The Collections Keeper

Brian J. Mullen

CS 470 –Project Write-up

April 19, 2004

Table of Contents

1Abstract

1. Introduction
1
2. Project Overview
1
2.1 Web Applications Development
1

2.2 Excisting Collections Management Systems
2

2.3 Existing Database Management Systems
3
3. Project Requirements
4
3.1 Non-Functional Requirements
4
3.2 Functional Requirements
5

3.3 Additional Requirements
5
3.2 System Specifications
5
4. System Design
5
4.1 Data Structures
6
4.2 System Architecture
6
4.3 Foreign Keys
7
5. Software Development Process
8
5.1 Testing and Debugging
8
5.2 Prototyping Challenges
9
6. Results
9
6.1 Final Program
10
6.2 Foreign Key Data
10

6.3 Creating a Table
12

6.4 Modifying a Table
13

6.5 Excel Spreadsheets
15

6.6 SQL Bookmarks
16
6.8 Future Steps
19
7. Summary and Conclusions
19
Appendix A: User Manual
20
Appendix B: Code Listing
31

Collections Keeper
Brian J. Mullen
 TC Abstract Abstract

Collections Keeper was developed in an attempt to provide the freedom to manage a database of collections by providing database management tools in the form on-line database management system. Collections Keeper overcomes the limiting aspect of an offline collections management system by moving the database and all collections management features into a simple on-line interface.

1. Introduction
Our lives are made up of collections. Whether it is the more mundane, such as a phone book or daily planner, or the more classically thought of, like comic books and sports cards, collections of data are everywhere in our lives. But how do we keep these collections organized and available wherever we are? That is what done with Collections Keeper.

2. Project Overview

There are collection management systems. There are on-line database management systems. But there are no applications out there that blend the functionality of both a collection management system and an on-line database management system.

This project developed a web application that merges a collections management system with a database management system allowing a user to have complete control over the database and the data within. More then just focusing on a single type of collection Collections Keeper gives a user the freedom to manage multiple collections under a single database. It provides the user with the ability to add, delete and modify the information in a collection as well as provides the user with the freedom to perform the same actions on the tables that make up collections themselves.

2.1 Web Applications Development

One of the focuses of Collections Keeper was to provide an application that is cross-platform capable. With that in mind PHP was used as the language to develop Collections Keeper. Utilized by nearly 15 million domains PHP is by far the most popular web development language in which applications developed in the language can be independent of any type of specific platform with its closest competitor being only perl.

So why not develop in perl? Collections Keeper is targeted at the lesser-experienced user. Below, in figure 1, you can see PHP provides a simple download, double-click and install functionality for Windows users that is ideal for the target audience of Collections Keeper. Set up with PHP is easy and configuration is easy making this the perfect web application language for users. Collections Keeper, like any other application, will have to be installed and set-up. As such it needs to be made as easy as possible.

	[image: image1.jpg]

	Figure 1: PHP on Microsoft windows XP, simply double-click to install

A database is also needed to be used for Collections Keeper. MySQL provides the same simple install and run solution as PHP on Windows as well as being cross platform capable. Like PHP there is an alternative to MySQL by the name of postgres. However installation and utilization of postgres can often be cumbersome and confusing. This is certainly not what Collections Keeper is striving for.

2.2 Existing Collections Management Systems

Existing Collections Management Systems like Collection Master pictured in figure 2 generally allow you to set up your collections however you see fit. This functionality is needed to have a powerful collections management system. The problem with them is that generally they provide limited support for presenting the data on the web. Those that do support presenting collections data on the web do so by exporting existing collections data to html. This creates static web pages that you can then put on your site.

	[image: image2.jpg]

	Figure 2: Collection Master collections management system from Novato Technology

The problem with static web pages for collections is that collections are constantly in a state of being updated, added to and deleted from. Any time a change is made to a collection the web pages then have to be exported again and updated on the web server. By putting the ability to manipulate collections on-line this creates a dynamic environment where the web pages no longer need to be static but generated on the fly.

2.3 Existing Database Management Systems

As mentioned earlier MySQL is ideal for Collections Keeper to use as a database. Simply having a database, however, does not mean one can organize and set-up the database. For this you need a database management system and for MySQL many are available.

	[image: image3.jpg]

	Figure 3: phpMyAdmin database interface

Database management systems for MySQL, like phpMyAdmin shown above in figure 3, focus on all of MySQL and all the databases within it. While this may be ideal for managing every aspect of MySQL it is outside of the scope of what is needed for managing collections. Additionally database management systems assume the user has a working knowledge of SQL and is an experienced user. This makes it hard for the more common users who don’t have this knowledge. Collections Keeper attempts to appease both the less and more experienced users by handling all the SQL generation for the former and providing the ability to run SQL on the fly for the latter.

One thing of note here is that Collections Keeper isn’t attempting to be a be-all, end-all solution for MySQL management but will focus on the management of the database specific to maintaining collections.

3. Project Requirements

Outlined here are the requirements set forth for Collections Keeper. These were chosen specifically in an attempt to adhere to the “open-source, open-platform” nature of both MySQL and PHP as well as satisfy user requirements when using collections.

3.1 Non-Functional Requirements

1. All PHP scripts written for Collections Keeper must be platform independent.

2. All PHP scripts written for Collections Keeper must be compatible with the “big 4” internet browsers, i.e. Microsoft Internet explorer ver. 4.0 and greater, Netscape Browser ver. 4.0 and greater, Mozilla ver. 1.5 and greater and Opera Web Browser ver. 7.0 and greater.

3. Collections Keeper must work with the default install of both PHP and MySQL.

4. Any external libraries used that are not a part of the default install of both PHP and MySQL should be presented as optional parameters that extend the functionality of Collections Keeper while not preventing the core Collections Keeper from working.

3.2 Functional Requirements

1. There must be a user management system to control access to the collections data.

2. Users must have the ability to create new collections.

3. Users must have the ability to add, delete and modify data in their collections.

4. Users must have the ability to add, delete and modify columns in their collections.

5. Users must have the ability to view the data in any collection.

3.3 Additional Requirements

User Specificity

Collections Keeper is targeted at the user who knows minimal SQL and PHP having only the knowledge of setting up MySQL and PHP for their web server.

Collections Keeper is targeted at the user who has access to a web server running PHP and MySQL.

3.3 System Specifications

Collections Keeper must run on a system running PHP ver. 4.2 or greater with MySQL ver. 4.0 or greater that has web hosting capabilities set up. The directory containing Collections Keeper must be made available so that users can run Collections Keeper over the web. The user must also have access to a username and password on the MySQL database that has Insert/Delete/Drop privileges.

4. System Design

Given the event-based structure of a web interface Collections Keeper is event driven and designed. While PHP does support objects the primary object in Collections Keeper is the table, which is inherent in MySQL.

4.1 Data Structures

Collections Keeper makes a distinction between primary tables, which are tables that have entries owned by a registered user, and sub-tables, whose entries are not owned by any single user.

In order to maintain which tables are user created and which are part of the core tables needed by Collections Keeper, Collections Keeper maintains two tables, one to hold primary tables and one to hold sub-tables. To speed up access and ease coding the information within these two tables is stored in a two dimensional associative array which contains the name of the tables, the primary key of each of the tables as well as the sort order for when the tables are to be accessed. This is shown in figure 4.

	[image: image4.jpg]

	Figure 4: Two dimensional associative array storing table information

4.2 System Architecture

Shown below in figure 5 is the basic execution of each page starting with the inclusion of a header then performing the scripting the page is responsible for and ending with a footer.

	[image: image5.jpg]

	Figure 5: Script execution

The header is included at the start of every page and will perform the basic actions needed for each page including setting up the page layout. By utilizing a header and footer the layout of the whole website layout can be changed with minimal effort simply by modifying the header and footer.

Each page works autonomously with the only exception being the script for editing data within each collection. When the script for viewing data is run it presents the user with the option for editing the data. Foreign keys are presented to the user as the value that the key represents in the foreign table, not the actual foreign key, and are hyperlinked to a script for editing data in sub-tables. The user is also presented with the option to edit the data for the primary table and will be passed to a different script for editing data in primary tables.

4.3 Foreign Keys

One of the ways that I made the output of data within the tables for foreign keys more understandable was the utilization of MySQL’s key table shown in figure 6.

	
[image: image6]

	Figure 6: MySQL key table

MySQL allows the user to name all keys except the primary key. For foreign keys the name used was the table the key was from. This greatly simplified filling in foreign key data, as show in section 6.1. I created a function that, when passed the table name and primary key, would return the first non-key field name. I could then utilize the foreign key in the data table with the key table to create hyperlinks to the data.
5. Software Development Process

This project was developed in stages starting with the initial database design and PHP interface. Initially all that could be done was manually inputting SQL into a text box and running it on the database with the results shown in a table format. This prototyping methodology allowed me to build on a solid foundation as I added features and tested them. Given the event oriented and autonomous nature of the scripts themselves this was ideal.

5.1 Testing and Debugging

I spent roughly twenty percent of my development time testing the product. As new features were added in they were tested to ensure that they operated as expected. These tests were initially done with just Internet Explorer but were later done with all the browsers listed in the requirements.

Additional testing was done by giving a novice PHP user the program and having him install it. This pointed out a problem when switching from a lower version of PHP to the higher version specified in the requirements. This was an issue due to the incremental development of Collections Keeper over two and a half years where there were major changes in PHP.

The final method of testing was utilizing a beta phase where the product was extensively used for my software engineering project. This opportunity to test the product in actual use was a big help as it pointed out many bugs that did not seem to appear in my own contrived cases.

One such bug that was found was the inclusion of symbols in a column name. While setting up a collection to track test cases for software engineering I included a question mark in the column name. This was a case I had never tested for in my sample database.

Another bug that came around was an issue of paging. As the collection of data for software engineering grew it extended beyond the first page. It was noticed that one entry was missing from the database when selecting a page number but was there when going to the page utilizing the “next>>” button. When I had initially tested paging I loaded the database with 100 entries. The problem was that all the entries contained the same data and it as not possible to make a distinction between entries. This led to the problem that I did not see that a single entry was being missed.

5.2 Prototyping Challenges

As the prototype grew so did my reliance on older code within Collections Keeper. Collections Keeper initially started two and a half years ago as a database project for my database class. Due to my initial skills not being what they are today there were quite a few areas in the older code that were poorly commented. There were also other areas of the code that ended up being stripped out because of poor logic or added functionality in PHP.

One big problem, as noted in the “Testing and Debugging” section, was in bringing the code up-to-date with the newest stable version of PHP, the version specified in the requirements. Due to security considerations variables passed through a “get” or “post” could no longer be directly accessed and had to be grabbed from the associative arrays $_GET and $_POST respectively. This resulted in me having to go through all pages and ensure that all variables were either extracted from the arrays or that the data was directly grabbed from the arrays to be used. Fortunately this was caught before all testing was complete.

6. Results

6.1 Final Program

Several screenshots of the final program are shown below. Figure 7 is a table displaying a search on one of the collections.
	
[image: image7]

	Figure 7: Final Product

6.2 Foreign Key Data

Figures 8 and 9 show how foreign keys are handled. When a foreign key is found in the table a hyperlink, as show in figure 8, creates a link to the entry in the table, show in figure 9.

	
[image: image8]

	Figure 8: Foreign keys as hyperlinked data

	
[image: image9]

	Figure 9: Foreign key entry in it’s table

This entry can be edited from there assuming the user is an administrator or has allowed privileged users to edit foreign key data.

The foreign key data as shown in figure 10 also will populate a drop down while entering data. This makes it simple to enter foreign key data into the collections.

	
[image: image10]

	Figure 10: Foreign key data in a drop down for creating an entry into a collection

Figure 11 shows the usage of images within Collections Keeper. The administrator has the option to enable files and specify the extensions that may be uploaded. If the administrator as enabled files, allows for .jpg and/or .png files and allows thumbnails when these files are uploaded they will automatically be created into thumbnails. These thumbnails will link to the image. If the file is not an image or the administrator has not allowed thumbnails only the file name will be shown and will hyperlink to the file. This is shown in the user manual in appendix a.
	
[image: image11]

	Figure 11: Thumbnails to images in the collections

6.3 Creating a Table

As show in figure 12 users have full control when creating a collection. Users can add other tables as foreign keys as well as specify a name and type to each column. Users can also create a sort order for the data.

	
[image: image12]

	Figure 12: Creating a table

6.4 Modifying a Table

Due to extensive options when modifying a table a great deal of work was put into this area. Figure 13 shows how a user can change what foreign keys are in the table.

	
[image: image13]

	Figure 13: Modifying the foreign keys in a table

Figure 14 shown below provides many options for changing existing columns. The user can change the type of column, the name of the column and the sort order of the column.

	
[image: image14]

	Figure 14: Modifying a table

The user may also add columns to the table. Modifying foreign keys, table data and adding columns are all done in a single script.

	
[image: image15]

	Figure 15: Adding columns to an existing table

Lastly the user may change the table name. Collections Keeper will go through all key tables of all tables and change the name of the table anywhere the table is a foreign key. This is shown in figure 16.

	
[image: image16]

	Figure 16: Changing a table name

6.5 Excel Spreadsheets

Using an external module named “Spreadsheet::WriteExcel” created by Xavier Noguer and John McNamara, which is included in the code, the user can export table data to an Excel spreadsheet as show in figure 17.

	
[image: image17]

	Figure 17: Exporting to Excel spreadsheet

6.6 SQL Bookmarks

Collections Keeper cannot provide for all cases that an advanced user may need. SQL bookmarks allow advanced users to create their own SQL query, save the query and set permission levels on the query so that other users may run the bookmark.

In the “Manage/View” page administrators are presented with a text box for entering in a query. If the user chooses to use this they will be presented with the option to save the query as a bookmark. This is shown in figure 18.

	
[image: image18]

	Figure 18: Book marking a query

Shown in figure 19 are the options an administrator has when managing SQL bookmarks. They may create new bookmarks or edit existing bookmarks.

	
[image: image19]

	Figure 19: Managing SQL bookmarks

6.7 Batch Entry

While using Collections Keeper I often found that I would want to enter several entries at once. To accomplish this I created the batch entry. This ended up being harder then I had imagined because of the stipulations in requirements about being cross-browser compliant. Mozilla did not like that each of the forms had the same name. I hadn’t considered this an issue when testing with Internet Explorer simply because the data from each of the forms is placed in a double array. There was also a problem in that Mozilla did not like inputs to be the same name even when under a different form. To combat this I append each form and input name with a number and strip it off when processing the data.

Figure 20 shows how a user can choose the collection he wants to add to as well as the number of entries he wants to add.

	
[image: image20]

	Figure 20: Setting up a batch entry

In figure 21 only the first entry is shown yet the page is actually comprised of 10 entries. In the first entry the user can enter data that is common to all entries and apply that across all of them.

	
[image: image21]

	Figure 21: Batch entry

6.8 Future Steps

There is still quite a bit than be done to extend the ease of use for Collections Keeper. One of the features that would be nice is to add is a JavaScript calendar that would pop up for date entries. Another feature would be creating an SQL parser. As Collections Keeper stands now when SQL is manually input the user may not edit this data. Adding an SQL parser to capture “Select” statements would allow Collections Keeper the ability to present the user with the option to edit the data. This would be great for advanced users who regularly run SQL.
7. Summary and Conclusions

The experience I gained while working on this project was phenomenal. When starting this project two and half years ago I knew very little about PHP and MySQL. As I worked on this project off and on my knowledge grew as well as my skills as a programmer. Given the extended development period I also learned about software maintenance because I had to modify quite a bit of my older code.
With Collections Keeper I was able to combine the best features of a database management system with a collections management system into a simple to use package.
Appendix A: User Manual
Table of Contents:

1. What is Collections Keeper?

2. Data types and Collections Keeper

3. Collections Keeper specific terminology

4. User Management

5. Files and Images in Collections Keeper

6. SQL bookmarks

7. Grabbing spreadsheets

8. Installing Collections Keeper

9. Security and Collections Keeper Sessions

10. Security and Files in Collections Keeper

11. Referential Integrity and Collections Keeper

12. Tutorial 1: Setting up a simple collection, the address book

13. Tutorial 2: The daily planner

14. FAQ

15. Future possibilities

What is Collections Keeper?

Our lives are made up of collections. Whether it is the more mundane, such as a phone book or daily planner, or the more classically thought of collections, like comic books and sports cards, collections of data are everywhere in our lives.

Collections Keeper is a way to keep all your collections in order on-line using PHP and MySQL. If you want only you to see your collections you can do that. If you want others to see your collections or add their own you can do that. Add collections, delete collections, modify collections, just about anything you can do with a collection you can do with Collections Keeper.

Now there are a few caveats. Collections Keeper isn’t intended as a full database management system for MySQL. For that I would recommend phpMyAdmin. Collections Keeper is focused more on managing data. Of course to do that you have to be able to have full control over your tables and for the most part Collections Keeper allows you do that.

Collections Keeper is targeted more at the users with little or no PHP and MySQL experience and essentially allows you to maintain multiple collections under a single database.

Data types and Collections Keeper

If you are one of the more experienced users of MySQL you will notice a distinctive lack in control of your data types. To simplify control of the database Collections Keeper only uses six data types of a set length. This makes displaying and handling data markedly easier.

Collections Keeper type MySQL type

	Text
	varchar(255)

	Memo
	text

	Integer
	int

	Decimal
	float

	Date
	date

	Year
	year

Collections Keeper specific terminology

Collections Keeper is focused on presenting data in a specific table. If you want to see what is in your comic collection, have Collections Keeper show you. If you want to see what is in your phone book, have Collections Keeper show you. The problem with this idea is that as databases grow larger and larger focus within the database shifts from any single table within the database to many tables. While Collections Keeper can handle this situation that is not the primary focus or intended database type for Collections Keeper.

To make a distinction between a primary table, where the focus of the collection is, and other tables Collections Keeper uses the following terminology:

Collection, Primary Table: The focus of the collection. An entry into this type of table has a specific owner. As an example for comics this table would contain things like the name or number.

Sub-collection, sub-table: Any other table that corresponds to the collection. An entry into this type of table generally does not have a specific owner. For comics this would be things like the condition or publisher.

Table: An actual table, meaning that options that call for a table could be either a primary table or a sub-table.

Because of the focus on a "Collection" when a table is initially created there is not an option to include primary tables as foreign keys, only sub-tables. However, if this is needed it can be added in by simply modifying the table after creating it.

There are two types of text fields that Collections Keeper uses. When creating a new table or modifying an existing one you are presented with the field types “Text (Any letters, single line)” and “Memo (Any letters, multiple lines)”. The Text field type is limited to 255 characters. The Memo field type has no limit on the numbers of characters.

When creating or editing an entry into a collection Text is presented on a single line and will be truncated if the line goes over 255 characters. Memo is presented in a scrollable box allowing as many characters as is needed.

User Management

Collections Keeper has a full user management system. There are three types of users in Collections Keeper, guest, privileged and admin. If anonymous registration is enabled then by default when a new user is created they are considered privileged until their account expires. Only an admin can make a user fully privileged. You can set the expiration on new accounts or choose to ignore expiration, in which case all registered users who are actually guests will be privileged.

Guest, Anonymous User: Someone who has not logged in, whose account has expired or whose account is not active.

Privileged: Someone who has logged in and is not a guest.

Admin: Administrator.

Collections Keeper provides a wide variety of options when it comes to user management.

Guests:
Admins can allow or disallow guests to view primary tables.
Admins can allow or disallow anonymous registration.

Privileged User:
Admins can allow or disallow privileged users to edit/delete from sub-tables.
Privileged users can create/edit/delete collection table entries under their own login only.
Privileged users can view other users entries in a collection table.

Admin:
Full rights to modify, create, add, and edit everything.

Files and Images in Collections Keeper

Collections Keeper includes a special table called file used for uploading and storing files. In its current incarnation Collections Keeper stores files uploaded in the file table. If the GD library is enabled in PHP with "use gd" and "use file" options enabled in the Collections Keeper Settings when a jpeg or png is uploaded a thumbnail is created and it is the thumbnail that is shown when viewing data from a table that will contain a file.

	[image: image22.jpg]
	[image: image23.jpg]

	With GD enabled
	With GD disabled

See the php website about enabling the GD library.

Under the Collections Keeper settings you can enable and disable file uploads, set a maximum file size, enable and disable the GD library use for Collections Keeper and set a maximum thumbnail size. If the GD library is not enabled for you in PHP you will not be allowed to enable it in Collections Keeper.

SQL bookmarks

Collections Keeper provides a means for more advanced users to get more out of Collections Keeper then the simple interface provided. This is done through SQL bookmarks. When choosing “Manage/View” for managing a collection admin users are presented with a text box for manually entering in SQL. Collections Keeper will take that SQL and run it on the MySQL database. If data is returned it is presented in a table format.

Assuming the SQL runs properly you will be presented with an option to bookmark the query. This will take you to the “Edit SQL” page where you can name the query and set a permission level for it. You may let all users run the bookmark, just admin and privileged users or just admin users.

Additionally under the “SQL Bookmarks” link in the navigation panel you may add bookmarks or edit the bookmarks you have saved.

Grabbing spreadsheets

When a query is run, whether by Collections Keeper creating the query or via SQL, you will be presented with the option to grab that page or all pages as an excel spreadsheet. Due to the cross platform nature of Collections Keeper you cannot open the spreadsheet inline with your browser but are forced to download it.

Installing Collections Keeper

Collections Keeper assumes that warnings about notices have been turned off.

Open the collParams.inc.php file with any text editor. Under the "database info" section at the top enter the database name, location, user and password and save the file.

Location will be "localhost" if MySQL is running locally where the files are run or will be a url if it is not localhost. Contact your provider for more information on the location of the MySQL database.

Open the create_database.php file with any text editor. Near the top is where login is verified. There will be a line that says: exit();

Put // in front of that to comment it out so PHP ignores it.

Upload all contents of the Collections Keeper directory to where you want it to be.

Navigate your browser to:
http://your host/Collections Keeper directory/create_database.php

This will setup Collections Keeper at the database specified under the collParams.inc.php.

Navigate your browser to:
http://your host/Collections Keeper directory/index.php

Login the default admin user with the name admin and the password admin.

Click on the "Set Collections Keeper Settings" link.

Set any settings as you see fit and save the changes.

At this point it is highly recommended you delete create_database.php as now that the database is set up you should not need it anymore. If you opt to not do this you at least need to modify create_database.php and remove the // you put in front of exit() and re-upload the file.

It is also recommended you set the permissions on the collParams.inc.php file to read only so other users may not modify the settings.
You should also go to the "Manage Users" link and change the user name and password for the default admin user. You can also delete the two default privileged users installed with collections keeper.

That should be everything.

Security and Collections Keeper Sessions

Under the Collections Keeper settings you have the option to either use PHP sessions for tracking user login or to not use PHP sessions. It is highly recommended that you do use PHP sessions. It is, in general, more secure. If it is enabled then the session information is used for user login. If it is disabled then the IP of the user is used for user login.

AOL, though other ISPs will occasionally do this too, tends to change the IP addresses of their users mid-browsing. If sessions are disabled then Collections Keeper can become a bit of a hassle for AOL users as they will need to re-login each time their IP address changes. If sessions are being used then this is irrelevant.

Additionally, when using PHP sessions it allows multiple users from behind a proxy or a router. When just using the IP each user behind the proxy or router generally will have the same IP address as the proxy or router. If just the IP is used then all users will appear to Collections Keeper as the same user. Conversely if PHP sessions are used then each user will be recognized by their session id allowing multiple users from the same IP.

Credit cards, social security numbers and other personal information you do not want viewed by the outside world should never be entered in or be a part of the Collections Keepers collections. While Collections Keeper is secure within the bounds of a default install of PHP (utilizing nothing else) you are still liable for any information contained within the database.

One of the key things to remember is that with Collections Keeper all information is sent unencrypted. This means that someone snooping on your network could grab your admin name and password.

Security and Files in Collections Keeper

When setting up Collections Keeper you can add or subtract from the file extensions that are allowed in Collections Keeper for the file table. It is highly recommended you never allow users to upload files with the following extensions: php, php3, php4, pl, asp or vbs. These files could be malicious and there is a chance that they will run after being uploaded to the Collections Keeper database. This list is not intended to all-inclusive. It is your responsibility to know what uploaded scripts and any extensions they use can do to your server or your host’s server.

It is also recommended you do not allow files with extensions common to Microsoft Office. Two examples include doc and xls but there are more. While these may pose no immediate threat to the server like the extensions mentioned above they may pose a threat to users who try and view the files. This is because, for the most part, Microsoft Office files contain the ability to have macros embedded in them. If a user were to download and view a document that had a macro embedded in it they open their system up. This is something that should be done for the concern of your users.

Referential Integrity and Collections Keeper

Referential integrity is when a database has data that points to actual data. For instance if you have a comic table and it has a column for condition that points to the sub-table condition and the sub-table condition exists and there is a valid entry for that condition then you have referential integrity. Collections Keeper provides many options in an attempt to maintain referential integrity. These options are on by default and presented throughout Collections Keeper as you make changes.

At any point you can unselect the options that help maintain referential integrity throughout the database though it is not recommended as it will result in missing data within the tables.

Collections Keeper attempts to maintain referential integrity in the following manner:

View/Manage Users:
When removing a user Collections Keeper will go through all tables that contain the removed user and remove all entries for that user.

Modify a table: Rename Table
When renaming a table Collections Keeper will go through all tables that contain the renamed table as a foreign key and update the key to the new name.

Delete a table:
When deleting a table Collections Keeper will go through all tables that contain the removed table and remove the column for that table.

The primary issue with Collections Keeper and referential integrity is that Collections Keeper doesn’t provide support for cascading deletes. What are cascading deletes? Say you have comics in the comic table that contain the condition "MINT" from the condition table. If cascading deletes were supported then you would not be able to delete "MINT" while there are entries that point to it. This is an issue you must be aware of especially when editing and deleting from a sub-table where there may be other entries that point to the sub-table data.

If you are more familiar with MySQL then you know that as of MySQL ver. 4.0 it now supports referential integrity when using InnoDB tables. So why not just utilize MySQL’s referential integrity? Collections Keeper attempts to generate all SQL making it simpler for the user. If the referential integrity inherent to MySQL were to be used the complexity of the SQL that Collections Keeper would have to generate would be outside the scope of the project as it stands.

Tutorial 1: Setting up a simple collection, the address book.

1. Navigate to:

· http://your host/Collections Keeper directory/index.php

2. Log in as an admin.

3. Click on "Create a new table".

. We are at the most going to need 10 fields for this collection so select 10 from the drop down. If, in the future, you decide to keep this collection you can add and modify the table from what we are doing here.

A. In the "Collection Name" box type in: address book

B. Ensure that "Collection Table" is selected.

C. Under "Which sub-tables would you like to include?" set everything to "No". If you have allowed files into the database choose "Yes" under "file". Maybe you want to have a picture of the person.

D. In the first text box type in: name

D. Set the field type to "Text" if it is not already.

E. In the second text box type in: phone number

E. Set the field type to "Text" if it is not already.

F. In the third text box type in: address 1

F. Set the field type to "Text" if it is not already.

G. In the fourth text box type in: address 2

G. Set the field type to "Text" if it is not already.

H. In the fifth text box type in: city

H. Set the field type to "Text" if it is not already.

I. In the sixth text box type in: state

I. Set the field type to "Text" if it is not already.

J. In the seventh text box type in: zip

J. Set the field type to "Text" if it is not already.

K. In the eighth text box type in: birthday

K. Set the field type to "Date".

L. In the ninth text box type in: comments

L. Set the field type to "Memo".

M. Click submit at the bottom of the page.

N. You should get a note saying "address_book" has been added.

O. But why the underscore? To ensure no problems with the database any spaces are replaced with underscores.

A. Navigate back to:

· http://your host/Collections Keeper directory/index.php

· Now we need to put in at least one person into the collection.

· Click on "Create a collection entry".

. Select "address_book" from the drop down.

A. Ensure that "Owner" is you.

B. Under name put in "Joe Schmoe"

C. Under phone put in "555-1212"

D. Leave the rest blank.

E. Click submit at the bottom of the page.

A. Navigate back to:

· http://your host/Collections Keeper directory/index.php

· Click "Manage/View Collections".

· In the "For the following collections" drop down choose "address_book" and click submit.

Here you will see the data you put into the collection earlier. You can edit this data or delete the entry all together. If you are going on to tutorial 2 I would recommend not deleting the entry as it is used later on.

Go on to Tutorial 2 to see what we will do with this data.

Tutorial 2: The daily planner

Ensure that you have completed tutorial 1 as this tutorial will use the table and data from tutorial 1.

1. Navigate to:

· http://your host/Collections Keeper directory/index.php

2. Login as an admin if you are not already.

3. Click on "Create a new table".

. Select 10 from the drop down.

A. In the "Collection Name" box put in: daily planner

A. Ensure that Collection Table is selected.

B. Under "Which sub-tables would you like to include?" click "No" for everything.

C. In the first text box type in: time

C. Set the field type to "Text" if it is not already.

D. In the second text box type in: date

D. Set the field type to "Date".

E. In the third text box type in: subject

E. Set the field type to "Text" if it is not already.

F. In the fourth text box type in: comments

F. Set the field type to "Memo".

G. Click submit at the bottom of the page.

A. But what about who the appointment is with? The phone book table would be perfect here but because of the "Collections" focus of Collections Keeper you can not add a primary table as a foreign key at the creation time of the table. This is just a minor precautionary measure that is easily circumvented.

A. Navigate back to:

· http://your host/Collections Keeper directory/index.php

· Click on "Modify a table".

. Under "Select a table:" select daily_planner.

A. Under "Select an action:" select "Add/Edit/Delete columns".

B. Click submit.

C. In the "Include the following primary tables" click Yes under address_book.

D. Let us also change the name of the field time to: appt time

E. Click on the button "Change name to ->" in the row with time as the field. This will cause a new text box to appear. In the new text box type: appt time

F. While we are at it let us remove comments. In the "Change type to:" drop down choose "Remove this field".

G. Click submit at the bottom of the page.

A. Navigate back to:

· http://your host/Collections Keeper directory/index.php

· Click on "Create a collection entry"

. Select "daily_planner" from the drop down.

A. In appt_time put in: 1 pm

B. In date put in: 2004-04-02

C. In subject put in: Dentist appointment

D. Now here is where things get interesting. When Collections Keeper finds a field that is a foreign key or a key in another table it goes to that table and creates a drop down filled with the first field it finds that is not a key. In our case the first field it finds is name. Select "Joe Schmoe" from the drop down.

E. Click submit.

A. Navigate back to:

· http://your host/Collections Keeper directory/index.php

· Click "Manage/View Collections".

. Under "For the following collections:" select "daily_planner".

A. Click submit.

In the resulting table you will see the data that you input for "daily_planner". Under the address_book field you will see the name "Joe Schmoe" is a hyperlink. If you click that hyperlink a new table will appear with the information for the entry in the address_book.

Here you can also see why it might be dangerous to put in primary tables as sub-tables in a database. If you have the option "allow privileged users to add/edit/delete from sub-tables" checked in your Collections Keeper settings a privileged user can now edit this data that may not belong to him. Sure he only can do this through a roundabout way, but he still can. This is because "address_book" is now a sub-table to "daily_planner". So while it may be a primary table it is also a sub-table.

Frequently Asked Questions

Question 1: When looking at data in an excel spread sometimes there are weird codes or symbols in the middle of text.

Answer 1: To ensure that the html generated by Collections Keeper is not corrupted by data from the database all symbols that may be a problem are replaced with their equivalent html code. For example because a “<” could cause a problem with your browser understanding the html it is replaced with “<” when put into the database. The browser understands this code and replaces it with the correct code when displaying it. The excel spreadsheets show the data exactly how it is in the database. Unfortunately there is currently no way round this.

Future possibilities

1. Javascript calendar for date fields

2. Have php build a pdf of what the database looks like

3. Have an SQL parser so the user can edit when he submits user generated SQL rather then just the collections keeper SQL.

Appendix B: Code Listing

Main directory:
batch_entry.php

Used for batch entry into a collection.

collParams.inc.php

Holds the parameters for Collections Keeper.

create_coll_entry.php

Used for creating an entry into a collection.

create_coll_table.php

Used for creating a new table.

create_database.php

Creates the default database according to the location, user name and password specified in collParams.inc.php.

create_xls

When passed a query in post will transform that into an Excel spreadsheet utilizing the files in the “write_excel” folder.

dbConnect.inc.php

Connects to the database specified in collParams.inc.php.

delete_coll_table.php

Used for deleting a table from Collections Keeper.

edit_coll_entry.php

Used for editing entries in a collection.

edit_sub_table.php

Used for editing the data in sub-tables.

footer.inc.php

Holds the closing table information for the layout of the pages.

functions.inc.php

Contains all the functions that Collections Keeper uses. Since almost all of these functions are common across multiple pages they are all included on a single page.

get_file.php

Used for grabbing a file from the database. Also used for showing thumbnails when they are enabled.

header.inc.php
Used for page layout and including functions.inc.php as well as grabbing the user permissions.

index.php
User guide to using Collections Keeper.

login.php

Used for logging in and out of Collections Keeper.

modify_coll_table.php

Script for modify tables.

new_user.php

Used for creating a new user.

set_collParams.php

Used for setting all the parameters in Collections Keeper and creating the collParams.inc.php page.

SQL_bookmarks.php

Used for creating and managing SQL bookmarks.

view_coll_entries.php

Used for displaying table data for a collection.

view_users.php

Used for user management by an administrator.

icon.jpg

Collections Keeper icon

spacer.jpg

White single pixel strip for ensuring navigation cell is correct size.

images directory

Contains the images in the user guide.

write_excel directory

Contains the scripts for create_xls.php

PAGE
30

[image: image24.jpg][image: image25.jpg][image: image26.jpg][image: image27.jpg][image: image28.jpg][image: image29.jpg][image: image30.png][image: image31.jpg][image: image32.png][image: image33.png][image: image34.png][image: image35.png][image: image36.png][image: image37.png][image: image38.png][image: image39.png][image: image40.png][image: image41.png][image: image42.png][image: image43.png]