Appointment Application

Appointment Application
Belinda Whitman
CS 470- Final Project Write-up

April 26, 2004
Table of Contents

2Table of Contents

3Abstract

31. Introduction

32. Project Overview

32.1 Data Files

42.2 Existing Process

53. Project Requirements

53.2 System Specifications

64. System Design

64.1 User Interface Design

64.2 Data Structures

74.3 Algorithms

75. Software Development Process

75.1 Testing and Debugging

85.2 Prototyping Challenges

85.3 Work Breakdown

96. Results

106.1 Final Program

146.2 Future Steps

147. Summary and Conclusions

15Appendix A: Instruction Manual

15Minimum System Requirements

15Installation

15Starting the Program

15Standard Tasks

16Appendix B: Table Definitions

Abstract

The medical profession has becoming a fast paced, high volume industry. Tracking and maintenance of patient or caregiver schedules is central to providing quality care. Efficient software to help maintain schedules and allow the company to find necessary contact or patient information could increase productivity. I have created an application for this purpose.
1. Introduction

This document will explain the project I chose to do for CS 470 – Applied Software Development. I chose this project based on a request by Marc Whitman, an employee for a local outpatient therapy clinic in Anchorage. Marc and I discussed alternatives for him to view daily appointments and find information on patients quickly and efficiently. The clinic currently tracks appointment with a paper appointment book. Contact information for patients, physicians, and employees is kept elsewhere.
2. Project Overview

Currently the clinic contains seven therapists; six are occupational therapists and one is a physical therapist. Patients are seen within a 9 hour day in 45 minute blocks. There is a possibility of overlap within a given 45 minute block of time. The clinic does accept appointments on off hours with prior approval of the therapist. A therapist needs to have access to daily appointments in order to prepare for the visit in advance.

The goal of this project is to automate the system presently in place for appointments. Currently, appointments are taken and added to an appointment book in pencil. It would benefit the receptionist to enter the patient, physician, and appointment information at one time and be able to query that information at a later date.
2.1 Data Files
The application obtains its data from a Microsoft Access database. There are five tables within this database. The following is brief description of each table:

· Employee – This table contains information on each therapist at the clinic. This information will be useful to the receptionist needs quick access to a therapist’s home phone or address.

· Doctor – This table contains contact information for each physician that refers to the clinic. The therapist must know which doctor referred the patient for which appointment.
· Patient – The patient table contains contact information on each patient. It also has a field for which side of the body is injured and the reason for the appointment. This was requested by the client so they have prior knowledge of the injury and are able to put together the proper materials for the visit.
· Appointment – This table contains the information for each appointment. The date, time, patient id, referring doctor id, and therapist id.
· Login – This table contains the login usernames and passwords for each user account.
Figure 1 shows how these tables relate to each other.

[image: image1]Figure 1. Table Relationships. This diagram represents the relationships of the tables in my database.

2.2 Existing Process
As explained previously, the clinic uses a paper back appointment book. At times this book is hard to read and there is no means for finding the contact information of the patient or referring physician without looking it up in another file or the phone book.
3. Project Requirements

The requirements for this project were discussed in plain English. The client gave a vague description of a similar product used in the past, but a specific name was not supplied. The lack of a concrete example can lead to frequent changes in the future, therefore the client was guaranteed certain features and other features will be considered on a “as time allows” basis.

3.1 Functional Specifications

Some specific requirements outlined by the client include:

1. A log in screen for each user to ensure sensitive information was not accessible to everyone who accessed the computer.

2. A large print clock and date field at the top of the screen.

3. A drop down or dynamic calendar allowing the therapist to switch schedules days with ease.

4. 15 minute intervals between each hour marker.

5. A button allowing the user to add a new appointment/patient.

6. A list of each therapist and their daily patient load. The therapist would like the ability to click on a patient and have the information display in a separate window.

7. Tables that contain information on therapists, doctors, patient history, and patient diagnosis.

8. A forms loading system where the therapist could click a button and the appropriate patient and doctor information would be filled in accordingly.

9. Some form of daily backup for each database in the system to prevent data loss.
3.2 System Specifications

To design the application I used Windows XP running Visual Basic 6.0 and Microsoft Office Access XP. I converted the database to Microsoft Access 97 format and bundled it with the software. The software was tested on a Dell with a Pentium processor, Windows 95, and Microsoft Access 97 installed. These are the current specifications for this application. The software is capable of running on a higher OS, but to run on Microsoft Access higher than 97 requires the database to be converted and stored back in the appropriate folder with the appropriate naming convention.
4. System Design

I used Visual Basic 6.0 to create the application. I chose Visual Basic 6.0 because of the legacy equipment found at the clinic. Windows 98 running Microsoft Office 97 is commonality amongst all the computers found at the clinic and each has limited memory and space. Therefore, I did not want to force the client to install the .Net framework to run the software.
4.1 User Interface Design

My intent with the design was to make it easy to navigate the appointment screen, to view appointments without having to click, and to be able to find information on patients, employees, or physicians quickly. The client has minimal if no experience with Microsoft Access and SQL queries. Therefore my intent was to not incorporate any SQL type commands or to allow them to “surf” the database. Rather they can click and view the information.
I did not want to give them too many buttons to click. I wanted the user to be able to click a cell in the daily calendar to add an appointment. This way it would be similar to adding the appointment in a paper appointment book by locating the time you want to enter the appointment, locate the therapist and add the appointment. To accomplish this task I had to create an individual form for each action performed. There was only one instance I was able to share a form for many functions and that was to search the database a specific table.
4.2 Data Structures

The data structures for this application are basic. They consist of five relational tables in the Appointment database. Please refer to Figure 1 for the entity-relationship diagram. For a data dictionary on each table in the database please refer to Appendix B. Each table is accessed through the ActiveX Data Object (ADO) control that Visual Basic 6.0 provides. I chose not to bind each field of the form to the tables. Binding the fields meant that the field would only access that specific table. Binding also meant that when the form loaded the first record in the recordset would show. This would be fine for a search screen, but it confused the client on the add and edit screens. Instead I manually access each table through code. I establish a connection string to each table in the database through the ADO and then query the database by accessing the specific fields in the tables needed. This created a considerable amount of code, but also gave me the flexibility I needed across all the forms. I directly access tables on the main form to save the amount of times I access each table and limit the number of connection strings.
4.3 Algorithms

The algorithm I used was to encrypt the passwords so that if anyone directly accessed the database (the login table specifically) the passwords would have some encryption. The encryption did not need to be extensive. I chose to xor the passwords by accepting the password, xor it, and store the encrypted password in the table. Then when a user enters their password I xor it and compare it to the database. If the two match then the user is allowed to enter. As a key for the xor encryption I used the EmployeeID that way the key changes for every person.
5. Software Development Process

Since my client was vague in the initial description of the application and with the various requirements laid out in the interviewing process, I decided to implement the application using prototyping methodology. This allowed me to create forms based on the specifications given. Then bring those prototypes back to the client with each form created. This allowed them to have an approval process on each window and gave them a good idea of what my progress was on the development phase. However this was an incredibly time consuming process since I had to get approval on virtually every form created.
5.1 Testing and Debugging

Debugging has proven to be a very tedious and time consuming process. I spent a considerable amount of time trying to figure out how to fix various errors that would arise. For instance, all my calls to access the tables of the database were accomplished using a with block. The error found in figure 2 shows the error most common to the use of the with block. It took me a considerable amount of time to decipher this error. To resolve the error, I found you must refresh the table before entering the with block. Another common error was in syntax and in the “do until” loops. I would use a “do until” to cycle through the recordset to find the appropriate data. A major problem I found with the Visual Basic 6.0 environment is that it does not save when you run the code. So several times I would forget to save the code before running it. I would then encounter a continuous loop and have to kill the entire VB editor and lose all my changes. Something as simple as “.movenext” not in the correct place would kill the entire program and I would have to start over.
[image: image2.png]Figure 2. Visual Basic runtime error. A common runtime error when working with database queries.

I used many hours to research various errors with runtime and syntax. Since I stepped into this project with little knowledge of Visual Basic 6.0 language, I had to learn the syntax and use of various method calls. This has limited some of the functionality of the code. Plenty of hours were spent on the web looking for ways to perform certain tasks. The process is still ongoing as I try to enhance certain qualities of the application that I believe would make it easier to use.

Other testing involved usability testing to ensure the product as it was produced was easy to use and in a logical layout. The client was kind enough to sit through these various testing sessions and try entering, deleting and manipulating data in the various tables. Since this was developed for someone other than me, I had to make sure that the idea that I had would fit the people who would actually use the software.
5.2 Prototyping Challenges

The prototyping challenges I faced were the changes to design I encountered. Several times I had a bug that I was unable to fix. At that point I would have to take the design back to the client to ensure that any changes to the design were approved and give them the option to pick how I should work around the issue. This was very time consuming. However, the product was for them to use, so input was necessary when changes were to occur. Another challenge was the fact that one person may request a certain change. Another person at the clinic may not like the change and requests a different change. This was difficult to work through and required certain skills on my part to table both ideas and work through to a potential solution incorporating both ideas. Prototyping with a real client may mean discussing code and how to implement code, but it also involves group dynamics and how to manage a client as well.

5.3 Work Breakdown

The pie chart found in figure 3 was the anticipated break down of work for the semester. I had originally anticipated spending 150 hours on this project. Due to my lack of knowledge on Visual Basic and the various troubles I encountered with first attempting to bind the data to each field the hours spent increased to 180 hours. The break down percentage wise is much the same. I spent about 70 hours in testing and 50 hours in implantation.
[image: image3.png]
Figure 3. Original Work Breakdown. The actual work breakdown is the same but I spent about 180 hours total on this project.

6. Results

I had intended to have a completely finished product ready for distribution to the client. I have completed all the major screens. There are some little features I have left to implement and I was unable to get their “desirable” list accomplished. A solid search screen is needed so the user can search each table for desired information and a backup system needs to be in place. The code has been written, but the syntax is incorrect or permissions on the database are incorrect. Testing and debugging are ongoing with this problem. A help screen would be useful as well.
The application contains the functionality listed below:

· Accurately stores an appointment with the correct patient, doctor, and therapist.

· Accurately displays only the name on the screen. If you double click the appointment in the cell it displays the information regarding that appointment.

· The user has the ability to edit each appointment.

· The user has the ability to add new patients, employees, and doctors to those specific tables.

· The user has the ability to delete new patients, employees and doctors from the specific tables.

· When a user deletes an employee, the login account is deleted as well.

· The user has the ability to edit each record in the patient, doctor, or employee table.

· The user can change the dates of the calendar and view the appointments from the past or in the future.

· The user is able to login and passwords are encrypted for security

· Only the receptionist or a current user that has logged in is able to create an account for a new user.

6.1 Final Program

For a description of the application, I have included several screen shots of the final product. Figure 4 shows the main screen of the application.
[image: image4.png]
Figure 4. Main appointment screen. The user is able to double click cells to add patients.

Figure 5 is the add appointment screen shown after the user double clicks a cell.
[image: image5.png]
Figure 5. Add appointment screen. The user is able to search the patient and doctor table to add a new appointment.
Figure 6 is the edit appointment screen. This screen appears if the user double clicks an existing appointment. The user is able to edit any part of the appointment through this screen. This information is updated in the Appointment table of the database and will reflect on the main screen.

[image: image6.png]
Figure 6. Edit Appointment. This screen allows the user to edit or delete the appointment.
Figure 7, 8, and 9 are activated from the edit menu on the main form. The user is able to edit any information in the employee (Figure 7), the doctor (Figure 8), or the patient (Figure 9), recordsets. They search for the appropriate record via the button next to the last name field.
[image: image7.png]
Figure 7. Edit employee record. The user is able to edit employee records via this window.
[image: image8.png]
Figure 8. Edit Physician. Allows the user to edit the doctor table in the database.

[image: image9.png]
Figure 9. Edit Patient Table. Allows the user to edit the patient table in the database
Each add window is very close to the design of the edit window. It has the same fields, but does not have a search button or a delete button. The user is only allowed to add a new record in the add window. I did not include a screenshot of the add tables since they are very close in appearance to the edit windows.
The create new login account window is for creating a new login account and doubles as a change password window for those already logged on. If the user creates a new login, they do so when the login window opens. They must click the “Create New Account” button on the main window. , they must be in the Employee table before they are allowed to add themselves to the login table. Figure 10 is the window that opens after the user clicks the button to create an account. Once logged on the user can access the change password window by going to the edit menu and then to Change Password. A window similar to figure 10 appears (with the Change Password caption) and the user is then able to enter their username and new password.
[image: image10.png]
Figure 10. Create new login account. Allows the user create a new login account.

6.2 Future Steps

I had very high expectations for this project. I thought I would have the all my goals and requirements implemented before the end of the semester. Due to the large credit load I took this semester and the research I had to complete before beginning the project took longer than anticipated. However, I am happy to have a working application.
I plan to continue with testing and implementing many of the small features remaining. I would like to get a stable back up system in place even if it is as simplistic as backing up to a file on the hard drive. Anything that would keep a backup copy of the database until we can get a more sophisticated system in place. I would also like to implement a nice help menu that would allow the user to answer any questions they may have regarding use of the software.
7. Summary and Conclusions

I have successfully implemented an appointment application using Visual Basic 6.0 for a local outpatient clinic in Anchorage. I used the prototyping methodology to accomplish this task. I was able to complete all of my functional specifications on time but more specifications arose during development. With a little more time these will be completed, and my application will be ready for beta testing in the environment in which it was developed for.

I learned a great deal about myself during this project. I learned how to program in Visual Basic 6.0 and how to access various tables in a database using VB6. I also learned a considerable amount of how to deal with a client. The pros and cons of prototyping at its finest! I appreciate the time it takes from the very beginning an application through to the final product. This is valuable in the fact that I now know that development is a process of organizing thoughts, writing proposals on those ideas, and creating prototypes. Then, revisit your designs many times over before finding the design that you the programmer can develop and that the client can use.
Appendix A: Instruction Manual

Minimum System Requirements

Microsoft Access 97 or higher

Windows 95, 98, 2000 or XP

Pentium

32 MB RAM

20 MB Hard Drive Space

Installation

The project is not fully ready for an installer, but I have packaged the application so there is only one icon to click and it will run on most any computer with the minimum system requirements. Please unzip the files and place the Appointment Application folder in the C:\ drive. The path then should be C:\Appointment Application. The icon titled Appointment can be placed anywhere on the computer.
Starting the Program

Double click the icon Appointment.
Standard Tasks

Adding an appointment
1. Double click a cell in the table.

2. Search for a referring physician by clicking the button (...). When the search window opens, double click on a record in the set. Perform this step for the patient as well and then click ok.

3. The name will populate to appropriate time slot.
Editing an appointment.
1. Double click an existing appointment in the calendar.
2. Change any information in this window. Use the search buttons (...) to change doctors or patients.

3. Click ok and the changes should reflect on the calendar.
To edit the patient, employee, or doctor tables.
1. Choose the appropriate table from the edit menu on the main form.

2. Search the tables using the (...) button.

3. Once all the fields populate with data, make changes and press ok. Or press the Delete button to delete the record.

To add a patient, employee, or doctor to the appropriate tables.
1. Choose the appropriate table from the add menu on the main form.
2. Search the tables using the (...) button.
3. Once all the fields have been filled in, click the “Add” button.
Appendix B: Table Definitions
The following are the table definitions for the database. They give the table name followed by a list of fields. The field lists show you what the primary and/or foreign keys are as well as give their datatype and a brief description. The datatypes were assigned by Microsoft Access.
Patient
The patient table contains all the data for each patient.

· PatientID; Primary Key; AutoNumber: This field stores the patient id value. This is an autonumber created by Microsoft Access, but that could change in the future if the client decides to incorporate the use of patient id’s on their records.
· LastName; Text: Stores the last name of each patient.

· FirstName; Text: Stores the first name of each patient.

· MiddleInitial; Text: Stores the middle initial of each patient (can be null).

· Address; Text: Stores the address of the patient.

· City; Text: Stores the city for the patient.

· State; Text: Stores the state for the patient.

· Zip; Text: Stores the zip code for the patient.

· HomePhone; Text: Stores the patients home telephone number.

· Diagnosis; Text: This stores a brief description of the diagnosis for the patient.

· InjuredSide; Text: Stores the side of the body that is affected. Values are Left, Right, or Left/Right.

Employee
This table stores the employee information.
· EmployeeID; Primary Key; AutoNumber: An auto-generated number to keep track of the employees.

· FirstName; Text; the employee’s first name is stored in this field.
· MiddleInitial; Text; the employee’s middle initial (can be null).
· LastName; Text; the employee’s last name is stored in this field.

· Occupation; Text; since there is a difference between the therapists titles, the database keeps track of this information.

· Address; Text; The employee’s address.

· City; Text; Employee’s resident city.

· State; Text; The employee’s state.

· Zip; Text; The zip code for the employee.

· HomePhone; Text; The employee’s home telephone number.

· DataHired; Date; The start date of each employee.

· Notes; Text; Any other important information on the employee can be stored here.
Doctor
This table contains the information for each doctor entered.
· DoctorID; Primary Key; AutoNumber: An auto-generated number to separate doctors with similar names.
· LastName; Text: The last name of the referring doctor.

· FirstName; Text: The first name of the referring doctor.
· Address; Text: The office address of the doctor.

· City; Text: The city the office resides in.

· State; Text: The state the office resides in.

· Zip; Text: The mailing zip code.
· OfficePhone; Text: The office telephone number.
· Fax; Text: The office fax number.
Login
This table holds the login credentials for the employees.

· EmployeeID; Primary Key/Foreign Key; Number; The employee id from the employee table.
· UserName; Text: The employee’s first name.
· PassWord; Text: The password given by the employee and encrypted.
Appointment
The appointment table is the heart of all other tables. It contains a one to many relationship with the Patient, Employee, and Doctor tables.
· PatientID; Primary Key/Foreign Key; Number: The primary key from the patient table.
· EmployeeID; Primary Key/Foreign Key; Number: The primary key from the employee table.
· DoctorID; Foreign Key: The primary key from the doctor table.
· Time; Primary Key; Text; this is a primary key because several patients can have an appointment on the same day.
· Date; Primary Key; Date/Time: The date of the appointment.

1
6

[image: image11.png]