CS395 - Internship in Computer Science

RFID Complete

Konstantin Khavanskii
December 8, 2006

Overview

This semester I completed my internship at RFID Complete, they are a branch of Smart Inventory Management, LLC - a local small business organization in Anchorage. They are quite versatile in their scope of activity and research ways to improve and simplify inventory management and help their clients integrate new ideas into their existing technology, providing what they refer to as Smart Inventory Management (SIM) solutions. Among several, one of their main areas of interest is the RFID technology.

RFID (Radio Frequency Identification) is a new and still currently researched way of item tracking and identification, which has not yet gained wide public popularity. It is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. An RFID tag is an object that can be attached to or incorporated into a product, animal, or person for the purpose of identification using radio waves. Chip-based RFID tags contain silicon chips and antennas. There exist two types of RFID tags: passive tags and active tags.
Passive RFID tags have no internal power supply. The minute electrical current induced in the antenna by the incoming radio frequency signal provides just enough power for the CMOS integrated circuit in the tag to power up and transmit a response. Most passive tags signal by backscattering the carrier signal from the reader. This means that the antenna has to be designed to both collect power from the incoming signal and also to transmit the outbound backscatter signal.
[image: image11.jpg]e — N — Y T T

T

T E— S— -
_ SampieReport.d (] simReportL.rdl [Design]*| StartPage | - x

00 Date | Loyou [Provew |

El

Sample Table

Types

typet
Computer
Printer
Scanner

Router

1D Type Serial Model Assigned
1 47474700 Dimension 517354318
2 47474700 Desklet 517359126
3 47474700 QuickScan 557359118
4 47474700 CICSO 516549118

100%

i

& (& Shared Data Sources
G smDatasource.rds
5 & Reports
snfeporttcd

|soluton Explorer [FResorce vie

propetes

~Ex

An Electronic Product Code RFID Tag

Active RFID tags have an internal power source used to generate the outgoing signal. Active tags are typically more reliable than passive tags due to the ability for active tags to conduct a "session" with a reader. Active tags also transmit at higher power levels than passive tags, allowing them to be more effective in challenging environments like water, metal, or at longer distances. Many active tags have practical ranges of hundreds of meters, and a battery life of up to 10 years. Active tags typically have much longer range (approximately 300 feet) and larger memories than passive tags, as well as the ability to store additional information sent by the transceiver. Department of Defense has successfully used active tags to reduce logistics costs and improve supply chain visibility.

RFID technology’s advantage is that it works in normal or harsh environments that require minimal labor involvement yet accurate, secure and real time data. RFID strives to simplify the user’s labor by automating data scanning process. It is claimed to be the next generation of data collection technology.
RFID Complete is a system integrator of RFID based solutions for inventory control and asset tracking. They provide their clients with solutions that attempt to seamlessly integrate with their business processes and systems. The solutions are designed, installed, and configured using the industries leading reader, tags, and middleware packages.
They do this by looking at the existing software and processing methods their clients use, assessing their needs, and then recommend the best-fit solution addressing an organization’s physical design and data factors (format, data flow, etc).

Below is a diagram illustrating the solution process:
[image: image2.jpg]Assess Needs

v

Recommendations.

v

Installation of Software &
Hardware

v

Data Collection Integration

v
Testing

v

Training

v
Monitor the System

Experience

My first experience in the company was mostly learning a little about RFID theory and then being deployed to assist in installation jobs at UAA, equipment testing, and events organization. One of the more interesting non-programming activities was to assemble and do the wiring in Symbol DC600 RFID portal control unit light stacks. The RFID portals are used for scanning large quantities of tagged items all together without having to scan each one individually. Images of these portals are shown below.
[image: image1.jpg]

[image: image3.jpg]

Unfortunately I could not participate in the installation itself at Elmendorf AFB due to the lack of military access clearance.

Programming project
First ideas for my programming project were connected with the Ekahau Positioning Engine (detailed information: http://www.ekahau.com/?id=4500). Ekahau is a software-based real-time location system which utilizes wireless tags. Their patented positioning technology is based on signal strength calibration allowing for indoors item tracking, provided a given floor plan of a building. EPE is capable of mapping the inside of a building, and pinpointing Ekahau Wi-Fi Tags, laptops, PDA’s and other Wi-Fi enabled devices, with floor-, room- and door-level accuracy.
Below is a screenshot of the Ekahau’s interface:

[image: image4.png]

My supervisor’s idea initially was to integrate Ekahau with database software to allow output into a database format, with possibilities of querying tag location, IP addresses, names, and any other information possibly associated with tags. The system should be flexible enough to be adjusted from one user to another, depending on their needs and business procedures. The ultimate desire is to allow a process somewhat similar to data mining, an example being, upon a change in location of a certain tag, an ability to narrow down onto that tag and bringing up all data associated with it: what the tag belongs to, when it was issued, etc. The idea behind it is to develop a way to track and manage various assets that any particular company sees as important.
This concept would require several things as initial components to be developed:

· A database structure

· A way to integrate Ekahau with the database engine, let it write to the database

· A secure web front which would access the database - read, write, modify

· A system of database triggers and stored procedures allowing more complex data operations

The program should be flexible enough to do more things than just pulling queries. It would be adjustable according to any specific desires of an organization. If the user wishes to keep track of data alterations or monitor table access, it should be possible to trigger events based on location change, tagged item scheduling conflicts, tag assignments, displaying alerts if data values grow above or drop below a certain number.
The task is to start developing a capable program and easy to use interface with this rationale in mind without being given any additional detail on its further application.
A week into design planning we discover that Ekahau is already able to store its data as a database and already integrates with Java. The Ekahau project is put on hold and I am given instruction to focus my attention on database and web programming.

My new task was to acquire and develop skills necessary for integrating SQL and ASP.NET 2.0, as well as to research and study the new versions of SQL and Microsoft Visual Studio – the 2005 versions in a manner of experimentation. All software written at the company so far was written for 2003 versions, and mine was to be the first step into 2005 interface.

My directives were as follows:

1. Learn about SQL injection and make sure you protect against this attack in any SQL based web applications you develop.

2. Look at implementing Stored Procedures, and compare to Triggers.

3. Make sure you authenticate from the web front end against SQL.

4. Finally, see if you can also use MS SQL Reporting Services to generate reports, and then try including a parameter ("parameterized reports").
Following these guidelines my second supervisor suggested a strategy for studying these aspects and we ended up designing a simple demo project which would include all of them. I divided it into four phases and gave myself 2.5 weeks for completing each one.

This demo would provide the necessary functionality and necessary pieces which could be later taken and applied to future projects.

[image: image5.jpg]Phase 1

Phase 2

Phase 3

Phase 4

Database
development

SQL Triggers

insert
update
delete

Stored procedures

‘Web Front:

program buttons
to generate events

Email
Local Popups

Remote client:

trigger a popup
from database to
this client

Phase 1

SQL Server 2005 Express was used as the database engine to develop a sample relationship filled with arbitrary equipment-related values.

An Items table would contain all items in the inventory, Person table would have a list of employees, Maintenance table would include events like items being out in the field or scheduled for maintenance, and History table – a special table which would always grow records, continuously, serving as a log of items being checked, moved, and removed from lists, for monitoring purposes.

For the Items table:

Item ID, Item name, Item type, Item serial number, Item model, Assigned (a person item is assigned to).

For the Person table:
EmployeeNo, DateOfBirth, Gender, FirstName, LastName
For the Maintenance table:

ID, NextScheduled, EstimatedTimeOut

For the History table:
RecordID, Time, ItemID, Location, PersonID
SQL Server 2005 Express installation was a free distribution from the official website, and came with a special Express edition of the Management Studio.

SQL Server Management Studio Express has an interface more difficult to configure than its year 2000 predecessor, most of the difficulty coming from the security permissions and authentication.
In the end of phase 1 the sample database looked at follows:

[image: image9.jpg]

Phase 2
During the second phase a studied features of SQL that were not covered in the university’s course curriculum: triggers and stored procedures.

A database trigger is procedural code that is automatically executed in response to certain events on a particular table in a database. Triggers can restrict access to specific data, perform logging, or audit data modifications. There are three classes of statement triggers: INSERT, UPDATE, and DELETE triggers. Statement triggers occur only once per insert, update or delete statement. Each class can be of several types. There are "BEFORE triggers" and "AFTER triggers" which identifies the time of execution of the trigger. There is also an "INSTEAD OF trigger" which is a conditional trigger that will fire instead of the triggering statement. However, "INSTEAD OF trigger" are available only for views.

There are typically three triggering EVENTS that cause trigger to 'fire':

· INSERT event (as a new record is being inserted into the database).

· UPDATE event (as a record is being changed).

· DELETE event (as a record is being deleted).
Triggers allow a good amount of “stealth”, events invisible to the user working with the table. I wrote several individual code snippets that contained trigger queries, to experiment with all three types. An example below shows a trigger which inserts a new record into a History table as soon as an insert is performed on an Items table. By default, the location field for any new item is set to “Storage”.

[image: image6.jpg]HP_TABLET_0\...ertTrigger1.sql| _Diagram -HP_...cking.Diagram* | Summary |

Set ANSI_NULLS ON
set QUOTED_IDENTIFIER ON

author: <Ronstantin Knavanskii>
Create date: <September 15, 2006>

ALTER TRIGGER [dbo] . [Inserc_Item]
ON (dbo] . [Iten]
FOR INSERT

as

BEGIN

~ SET NOCOUNT ON added to prevent excra result sets from
- interfering with SELECT statements.
SET NOCOUNT ON:

DECLARE @RecordID int, @ItemID int
SELECT @RecordID = MAX (RecordID) FROM History
SELECT @ItemID = MAX (ID) FROM Item

SELECT @RecordID = @RecordID + 1

SELECT @ItemID = @ItemID + 1

INSERT INTO History (RecordID, Time, ItemID, Location)
VALUES (@RecordID, getdate(), @ItemID, 'Storage’)

=D

Aside from triggers, SQL supports stored procedures. They are less limited than triggers and can be performed based off any change in value in any table desired.

A stored procedure is a subroutine available to applications accessing a database system. Stored procedures are physically stored in the database. Typical uses include data validation (integrated into the database) or access control mechanisms. Furthermore, stored procedures are used to centralize logic that was originally implemented in applications. Large or complex processing that might require the execution of several SQL statements is moved into stored procedures and all applications call the procedures only.
Below is one of the simplest stored procedures that I wrote, which retrives an item if its serial number is 1124457, and checks what it is and what type of supplies it needs. If the item is a printer, it validates that the supplies it needs are “toner”, and creates a view based on that decision.

[image: image7.jpg]HP_TABLET_0\....dprocedure.sql

__HP_TABLET O\.... ertTrigger 1.5l | _Diagram -HP_..cking.Diagram= | Summary |

DECLARE @ItemType VarChar(20), @Supplies VarChar (30

SELECT @ItemType
FROM Item
WEERE Serial

Type

124457

IF @ItemType = 'Printer’
szeIN
SELECT @Supplies = 'Toner'
=3
=1t
szemn
SELECT @Supplies = 'other’
=D

SELECT @ItenType, Serial, @Supplies
FROM Item
HERE Serial

124457

A stored procedure does not need an insert, update, or delete event in order to work. All it needs is a query to be based on. Stored procedures and triggers serve two different purposes.

Phase 3
Third phase of my project was the most painstaking one. It revealed a surprising obstacle which threw me four weeks back trying to troubleshoot it.

The original plan included developing the web front which would interact with the SQL database, run action queries against it, and programming buttons that would allow controlling the database as well as generating events like pop-ups or sending email messages with notifications of table data change. But the plan did not go smoothly at all.
I used ASP.NET 2.0 to create the interactive webpage and Visual C# as my programming language, as part of MS Visual Studio 2003 package.

Upon designing a webform and selecting my database as the data source, and running the webpage, I received an access error, denying permission to the table (in my case, Items table) referencing the line in code which called the DataGrid.DataBind() function.
I restructured my code in several different ways, guided by different solutions I could find on the web, in support forums, or online code samples. Nothing remedied the problem.

For example, in a following chunk of my code, the error would occur on the red line:

Public void updateTable()
{

odbcConnection1.Open();

Page.Response.Write(“odbcConnection1 status: “ + odbcConnection1.State);

DataTable myTable = new DataTable();

odbcDataAdapter.Fill(myTable);

DataGrid1.DataSource = myTable;

DataGrid1.DataBind(); // error here! }
In an attempt to troubleshoot this I stripped my program of nearly all complexity, reducing it to merely trying to display contents of a single table, and still it did not work.

Reinstalling SQL Server, ASP.NET, and Visual Studio did not solve it.
Switching to ASP.NET 1.1 and back to 2.0 did not help.

Configuring Data Source parameters and IIS parameters did not help. All data source tests were successful, but neither combination of chosen options did the trick.
Switching between TCP/IP and Named Pipes in Data Source Network Library Configuration did not work.
After several attempts on my own, my supervisors tried helping as well.

Installing all the software on two different machines also did nothing.

Rewriting the program with Visual Studio 2005 also brought no result. That ruined the theory we started forming that 2003 programs and 2005 SQL software may simply be incompatible. But doing both in 2005 and getting the same error left only one suspect: SQL 2005 Express. Since it was insisted on to work with the Express version, we continued troubleshooting.

Giving all existing SQL accounts admin permissions to my database and each individual table – did not help.

Changing authentication method from Windows to Hybrid had no positive effect and only added complications, so we had to switch back.

Rewriting the datagrid in visual basic also did not help.

Finally, by the fifth week of gathered attempts to solve the problem, one of my supervisors got the answer. We looked at the 2000 version of SQL and noticed that among system user accounts it had an “aspnet” account, which was automatically created on the 2000 version upon installation. What we did not know is that the 2005 Express version of SQL server does not create that aspnet account automatically upon install, even though the Data Source panel shows ASP.NET selected by default. Correcting that by adding “aspnet” manually to the list of accounts and giving it admin permissions, my project was put back on track.
As a result, the grid successfully showed in browser and was capable of adding items to the table, deleting rows or updating fields.

[image: image8.jpg][Cinset_] [Update | [Cetete)
Ttem Cofumn. Table
TtemID TtemID
New value New value
D Type Serial Model Assigned
1 47474700 Desklet 517359118
2 47474700 Desklet 517359118
3 47474700 Desklet 517359118
4 47474700 Desklet 517359118
5 Prinoter 47474700 Desklet 517359118
6 Scamer 47474700 Desklet 517359118
7 Computer 47474700 Desklet 517359118
H 47474700 Desklet 517359118
9 Object 47474700 Desklet 517359118
10 47474700 Desklet 517359118

Before I got to work on phase 4, my supervisor suggested to focus on the SQL Reporting Services instead and make sure I can generate reports, add parameters to the reports, and put them into PDF format.

I installed Reporting Services, and soon was able to create reports and project database contents inside them. I have never worked with Reporting Services before and to my understanding this service is a way to create nice and professional looking files, organizing them with different fonts, colors, etc. Reporting Services uses its own way to query for table data using a special Dynamic Query Designer.

For example, an expression like the following: “ =Fields!Type.Value” can display all members of the Type column in a given dataset. In case of my example, it was the Items table, as shown below.

[image: image10.jpg])L Server Management

udio Express

v Table Designer Database Disgram Tools

T_0\SQLEXPRESS (SQL Serve|
e Databsses
tenTrackng

| Database Diagrams
=2 o Digram

| Tables.

| Views

| Synonyms

| Programmability

| Security

y

Objects

ton

et

Viindow

Community Help

History *
tony =
9 RecordD X

Time. L
Type

= —t

= odel
rssoned

Person

§ Employestio
DateOfirth
Gender

Firsthame
LastName

Maintenance *

g D
NextScheduled

EstinatedTmeout

Reports were the last thing I was working on, and due to my supervisor’s leave on a business trip I am yet to demonstrate the reports. Upon approval I will be ready to do more complex things and proceed as desired. My project’s review will take place beginning of this week.
Conclusion
The semester of work at RFID Complete was very educational and it introduced to the reality and problems a programmer has to face in the real work environment. I have also acquired technical skills I was never exposed to before, gained experience in using ASP.NET, Visual C# and advanced SQL techniques.

From the productivity standpoint, I have developed a web interface that can successfully connect to an SQL or an ODBC database, which can be now used with a real life database, and now have knowledge on how to program web controls for the database, as well as database triggers and stored procedures.

Just recently I received a note that the Ekahau project might be put back in action, and that a web interface for it might be required. In this case what I did would be very fitting, with adjustments made and more functions put in.

I look forward to continuing further work in this field and hope to stay with the company.

