between the third and fourth columns varied from test case to test case. The first character entry in the fourth column should be the first character in that column in the table, regardless of the spacing in the original text. Additional lines of text (within the same instruction) should retain their formatting, meaning that if the original text was indented a certain number of spaces, the table-based entry needed to maintain the same indentation. This was resolved by trimming the first entry in the 4th column, and counting the spaces and converting to HTML ‘ ’ tokens thereafter.

2. Related to the problem above, instructions that spanned lines needed to be inserted into the same data cell in the table. These spanned lines may include ‘blank’ lines (lines containing the required vertical bars but no other text), so the occurrence of such a line was not indicative of a new row by itself. Since new instructions (almost) always contained data within one or more of the first three columns (excepting single-word variation names, described next), and data within any of the first three columns only occurred at the beginning of a new instruction, the method had to look forward in the Code to determine - based on the inclusion of text within the first three columns - whether or not to begin a new row.

3. A common element in the steps was the variation name on a single line, followed by the steps relating to that variation. While always to the right of the two vertical bars in that line, the actual starting index of this variation name varied, and could be anywhere within what would otherwise be the third column or at the beginning of the fourth. These variation names had to be in their own data cells (the program could not automatically assume that they were part of the preceding instruction, as it would based on the method used above) and had to be placed in the fourth column, the third column being too narrow to contain them. Since no data was inserted into the first two columns on the same line, the previous methodology for determining new rows could not be used. Thus, the program counted the characters of the first text token after the vertical bars, if the first two columns did not already contain data. If the line consisted of only one word of text, and that word was between a certain number of characters, the program created a new row in the table to contain that token.

Because the tables are created only once, access to the makeTable() function is not provided through the GUI (though the method remains available in the Format class if needed).

formatTitle(), formatContents(), formatDiags(), formatDesc(), formatSetup(), formatStarts(), and formatTest() all configure various sections of the Code using highly specific methods. Text tokens that can be standardized, like section headings, are simply replaced; the rest are ignored. As an example, formatTitle() identifies the name of the document, the description, and the date, and replaces the current <title> with a ‘correct’ title containing the mentioned information. It then ignores all tokens until it reaches the first instance of Text. A correct “IBM Confidential” heading then replaces the existing heading, and the name, the description, and version numbers are retrieved, placed in the standard format, and replaced. This method similarly formats the date, author, and author’s address information. If any tokens are found after the address line, they are included but not altered.

If any method is unable to format its particular section (i.e. if specified keywords or other particular structures are missing), it returns an error message.

addLinks() adds or updates the hyperlinks around the variation names in the ‘Variation(s)’ section, and formats the section. Variation names are identified by a number of rules, extracted from the Code, put into ‘standard’ format (including the addition of heading and hyperlinking tags), and re-inserted, replacing the original text and all associated formatting tags. The variation names are then added to a vector, for later matching with the test case steps.

Part 3: Renumbering, Linking, and Scripts

renumber() renumbers the test case steps. It starts with ‘1’ and replaces any text found in the first column of the test case steps.

addLinkstoTest() (and the private helper method addLinks()) links all variation names within the test case steps back to their descriptions in the ‘Variation(s)’ section. This method checks all words in the 4th column of the test case steps section against the vector list of variations, using the following procedures:

The program ‘holds’ all linking tags while examining each Text tag for a match. If a match is found containing a corresponding and pre-existing link, that link tag is removed. All other tags are ignored. The program then divides the Text token. If any text is found before the variation name within the same token, it becomes its own Text token. This token is reinserted into the Code and recursively examined by this same method. Then, an <A href…> tag is created and inserted, the variation name is inserted as a discrete Text token, and an tag is added to the Code. Any text after the variable name (in the original Text token) then becomes its own Text token, is inserted into the Code, and is recursively examined. Finally, any lingering tags are removed from the Code. While practically impossible to ensure that all variation names are correct within the test case steps themselves, it is possible to identify variations that are unused within the steps (indicating a likely error within the test case itself). This method keeps a separate vector of variation names and removes them as they are matched in the test case steps. If any names remain in the vector at the end, a comment is left at the end of the HTML file identifying the variations that are not used.

As for scripting, the following procedures were used:

script() checks for an initial JavaScript containing possible variable declarations (var <your var here> = "<your value here>"). If no such initial script is found, one is created. If variable declarations are found, they are inserted into a vector of Scripts, a class designed to hold the name and value of a script variable. The scan() methods scan Text tokens for these script values. If the values are matched in the text, they are removed from the Code (subdividing the Text token, in much the same manner addLinksToTest() does with variation names) and replaced with a JavaScript. setVars() takes new variable declarations as input and adds the appropriate variable declaration to the initial script.

For the original scripts, a search for variables within the test cases on VM produced a list of variable names, values, and associated file names. A separate class was written that called setVars() for each test case, submitting the variable names and values appropriate to that test case as taken from the list produced above. The test cases were then scanned, and the variable values replaced with scripts.

unScript() reverses the above process, removing scripts and replacing them with the values of their variables. This provides an HTML document that can be easily edited, but the user must remember to rescan the text after editing. getVars() examines the initial script declarations and extracts the variables and their values; this is used in combination with setVars() to provide a system by which the user can update the test case variables without having to resort to the source code.

Part 4: GUI

I implemented the bulk of the GUI, with Jim Zimmerman providing the methods to directly access the user’s User Levels on CMVC. The GUI is pretty self-explanatory: it automatically loads all HTML from the user’s User Level on CMVC (where they are placed automatically when ‘checked out’ for editing), and the user selects the test case(s) he or she wants to run the program on. Checkboxes provide a variety of formatting options, and a separate “Edit Scripts” button retrieves the variable declarations from the given file (and sends the updated declarations back to the file upon submission).

New (formatted) test cases are put into a “Formatted” folder in the current directory. If a “Formatted” folder does not exist, one is created. The user then checks the formatted test case(s) back into CMVC.

When run with a call to main(), the GUI appears as the following:

[image: image4.png]TN Source cod
e
=
P —
=
Prm——
=

UseR's CLasses

Our

Parser

cace

Bw

HTML source cod

e
=

CVvecTar or Tokens 1

Taxen

Taz

TexT

P —
=
Prm——
=

[image: image5.png]

The final GUI runs from a .bat file, and instead of a “Directory” text entry box offers various choices for CMVC User Level selection. File names are automatically entered. Finally, the completed test case parser has a help button on the right that lists the specifics of each option.

Part 5: Editing

For obvious legal reasons, the HTML editor(s) used to edit the test cases had to be a product that IBM either owned, or owned the licenses for. Three products that were considered were Lotus WordPro, Microsoft Word, and WebSphere Studio Homepage Builder (an IBM product). Lotus Word Pro was quickly eliminated from the list because it inexplicably, unavoidably, and drastically altered the pages. WebSphere, as its name suggests, is primarily a webpage builder, and thus was not quite as convenient for our purposes as Microsoft Word was. It was nevertheless a viable option, and proved to be far less intrusive than MS Word. Word, as mentioned briefly above, tended to increase the size of the document by a factor of about 5 to 10. It also removed the vertical column lines in the test case steps tables, an issue that I wasn’t able to resolve except by providing the method to reformat the table to its original structure. Yet another problem with Microsoft Word was the line length issue in CMVC. If a user ran any part of his or her test case through the HTML Test Case Parser, lines would be automatically truncated - but it had to be assumed that the usage of any of the formatting methods would be an occasional occurrence rather than the standard. Most of the time, a user would simply want to edit the test case and check it back in to CMVC. By configuring the Web options in Word itself, this issue was resolved.

The size increase issue was not so easily solved. Though much of the external formatting remained the same when an HTML document was edited with Microsoft Word (as opposed to Lotus), there were many internal changes that were not so easy to change back. I tested a number of ideas, such as stripping all the tags to their ‘types’ only and removing the (incredible amount of) data that Word inserted into the front of the document - to no avail. In the end, because space was not that big of a concern, it was decided to basically ignore the size increase issue. Running the standardizing methods on the entire document reduced the size somewhat, and that would have to do.

Based on a pre-existing document that listed the steps necessary to open a document with Lotus Word Pro within CMVC, I wrote, tested, and submitted instructions to do the same with MS Word, WebSphere Studio Homepage Builder, and Internet Explorer (for viewing purposes). Because the choice of editors and viewers was a matter of personal preference, the instructions could be generalized for other programs, leaving the final decision up to each individual (though I cautioned strongly against using Lotus for editing purposes). These instructions were bundled with the instructions for configuring MS Word to avoid the line length-CMVC issue, as well as with links for downloading the programs mentioned. Although IBM owned the license for MS Word and provided downloads via its internal products site, not many people had taken advantage of this option. It would be up to the user to decide which program(s) he or she wanted to use, to download and install those programs, and to configure their settings so to be able to use those programs within CMVC.

5. Analysis

This project was designed to fulfill three general functions: the HTML parsing classes were designed to be potentially useful for any project needing to parse and work with HTML source code; the formatting classes were highly specific to the LP Install Team’s test cases, and were designed to put as many of those test cases as possible into ‘standard’ format; and the additional functionalities of renumbering, scripting, and updating the variation links were designed to be used on a semi-regular basis during the normal process of testing.

The parsing classes require some basic knowledge of those classes, such as the insertion of ‘<end>’ tags during the parsing, but given that basic knowledge, I believe that they satisfy their purpose. It was my hope, when I left IBM, that those classes would be re-used in future projects that required the parsing of HTML.

The completed formatting classes performed extremely well, given the circumstances and the level of complexity required. On the first ‘real’ test run, the formatter correctly formatted more than ¾ of the test cases. 2/3 of the remaining test cases required minor editing by hand (such as the insertion of certain keywords needed for the TestCase class to subdivide the sections) in order to be run though the formatter, and others were determined to deviate so far from the ‘standard’ that it would be practically impossible to format them anyway.

The additional functions also perform well, and I sincerely hope that they will be/have been used by the LP Install team as tools useful to their work.

To be completely honest, I did not have the time to completely fulfill all of the LP Teams’ requests. About 30 test cases had been written with use of BookMaster scripts, and those scripts did not convert ‘correctly’ to HTML (the HTML page showed the programming code). Because the fellow team member who had written those test cases was far more familiar with BookMaster than I was, and because I did not have the time to go through the test cases, compare them with their ‘correct’ versions on VM, and make the changes by hand, that task was left up to the other team member to finish. Similarly, some of the test case hyperlinks showed number addresses instead of text (such as “After following the procedures outlined in 1.1.2,…“ instead of “After following the procedures outlined in Setup,…”), and it would have been nice if I had had the time to update those.

6. Conclusion

The hardest part of this project stemmed from the difficulty in creating something concrete from the ‘fuzzy’ requirements of the LP Install Team. Basically, they knew they wanted something done with the test cases, but almost all design decisions were left up to me. This resulted in a lot of wasted time spent exploring different possibilities, before figuring out the ‘best’ way to fulfill the requirements. Although at the time I considered this the most frustrating part of the project, once it was all done, I realized that it had been a valuable and educational experience. Unlike school, where we are often told specifically what to do and how to do it, many real-life situations will be similar to this one. A customer may know only generally what he or she wants, and it will be up to the person or persons in charge of the project to determine how best to provide that product or that service to the customer.

The second lesson I learned was that the old cliché is true: If you think that a project will take a certain amount of time to complete, you can count on it taking at least three times that. Given that I spent about the first 5 weeks of my internship concentrating on other things, such as just learning the ropes (and the way back to my office!) and helping the LP Install team perform their testing and various other duties, and that during the time I actually worked on this project I had various other tasks to accomplish as well, I was still surprised (and dismayed) at the amount of time it took to complete this project. In fact, as stated earlier, there were a few tasks that I simply did not have the time to finish as I would have liked. I would have loved to have had about 2 more weeks to complete those tasks, clean up my code, and perform more testing and debugging to ensure that everything worked completely as desired. Nevertheless, I did manage to fulfill all major requirements, and the other team members expressed satisfaction concerning the project overall. In the end, I was quite pleased with the results.

Appendix A

For example purposes only, two sample ‘test cases,’ along with the source code for my project (slightly edited for confidentiality reasons), are included. PSEUDO.HTML shows a brief example of a ‘formatted’ test case. PSEUDO2.HTML is a sample test case with various formatting errors. It should be noted that neither test case is IBM Confidential information - they were constructed from a blank template I had been working on (which was later deemed unnecessary), and then edited further for this report. I encourage you to try the provided tools on PSEUDO2 to ‘see’ this project in action for yourself!

1. Run gui from a command line (‘java gui’).

2. Enter the path name to the directory containing the HTML files in the ‘Directory’ text area of the gui, for instance:

[image: image2.png]() 000

Ditecton: [Dosuments and Seting=1Deskoplc3295]

3. Enter the name of the HTML file, such as PSEUDO or PSEUDO2 (it doesn’t matter if you include the .HTML) in the File names text area:

[image: image6.png]ile names:-
© Use thesefiles:

i

HTML Parser

PSEUDOZ

ID

© Select allfiles.

4. It is important to note that the Edit Scripts button is not synchronous with the other options. When the Edit Scripts submit button is pressed, the file will be written to output, and if the submit button at the bottom of the main gui window is subsequently pressed, the file written by Edit Scripts will be overwritten. Furthermore, Edit Scripts will not work with more than one file at a time, and will not work twice in a row. You have to close the main gui window and begin again if you wish to use Edit Scripts a second time. This was a minor bug that I intended to fix, but never did not get around to.

5. All other options can be selected and submitted as many times as you please, without having to re-open the gui window. Note that the output file will be overwritten each time, however.

6. After either ‘submit’ button has been pressed, look within the same directory as the HTML file for a new folder named “formatted”. The updated HTML files will be in this folder.

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

PAGE
i
CS395

[image: image7.png][T e 66|

Diectons[CADosuments and setingseatverDeskspCsss |
Fio namos:

© Use thesefile:

L

HTML Parser

PSEUDOZ B

© Select allfiles.

[] Output Without Seripts
I-] Renumber Test Case Stens
I7] Update Veariation Links

[-] Format Title Page

[7] Format Contents

[-] Format Diagnostics

[7] Format Description

[-] Format Variations

[7] Format Setun

[7] Format ‘Test Sarts Here"
[-] Format Test Case Steps

[image: image8.png]TN Source cod
e
=
P —
=
Prm——
=

UseR's CLasses

Our

Parser

cace

Bw

HTML source cod

e
=

CVvecTar or Tokens 1

Taxen

Taz

TexT

P —
=
Prm——
=

[image: image9.png]

[image: image10.png]ile names:-
© Use thesefiles:

i

HTML Parser

PSEUDOZ

ID

© Select allfiles.

_1130136914

_1130137863

_1130138005

_1130137680

_1130059834

