A Billiards Point of Sale Application

Christopher Ulmer

CS 470- Final Project Write-up

December 11, 2002

Table of Contents

Abstract

3

1. Introduction

3

2. Project Overview

3

 2.1 Data Base

3

 2.2 Prior Visualization Process

5

3. Project Requirements

5

 3.1 Functional Specifications

5

 3.2 System Specifications

6

4. System Design

6

 4.1 User Interface Design

6

 4.2 Data Structures

6

 4.3 Algorithms

7

5. Software Development Process

7

 5.1 Testing and Debugging

7

 5.2 Prototyping Challenges

8

 5.3 Work Breakdown

8

6. Results

9

 6.1 Final Program

10

 6.2 Future Steps

14

7. Summary and Conclusions

15

Appendix A: Instruction Manual

16

Appendix B: Table Definitions

18

A Billiards Point of Sale Application

Christopher Ulmer

Abstract

Most billiard halls rent out their tables, sell merchandise and refreshments, and the ones in Anchorage have membership programs. Most billiard halls use computers to handle all of their transactions, and keep track of the amount of time each table is rented. The software they use is old and outdated. Most of them do not allow the user to perform more than one task at a time. This project was designed to provide a more user-friendly, and efficient application to help manage a billiard hall. It was developed in such a way that the user has the ability to accomplish many tasks at one time.

1. Introduction
This document will explain the project I chose to do for my Software Development class. In the class, we were given the option to pick a project out of a list or design our own. I chose to pick a project that interests me, and is based on something I am familiar with. I decided to write software that may be used to operate a billiard hall.

2. Project Overview

I worked at Hot Shots/Runarack Billiards for four years in Anchorage. As a former counter-person, it was my job to run the register. The register is a computer with a cash drawer attached. I became very familiar with the software used to run the business. Over time, I discovered the software was inefficient.

The goal of this project was to produce a user-friendly application that will manage the daily operations of a billiard hall. All design decisions for this project were based on my experience at Run-A-Rack Billiards of Anchorage.

2.1 Data Base

My software gets its data from a Microsoft Access database. The following are brief descriptions of the tables:

· tblPoolTable- This is the table that gives quick access to how many players are on each table.

· tblPoolTableSettings- This is the table that stores the attributes of a pool table. The attributes include pool table rates, location on the monitor, and size on the monitor. It is good to be able to permit different rates for separate pool tables because there could be more than one type of pool table.

· tblPlayer- This table holds information on individual players such as when a particular player joined a pool table, and what they are currently being charged for.

· tblMember- This table holds the membership information. For example, it holds data about a member’s identification number, their full name, and home address.

· tblItem- This table holds item information. An item pertains to something a business sells like soda or candy. For example, this table would hold information like the identification code for a particular item; a brief description of the item; the price the customer pays for the item; and help keep track of how many items are currently in stock.

· tblTransaction- This table holds information pertaining to transactions. For example, this table holds the employee ID of the worker’s till that the transaction occurred on, and will also show when the transaction was complete.

· tblLineItem- This is the associative entity between tblItem and tblTransaction. This allows you to have a many-to-many relationship between the tables.

· tblEmployeePersonal- The table holds the personal information of the employees. For example, the employees ID number, full name, and address.

· tblEmployeeSecurityAccess- This table hold’s the employee’s security information. This table holds information like wages of the employees, and states whether the employee can have access to certain parts of the program.

· tblTill- This table holds the information about an employee’s till. This would keep track of the money tray number assigned to an employee; the amount of money in the till at the beginning of a shift; and keep track of the amount of specific purchases.

[image: image1.png]Figure 1 shows how these tables relate to each other.

Figure 1. Table Relationships. This diagram represents the relationships of the tables in my database.

Only my software opens these tables. The interface will be designed to give read, and sometimes write access to every value in these tables in a user-friendly manner. For example, I’ll have a form called “Inventory Maintenance” which will give access to tblItem for employees with the appropriate authority.

2.2 Prior Visualization Process

The existing system is a DOS-based program that is not user-friendly. You cannot navigate through the software without exiting the module you are currently in. For example, if you want to rent a table to a customer you would ask them if they are a member of the billiards club. If they are and they do not have their membership card with them, you have to exit out of the table time-keeping program (where you rent tables) and open the membership management program to locate their member number in the list. This is very time consuming. I always wondered why the programmers didn’t make the membership list available when you want to rent out a table. This problem, among others, is why I chose to redesign the software.

3. Project Requirements

The requirements for this project are to create software with a user friendly interface to run a point-of-sale register at a billiard hall. My goal is to redesign the existing software. My software will have a lot of the same features, but I will add features I believe should be available, and remove features that are not needed. My decisions will be based on the four years I used the existing software.

3.1 Functional Specifications

1. Keep track of table time. The software keeps track of the time any given table is rented and charge the customers who rented it accordingly. This is the main part of the business.

2. Change player’s active/inactive status. The software will allow the user to “pause” given players as needed. When in this inactive state, the player is not charged.

3. Set alarms. The software allows the user to set alarms on tables. The alarms can be set to go off after a given amount of time or a given amount of money (these are usually chosen by the customer).

4. Membership and employee management. The software provides a user-friendly method for maintaining a membership and employee list.

5. Mouse independent. While using a mouse is helpful, the software does not depend on it. Any function you can accomplish with the mouse you can do with the keyboard also.

6. Lists anytime. The user can look up an item or a member number at anytime while running the table-time keeping form. This solves the big problem the existing software has. You don’t have to stop what you’re doing to look up a member number.
7. Inventory maintenance. There is a simple interface for maintaining inventory and the list of items.
8. Table layout. Not all billiard halls look the same. The user is able to edit the table layout on the monitor to make it represent their room.
9. Closing the till. There will be an interface the user may use to count down their till. When this is done the till will automatically be set to its starting cash value.
3.2 System Specifications
The system was designed using Visual Basic 6.0 running on a Windows 98 SE machine with 256 MB of memory and 266 MHz processor. I know the application runs on this system therefore I’m setting the system minimum requirements to the specifications of the development machine. I have also tested the application on a 1.3 GHz Windows NT machine with 512 MB of memory and a 2.4 GHz Windows XP machine with 512 MB of memory.

4. System Design

I used Visual Basic 6.0 to create my software. I chose to use Visual Basic because of the ability to create very user-friendly interfaces. Another reason I chose it was because it can communicate easily with Microsoft Access. This is important because all of my data is stored in an Access database.

The disadvantage of using Visual Basic is that it is sometimes slow. I don’t believe I’ll have this problem because I’m not using any complicated algorithms. Another thing I’ll do to avoid this problem is load all of the forms at startup. Doing this makes them available by simply using a Show command.

4.1 User Interface Design

It was important for my design to be user-friendly. I based everything off the “Table Time Keeping” form. From there the user can navigate to all other forms. I also put keyboard instructions at the bottom of the commonly used forms. These help the user if they get stuck.

My interface also lets more than one window be opened at any one time. This gets rid of the problem that the current system has with only letting the user perform one task at a time.

4.2 Data Structures

The data structures in this project would be the underlying records in the tables. For example, the tables in the table-time keeping are represented by buttons. These are just Visual Basic supplied controls. The complexity is in the record that is associated with that table’s button. When you click on it you have immediate access to how many players are on the table; how long each of them has been there; how much each player owes; each of their names (if they were given when the table was rented); and the alarm for the table (so your accessing a timer also), etc. The same is true when doing member maintenance, the user clicks on the name of the member from a list and all of that member’s information is available to them.

I plan to use arrays to reduce the amount of code needed to run the application. For example, the table images on the monitor will be represented as an array of buttons. Doing this allows me to only program one “command_Click()” event. When a given button is pressed, the index of the button array for that button is passed to the function. I can program the “command_Click()” to react according to what the index is. Another good reason is because I don’t know how many tables the user will need. Doing it this way means I have to write the same amount of code for a user with one table as a user with 99 tables (the most my software will allow).

I also plan to use arrays at load time to store values from database tables. This is because array manipulation is faster than accessing the database tables while running. This may make the code less readable, but in tests I’ve run in other applications it reduces processing time up to 60%.
4.3 Algorithms

The only algorithms used were simple arithmetic to calculate the cost of a given pool table. An example of this is in the populateSummary() procedure in the frmTimeKeeping form.

5. Software Development Process

Due to the large size of this project, I chose to use the prototyping methodology to develop my software. I implemented an initial design for each form that was based on stubs in the code. As I developed each form, I replaced these stubs with working code. I tested each of these procedures or functions as I programmed, redesigning them as necessary.

5.1 Testing and Debugging
I spent the majority of my time on this project testing and debugging. Many of the faults in my software were due to communications with the database. I found Visual Basic to be a bit inconsistent with its supplied data controls. I would receive the error in figure 2 sometimes; however, other times I wouldn’t. This was an easy error to fix though. I just had to Refresh all my data controls before I used them. I’m still not sure why it didn’t give me the error consistently.

[image: image2.png]Figure 2. A Common Error. This is a common error message that was received during testing.

Another bug that arose in my code (and is still lurking in some places) was problems assigning focus to controls. I believe my problems with this were due to my use of multiple event callbacks. You can see an example of this in my frmPurchase form. The form works, but there are some focus issues that will be resolved with a redesign of the form before it goes into production.

I also had some problems with the KeyDown() event in some of my forms. The problem was I had KeyPreview set to True on some of the forms. This conflicted many times with the KeyDown() events I programmed for some of the controls. These were some of the more difficult errors to find because pressing a key will trigger multiple events like the ones mentioned and possibly more such as a Change(), GotFocus(), or LostFocus() events.

Since many of the bugs in my software were database related, I used the following series of events whenever I would make a significant change to my code:

· Populate the database with test data.

· Test each control to make sure it is receiving, and sending data properly.

· Use labels for testing that show where I am in the code (since this is not ready for production, I left the labels on the forms. Look in the lower right corner of the frmTimeKeeping form).

· Redesign when necessary.

5.2 Prototyping Challenges
Using prototyping presented many challenges to me. I only listed nine functional specifications for this project to make it feasible to complete. I quickly learned that the system needs more specifications before it can go into production. Realizing this, I focused on my original specifications but left stubs in my code when prototyping to accommodate the other requirements.

5.3 Work Breakdown
The pie chart in figure 3 shows what I anticipated the work breakdown for my project to be before I started. The actual breakdown uses the same ratios but I spent about 160 total

hours on the project. As anticipated, I spent most of my time writing code and testing.

[image: image3.png]
Figure 3. Original Work Breakdown. The actual work breakdown is the same but I spent about 160 hours total on this project.

6. Results

My intention when I started this project was to have an application ready for production by the end of the semester. I quickly realized that it was too large of a project for one person to do in such a short amount of time. Although I don’t believe the project is ready for production, it does satisfy all of the functional specifications stated in my proposal.

My application could be set up and run at a pool hall right now. My software will do the following:

· Accurately keep track of the elapsed time any table is rented for.

· Allow players to be “paused.”

· Let the user set alarms for each table.

· Control employee and member management.

· Allow the user to access all parts of the program without a mouse.

· Allow the user to view the membership list at any time.

· Inventory control.

· Allow the user to set up the tables the way they want to.

· Allow the till to be closed and assigned to a new employee.

6.1 Final Program
I’ve included several screen shots of my final product below. You may refer to the basic instruction manual in appendix A for more in-depth descriptions.

Figure 4 shows the table-time keeping form. This is the main form of the program. The pool tables are represented by colored command buttons. The colors can be changed in the table layout view but will always appear red when the table is active. This allows the user to take a quick glance at the monitor and see which tables are currently active.

[image: image4.png]Figure 4. Table-Time Keeping Form. This form shows the current status of each pool table.

Figure 5 shows the table layout view when table settings are being changed. The user can adjust the cost of the table as well as the color it appears as when not in use.

Figure 5. Editing Table Settings. This form shows [image: image5.png]how the table settings can be adjusted by the user.
Figure 6 shows the employee management form. The user can add employees, edit employee’s information or delete employees. This can only be accessed by employees with the proper authority.

Figure 6. Employee Management. [image: image6.png]This is where employees are added, removed or edited in the database.
Figure 7 shows the purchase form. This was one of the more difficult forms to program. It still has several faults in it but they will be resolved in the near future. This is the form used when the user wants to sell items to a customer or ring out a table (or they can do both at the same time).

[image: image7.png] Figure 7. Purchase Form. This is where employees are added, removed or edited in the database.
One of the main problems with the existing software is that you can only do one thing at a time. Figure 8 shows that you can have multiple windows opened at the same time. This will be very useful when the employee working is busy.

Figure 8. Multiple Forms. [image: image8.png]Unlike the current software, my application allows for more than one module to be opened at a time.
6.2 Future Steps
I was disappointed because I wasn’t able to spend more time on this project. The first thing I’m going to do is more debugging. I know of a few bugs that have been elusive up to this point, but I didn’t have enough time to trap all of them. There are also other faults that I would like to address to prevent type mismatches going from my forms to the database. These are not too difficult to fix, but with over a hundred pages of code I couldn’t afford to fix all of them as I went. I’m confident I can fix them given a little more time.

I planned all along to implement a user-defined control to represent the pool tables in my application but I ran out of time. The user control will probably reduce the amount of code and the complexity in my design. I plan on implementing this control before my software goes to beta testing.

I also plan on completing all additional specifications for this project and put it into production. I’ve always wanted to do this project and I would like to share it with my former employer. If it goes well at Run-A-Rack Billiards, I plan on trying to get some of the other local pool halls to do some beta testing for me. If that goes well, then I’ll either market my software myself or sell it to a software development company for them to market.

7. Summary and Conclusions

My Billiards Point of Sale Application was developed using Visual Basic 6.0 with the intention of putting it into production at Run-A-Rack Billiards in Anchorage. I used the prototyping methodology to accomplish a lot in a very limited amount of time. I was able to complete all of my functional specifications on time but more specifications arose during development. With a little more time these will be completed, and my application will be beta tested.

Overall, I really enjoyed this project. It was something I’ve wanted to do for a long time. The most challenging part of it was the limited amount of time I had. I also learned a lot about Visual Basic. Most of my experience with Visual Basic is using the VBA in Microsoft Access. I learned that there are quite a few differences between VB and VBA. One of the major differences is how you access the database. In VBA you have direct access to tables and queries. VB isn’t too difficult but it took me a while to get used to having to refresh my data controls.

This project also gave me a greater appreciation of the amount of work it takes to design and implement what seems like a simple application. I quickly learned that there is nothing simple about it.

One thing I would change if I had to do this project over would be to implement fewer specifications. There wasn’t enough time to do all of the testing and debugging a project of this size requires. Another thing that might have been helpful for this project is to make it a group project. The project is modularized in such a way that it would have been easy to do this as a group. Doing it as a group would also improve the final product. When you have to do all of the testing yourself, you never catch all of the bugs.

Appendix A: Instruction Manual
Overview

This document contains basic instructions for standard tasks in the Billiards Point of Sale Application. The user can look at the keyboard commands on the forms if they want to try other tasks. Figure 9 shows what the keyboard instructions might look like.

[image: image9.png]Figure 9. Keyboard Commands. The user may refer to the keyboard commands if they are having difficulties.

Minimum System Requirements
Windows 98

256 MB of memory

266 MHz CPU

Installation

The project is not ready for production so there is not an installer with it yet. Simply copy the project and database to your hard drive.

Starting the Program

Open the Visual Basic Project file Billiards.vbp.

Standard Tasks

Renting Out a Table (Must be in “Table Time Keeping” form)

1. Click on an available table with the mouse, or press the two-digit table number. You will see the sign-in window appear.

2. Enter the number of players for the table (1-9).

3. Press “Y” to sign in the table.

Closing a Table (Must be in “Table Time Keeping” form)

1. Click on active table with the mouse, or press the two-digit table number. You will see the table status window appear.

2. Press “T” to sign out the entire table, or the player number to sign out an individual player. The purchase form will appear with the table information already in it.

3. Continue as you would like a regular purchase.

Making a Purchase (Must be in “Table Time Keeping” form)

1. Press “Shift + Enter.” This will bring up the purchase form.

2. Press “Enter” to enter the item code of the item you wish to sell. This will put you in the quantity text box.

3. Enter the quantity you wish to sell. You will see your subtotal increase when you press enter. This will put you back into the item code text box.

4. If you don’t wish to make another purchase just press “Enter.” Keep pressing “Enter” until you get to the amount paid text box.

5. Enter an amount greater than or equal to the total.

6. Press “Y” if this information is correct. This will close the purchase.

Appendix B: Table Definitions

The following are the table definitions for the database. They give the table name followed by a list of fields. The field lists show you what the primary and/or foreign keys are as well as give their datatype and a brief description:

tblPoolTable

This is the table that gives quick access to how many players are on each table.

· tableNo; Primary Key; Integer: This is the field that stores the table number.

· playersActive; Integer: This field stores the number of active players on the table.

· playersInactive; Integer: This field stores the number of inactive players on the table.

· timeIn; General Date/Time: May be Null (table isn’t rented); This is the time the table was originally rented out.

tblPoolTableSettings

This is the table that stores a tables attributes. The attributes include table rates, location on monitor, and size on the monitor. It’s good to allow different rates for different tables because you could have more than one type of table.

· tableNo; Primary Key; Integer: This is the field that stores the table number associated with the settings.

· onePlayerRate; Currency; The rate per hour for one player to play pool on this table.

· twoPlayerRate; Currency; The rate per hour for two players to play pool on this table.

· threePlayerRate; Currency; The rate per hour for three players to play pool on this table.

· fourPlayerRate; Currency; The rate per hour for four players to play pool on this table.

· fivePlayerRate; Currency; The rate per hour for five players to play pool on this table.

· sixPlayerRate; Currency; The rate per hour for six players to play pool on this table.

· sevenPlayerRate; Currency; The rate per hour for seven players to play pool on this table.

· eightPlayerRate; Currency; The rate per hour for eight players to play pool on this table.

· ninePlayerRate; Currency; The rate per hour for nine players to play pool on this table.

· top; Long; Where the top of the table image appears on the monitor.

· left; Long; Where the left side of the table image appears on the monitor.

· width; Long; The width of the table image on the monitor.

· height; Long; The height of the table image on the monitor.

tblPlayer

This table holds the information on individual players.

· playerid; Primary Key; Integer: This field assigns a unique identifier to each player.

· tableNo; Foreign Key; Integer: Stores which table the player is currently being charged for.

· memberID; Text(7): May be Null; The player’s member ID.

· name; Text(25): May be Null; This is the name of the player.

· active; Yes/No; Player’s current status.

· openOrderNumber; Long; May be Null; This is an open order that the player is responsible for.

· openOrderCost; Currency; This is the amount of the player’s open order.
· timein; General Date/Time; This is the time the player joined the table.
· timeInactive; General Date/Time; May be Null; The most recent time the player went to an inactive status.
· timeActive; General Date/Time; The most recent time the player went to an inactive status.
· timeCost; Currency; The amount the player owes based on the amount of time they rent the table while active.
· totalCost; Currency; This is timeCost + openOrderCost.
tblMember

This table holds the membership information.

· memberID; Primary Key; Text(7); Members unique number (two letters followed by five numbers. E.g. RR15436)
· firstName; Text(20); Member’s first name.
· middleInitial; Text(1); May be Null; Member’s middle initial.
· lastName; Text(25); Member’s last name.
· nickname; Text(15); May be Null; Member’s nickname.
· address1; Text(25); Member’s street address or box.
· address2; Text(25); May be Null; Used if address1 isn’t long enough or you need more than one line.
· city; Text(20); Member’s city.
· state; Text(15); Member’s state.
· zipCode; Text(12); Member’s zip code.
· phone1; Text(10); May be Null; Member’s phone number.
· phone2; Text(10); May be Null; Member’s secondary phone number.
· gender; Text(1); Member’s gender. May be M, F, or U.
· dateOfBirth; Short Date; Member’s birthday.
· dateOfPurchase; Short Date; Date the member purchased their membership.
· expiration; Short Date; The date their membership expires.
· memberAccount; Currency; In-store credit available to this member.
· totalHours; Double; The number of hours this member has rented tables since getting their membership.
· rewardHours; Double; This is the number of hours this member has towards their next promotion (free hour of pool, etc.).
· empid; Foreign Key; Text(5); The employee ID of the employee who entered the data.
tblItem

This table holds item information. An item is something you sell, like soda, candy, etc.

· itemID; Primary Key; Text(15); The unique code that identifies the item. This is the code entered by the user when they want to sell the item at the register.
· itemDescription; Text(30); This is a brief description of the item.
· itemGroup; Text(15); This is the group that the item belongs to (food, beverages, equipment, etc.).
· unitCost; Currency; This is the price the business pays for an item.
· itemsPerUnit; Long; The number of items in a unit.
· itemPrice; Currency; This is the price the customer pays for the item.
· quantityInStock; Long; This is the number of items currently in stock. If this is negative, the program doesn’t decrement the value. This is so you do not have to keep track of your stock if you don’t want to.
tblTransaction

This table holds transaction information.

· transactionID; Primary Key; Long; The unique code that identifies each transaction.
· empid; Foreign Key; Text(5); The employee ID of the employee whose till the transaction occurred on.
· totalCost; Currency; This is the total cost of the transaction.
· transactionDate; General Date/Time; The time when the transaction was complete.
tblLineItem

This is the associative entity between tblItem and tblTransaction. This allows you to have a many-to-many relationship between the tables.

· lineItemID; Primary Key; Long; The unique code that identifies each lineItem.
· itemID; Foreign Key; Text(15); The unique code that identifies the item. This is the code entered by the user when they want to sell the item at the register.
· quantity; Long; The quantity of items of this type.
· linePrice; Currency; The price of this lineItem.
· transactionID; Foreign Key; Long; The transaction that this lineItem belongs to.
tblEmployeePersonal

This table holds the employee’s personal information.

· empid; Primary Key; Text(5); Employee’s unique number.
· firstName; Text(20); Employee’s first name.
· middleInitial; Text(1); May be Null; Employee’s middle initial.
· lastName; Text(25); Employee’s last name.
· address1; Text(25); Employee’s street address or box.
· address2; Text(25); May be Null; Used if address1 isn’t long enough or you need more than one line.
· city; Text(20); Employee’s city.
· state; Text(15); Employee’s state.
· zipCode; Text(12); Employee’s zip code.
· phone1; Text(10); May be Null; Employee’s phone number.
· phone2; Text(10); May be Null; Employee’s secondary phone number.
· gender; Text(1); Employee’s gender. May be M, F, or U.
· dateOfBirth; Short Date; Employee’s birthday.
· dateOfHire; Short Date; Date the employee was hired.
· dateOfTermination; Short Date; The date the employee stopped working for the company
· ssn; Text(9); The employee’s social security number.

· payRate; Currency; Employee’s wages.
· lastRaise; Short Date; The date the employee last received a raise.
· password; Text(10); This employee’s password. This gives them access to other parts of the program depending on their settings in tblEmployeeSecurityAccess.
tblEmployeeSecurityAccess

This table holds the employee’s security information.

· empid; Primary Key; Text(5); Employee’s unique number.
· payRate; Currency; Employee’s wages.
· lastRaise; Short Date; The date the employee last received a raise.
· openAllCashDrawers; Yes/No; States whether this employee is allowed to open other employee’s cash drawers.
· changeInventory; Yes/No; States whether this employee is allowed to edit items and adjust inventory.
· memberManagement; Yes/No; States whether this employee is allowed to make changes to member’s records.
· employeeManagement; Yes/No; States whether this employee is allowed to edit, remove or add employee profiles.
· tableManagement; Yes/No; States whether this employee is allowed to enter the table layout form.
· settings; Yes/No; States whether an employee is allowed to change the program settings.
tblTill

This table holds the information about an employees till.

· empid; Primary Key; Text(5); An employee can have no more than one till assigned to them. This uniquely identifies the till.
· tray; Integer; The tray is what holds the money in the register. This is the tray number assigned to the employee.
· startingCash; Currency; This is the amount of money that is in the till at the beginning of a shift.
· currentCash; Currency; This is the amount of cash currently in the register.
· currentCredit; Currency; This is the total amount of all credit card purchases.
· currentCheck; Currency; This is the total amount of all check purchases.
· currentAccount; Currency; This is the total amount of all member account purchases.
1
2

