
Using Model Checking with Symbolic Execution for the Verification of Data-Dependent Properties of MPI-Based Parallel Scientific Software
Mentee: Anastasia Mironova
University of Alaska Anchorage, Anchorage, Alaska
anastasia.mironova@gmail.com
Mentors: Lori A. Clarke, Stephen Siegel, George Avrunin

Laboratory for Advanced Software Engineering Research

University of Massachusetts at Amherst

ABSTRACT
The objective of this project was to investigate the application of model checking to the formal verification of properties of MPI-based parallel scientific programs. By extending a model checker with symbolic execution capabilities, we were able to verify that a parallel version of the system computed the same values as a sequential version. We experimentally evaluated this approach for two small numerical programs. Although more work needs to be done, this project served as a proof of concept.
1. introduction

Problems in the field of scientific computation often require extensive parallelization of the involved algorithms in order to execute in reasonable time. Hence, the majority of code for solving such problems is written for parallel architectures. Programming for such architectures is challenging, making it even harder to write “correct” code.
Programs written for parallel architectures are not only hard to create; they are significantly harder to test. Parallelism adds complexity and introduces problems, such as deadlock and race conditions. Problems like these can be extremely difficult to detect. The non-deterministic decisions made by the runtime system can make testing even less effective as it can be difficult to reproduce the same sequence of execution. Hence, it becomes important to have other means for testing and debugging parallel code.

In this work we are investigating the application of model checking to code written for parallel architectures using a high-level language with a library of message passing routines. In particular, we are considering two common non-trivial mathematical routines for computing the product of two square matrices and Gauss-Jordan elimination. The original code is written in C using the popular Message-Passing Interface (MPI) library. The two specific properties we are concerned with here are freedom from deadlock and computational correctness and the particular model checker we are using to carry out the verification step is the SPIN Model Checker.
This work is intended to contribute to the current knowledge in this area by expanding on several aspects. Model checking techniques have been applied to concurrent systems in the past but their focus has been primarily on patterns of communication rather than the correctness of the computation. Past studies exhibit limited experience with MPI and, hence, this work is a contribution in this direction as well.
2. Approach
The choice of using model checking directs us to using the following approach for carrying out the formal verification of the properties considered.
We construct abstract models of the original C code and use a model checker to explore all possible executions. A separate model is built for each particular property in order to maximize the degree of optimization. The models are carefully constructed to accurately represent all components of the original code relevant to the specific property being checked and abstract away most of the irrelevant details.

Once the models are constructed to represent the relevant components of the original code, we define a set of conditions that describe the property we are checking and make modifications to the models to contain the corresponding checks for these conditions. For checking freedom from deadlock there is no need to explicitly include the description of this property in the code because this check is performed automatically in SPIN. The situation is, however, less trivial for specifying the correctness of the computation property.
The property of computational correctness is hard to express in general, so we must first define what it is that we believe to be correct. Since in this work we are concerned with correctness of the parallel code, we base our definition of computational correctness on the assumption that the sequential version of the same algorithm is correct. Hence, in order to check correctness of computation of the parallel algorithm we must verify that the parallel version of the algorithm is equivalent to sequential, that is for every possible execution and for all possible values of the input data both versions of the algorithm produce equivalent symbolic expressions. As it turns out, the specific set of assertions that must be evaluated by the model checker to verify this property varies depending on the computational example.
3. The Message PAssing Interface

The Message Passing Interface (MPI) is a widely used implementation of the message passing programming paradigm. The MPI Standard emerged as a result of an attempt to define syntax and semantics of a standard core of library routines that would be useful to a wide range of programmers and could be easily implemented on a wide range of architectures. This standard is being developed by an organization called the MPI Forum which formed in 1993 and originally included representatives from vendors of parallel systems, industrial users, industrial and national research laboratories, and universities. Ever since its birth, the MPI Standard has enjoyed strong support and popularity among a great variety of user categories. One of the main reasons for this is that it defined the user interface and functionality for a wide range of message-passing capabilities. Because of its great popularity we have selected to consider examples that use this particular standard.
One of the most advantageous capabilities of MPI is support for collective operations. Let us consider a simple example of a C program that uses the MPI library that makes use of two such operations: MPI_Bcast and MPI_Reduce.
double *A, *B; //two initial matrices
double *C; //intermediate result
double *D; //final result, D = AB
/* Read matrix dimensions from file*/

if(rank == 0){

 fscanf(inFile, "%d\n", &n);

 nElts = n*n;

}

/* Broadcast the dimension and the total number
 of elements in each matrix*/

MPI_Bcast(&nElts, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

/* Allocate memory for A, B, and C*/

A, B, C = (double *) malloc(nElts * sizeof(double));

/* Root process allocates memory for D and reads
 entries of A and B from file */

if (rank==0){

 D = (double *) malloc(nElts * sizeof(double));

 for(i=0; i<nElts; i++) {

 if (i%n==0) fscanf(inFile, "\n");

 fscanf(inFile, "%lf", &(A, B[i]));

 }

}

/* Broadcast entries of A and B */

MPI_Bcast(A, nElts, MPI_DOUBLE, 0, MPI_COMM_WORLD);

MPI_Bcast(B, nElts, MPI_DOUBLE, 0, MPI_COMM_WORLD);

/* Computation */

for (i = 0; i<n; i++)

 for (j=0; j<n; j++) {

 C[(i*n)+j]=0;

 if (((i*n)+j)%size==rank)
for (k = 0; k < n; k++)
 C[(i*n)+j] +=
 (double)A[(i*n)+k] * (double)B[(k*n)+j];

 }

}

/* Reduce entries in C to the corresponding entries D
 on the root process*/

for (i = 0; i<nElts; i++)
 MPI_Reduce(&C[i], &D[i], 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
Figure 1. Example MPI Program. Multiplication of two square matrices.

Figure 1 illustrates the pseudo-code of the first computational example we are considering. The purpose of this program is to perform multiplication on any two square matrices on any number of processors.
The underlying algorithm is simple and by no means represents the most efficient way of carrying out this operation. The algorithm assumes that the two original matrices are initially loaded on one of the nodes. First, the node initially in possession of the two original matrices broadcasts both of these matrices to all other nodes participating in the computation. Next, the computation of entries for the resultant product matrix is partitioned in a cyclic manner, where a processor determines whether it is responsible for computing the value of an entry if the enumeration index of that entry divided by the rank of the process is equal to zero. Computed entries are stored in a matrix structure, identical to the initial matrices. If the process is not responsible for computing an entry, the value of that entry is set to zero. Under this scenario for every entry of the final matrix there is only one process that has a non-zero value at that entry. The result of the common computation is accumulated on one of the processes by invoking the MPI_Reduce collective operation with the MPI_SUM option. This results in a matrix with the complete set of values that is a product of the two original matrices.
4. Model Checking

Model checking is an approach to carrying out automated formal verification. The specificity of this technique is that verification is not performed on an actual program. The original program that is being examined must first be abstracted into a model written in the input language of the selected model checker. The goal of the constructed model is to mimic the behavior of the original code as closely as possible but include only the components relevant to the property being checked. This is an attempt to avoid the state explosion problem, where the number of states tends to be exponential in the number of concurrent processes. Figure 2 is an outline of the typical model checking process.
[image: image1.png]
Figure 2. Typical Model Checking Architecture.

The key component of this method is a model checker. A model checker is a system that builds a graph representing all possible states of the system and is able to check whether a given property holds for all possible executions of the examined model or produce an execution trace resulting in a counter example. The property being verified is usually represented in temporal logic or sometimes as an automaton. In this study we did not find a need for definitions of this form and we were able to express both properties as a set of assertion statements within the models we created.
In this study the model checker we are using is the SPIN Model Checker. We use its input language, PROMELA, to construct abstract models and run it in the verification mode to carry out the verification. With this model checker it was necessary that the models of the original examples written in C and MPI were constructed manually, so all the abstractions were done by developers. The final step of carrying out the verification involves running the model checker in the verification mode on the created models. The output of the model checker in this case informs the user whether the property holds true for all possible executions.

In our case this is all that is necessary because we were able to incorporate the property definition within the models themselves for both properties. The check for freedom from deadlock is already performed automatically when SPIN is run in the verification mode and so there is no need for explicit property definition. We were able to also incorporate the checks for verifying computational correctness into the models using only a set of assertion statements.
5. Modeling the program

As already mentioned above, employing the model checking approach requires implementing a model of the original program in the selected model checker’s input language. In this section we describe in more detail the general modeling techniques for the example programs we considered in the input language of the SPIN Model Checker as well as some property-specific modifications that were advantageous or necessary for the two properties being verified.
5.1 MODELING IN SPIN
Modeling the original program in PROMELA involves several key abstractions: representation of processes, communication, collective MPI functions, and messages.
For representing the processor nodes we use the standard definition of processes in PROMELA. For every pair of processes we define two communication channels so that each process has a dedicated channel for sending messages to any other process and a dedicated channel for receiving messages from any other process. This is an accurate model of the MPI Standard.

Modeling of the MPI functions given the above arrangement of process and communication channels requires extra care when considering collective MPI routines. In order to accurately model the collective MPI functions in SPIN we adopt the technique described by Siegel and Avrunin in [4]. This work suggests introducing another process which only purpose is to model collective MPI functions for verification. This process is referenced as the Coordinator process. Before executing a collective operation all processes send a message to the Coordinator process specifying the type of collective operation they are about to execute. The Coordinator blocks until it receives an initiating messages from all processes participating in the computation. Failure to receive a complete set of matching messages results in the Coordinator process’s invalid state, which is noted and reported by SPIN. After an initiating message is sent all processes participating in the collective operation proceed executing the code of the collective MPI operation as defined by the MPI Standard. Once a process finishes the operations required to complete the collective function, depending upon its role in the operation, it sends a notification message to the Coordinator. The set of expected messages is different for every collective MPI function and is specified in the code of the Coordinator process. When all the expected notification messages are received from the appropriate processes, the Coordinator assumes a valid end state which is an indication to SPIN that the collective MPI operation has occurred successfully. Figure 3 includes the PROMELA implementation of the Coordinator process illustrating handling of the MPI_Reduce collective operation.
/* Coordinator process, coordinates collective communication */

active proctype Coordinator() {

 /* Initial and current messages */
 mtype im;

 mtype cm;

 byte i = 1;

 /* note valid end state */
 end_c:

 do

 :: chan_c[0]?im;

 i = 1;

 do

 :: i < nprocs ->

chan_c[i]?cm;

 assert(im == cm);

i++

 :: else -> i = 0; break

 od;

 if

 :: im == BCAST ->

/* Interpret a broadcast message */
/* Receive a DONE message from every non-root node */

do

:: i < nprocs ->

 chan_c[i]?cm;

 assert (cm == DONE);

 i++

 :: else -> i = 0; break

od

 :: im == REDUCE ->

/* Interpret a reduce message */
/* receive a DONE message from the root process */

do

:: i < nprocs ->

 chan_c[i]?cm;

 assert (cm == DONE);

 i++

 :: else -> i = 0; break

od

 fi

 od

}

Figure 3. The Coordinator process.

We illustrate the functionality of the Coordinator process in more detail by considering two relatively simple collective MPI functions: MPI_Bcast and MPI_Reduce. The syntax for these operations in the C programming language is defined as follows.
MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

MPI_Reduce(void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)
According to the MPI Standard, the functionality of the MPI_Bcast operation is to broadcast a message from the process with rank root to all processes of the group, itself included. MPI_Reduce operation combines the elements provided in the input buffer of each process in the group, using the operation op, and returns the combined value in the output buffer of the process with rank root. Figure 4 illustrates the behavior of the Coordinator process during the execution of these functions. BCAST and REDUCE are the symbolic constants representing the initiating messages sent to the Coordinator process before the MPI routines operations are executed. After the initiating messages are sent and the MPI routines take place, an appropriate set of DONE message must be sent to the Coordinator process. For the MPI_Bcast case, it is necessary to make sure that every process has successfully received the data being broadcasted, so the Coordinator expects a DONE message from all other processes. In case of the MPI_Reduce operation, since the final result is accumulated only on one process, in order to verify the correctness of this operation it is sufficient for the Coordinator to receive a notification message only from the process receiving the final result.
[image: image2.png]
Figure 4. Behavior of the Coordinator process for MPI_Bcast and MPI_Reduce operations.

Another important aspect of modeling these types of programs for verification is communication messages. Even though the MPI Standard defines a relatively concise set of parameters for each of its defined functions, we are able to omit some unnecessary parameters to optimize our model even further since we are only using a few MPI functions. In this case an important role is dedicated to communications messages. Here we have limited the set of possible messages to a set of four discrete values symbolically represented in the PROMELA implementation as BCAST, REDUCE, ALLREDUCE, and DONE. The purpose of these messages is to provide optimal communication between the Coordinator process and all other processes. BCASE, REDUCE, and ALLREDUCE serve as the initiating messages sent by the processes participating in the computation to the Coordinator. The DONE message is the notification message that is sent to the Coordinator when a collective operation has been completed by a process.
5.2 PROPERTY-SPECIFIC ABSTRACTIONS

The general setup described above is adopted in the models for both computational examples considered; however, we attempt to improve performance of the model checker by making the models more optimized for the specific properties being checked.
5.2.1 FREEDOM FROM DEADLOCK
For the case of verifying freedom from deadlock we are able to introduce several more optimizations that allow us to construct a more concise model that is optimized for checking this particular property.

First, we notice that in this case that whenever data is transferred over a channel, freedom from deadlock conditions will be independent of the type of data being sent and the content of that data. It is only important that a data object is being transferred. In order to address this, we introduce another symbolic constant named DATA which is substituted into any communication function that involves any kind of data transfer. This turns out to simplify the model significantly. If in the original implementation of the already optimized PROMELA model the parameters of the MPI_Bast function were a root process and a reference to an array data object, now the parameters of the MPI_Bcast operation include only the rank of the broadcasting process, the array reference is replaced with the DATA symbol.
Another issue that must be addressed in order to accurately represent the MPI functions is synchronization. Here the problem is that on some architecture the send operation may be blocking or non-blocking. In order to account for this we include a non-deterministic branch statement after every send operation to either block until the channel over which the message is being sent is empty or proceed immediately without waiting for the message to be sent. Here is an example set of PROMELA statements that we included in our implementation.
channel!message

if

:: 1 -> empty(channel)

:: 1 -> skip

fi
In this case a message message is being sent over a channel channel. The empty operation is defined in SPIN so that the process executing this statement blocks until the channel included as the parameter is empty, which in our implementation is equivalent to making sure that the message has been sent since only one process is permitted to only send or only receive on a single channel.
5.2.2 CORRECTNESS OF COMPUTATION
Modeling for checking correctness of computation is much more involved than checking freedom from deadlock. Here the main issue is that PROMELA is a rather limited programming language and it does not provide convenient means for implementing complex data structures.

To modify the model to reflect our definition of computational correctness and include appropriate checks for its verification, we must add support for symbolic expressions. Symbolic expressions are stored in arrays of byte values. Byte values are encoded to provide a distinction between integer constants, symbolic constants and operators. For the two examples we are considering it is sufficient to define only two integer constants: zero and one. These are encoded with byte values 0 and 1, respectively. The matrix entries are enumerated starting at byte value 2 in natural order, i.e. from left to right and from top to bottom. This enumeration pattern continues for the second matrix:
[image: image3.png]
Operators are encoded with largest byte values, i.e. the plus operator is encoded with a byte value 255, a minus is encoded with a byte value 254, etc. In order to optimize space symbolic expressions are stored in Reverse Polish Notation:
[image: image4.png]
In PROMELA this is represented as:

[image: image5.png]
where “*” and “+” are actually represented by values 255 and 254.

We also implement means for manipulating these expressions. For the multiplication of matrices example we only need to be able to add and multiply expressions, so those are the only two procedures we implement. For checking computational correctness of the Gauss-Jordan elimination we provide a more general function to carry out arithmetic operations. All arithmetic operations are performed on the tree structures of encoded symbolic RPN expressions and the result of each operation is always another tree or an integer constant. Here is an example of adding two symbolic expressions a and b:

[image: image6.png]
To optimize the size of the generated expressions we also incorporate a set of simple arithmetic rules that take into account special cases, such as multiplication by zero, adding a zero, dividing by one, etc.
Once the support for symbolic expressions has been added we must define the computational correctness property and

6. Verification

In order to carry out formal verification on any given system it is necessary to provide a precise definition for the property being checked. At the first stage this must be done informally in a natural language, in our case English, and then translated into a more formal, precise expression, such that it defines exactly the way the property will be verified by a specific model checker. The following subsections focus on these types of definitions for the two properties being investigating in this study and describe how we use the SPIN Model Checker to check these properties for all possible executions of the system.
6.1 FREEDOM FROM DEADLOCK
The verbal description of the freedom from deadlock property can be defined as follows. A set of processes is deadlocked if each process in the set is waiting for an event that only a process in the set can cause.
There is no need for special definition of this property in SPIN. This model checker automatically checks if the system could deadlock when used in the verification mode. However, in order for this check to be accurate the model must be an accurate representation of the behavior of the original program. So, if the model is accurate, an error-free output from SPIN is a guarantee that the given system can never be in a deadlock state. That is how we perform verification of this property in this study.
6.2 CORRECTNESS OF COMPUTATION
The formal verbal definition of this property is complex and hard to express in general. Our approach is based on the assumption that the sequential version of the algorithm being checked is correct. Hence, we define the parallel version of an algorithm to be correct if its resulting expressions match the resulting expressions of the sequential given the same input values. The actual implementation of the checks necessary to incorporate into the PROMELA models in order to verify this property in SPIN depends upon the computational example.
For the multiplication of matrices example we conclude that the output of the parallel algorithm is correct if it exactly matches the symbolic representation of the result computed by one of the processes sequentially using the same algorithm. So, to check correctness of computation in this example we first execute the model of the parallel algorithm with a specific size of matrix dimensions then and accumulate the resulting matrix of symbolic expressions on one of the processes. After that the process in possession of the result of the parallel computation runs the sequential version of the same algorithm and stores the result of those operations as well. The final step in the verification process here takes place when the process that has both resultant matrices iterates through these two structures of symbolic expressions and checks that they are identical. This is done via a set of SPIN assertion statements. If any assertion statement is violated during, SPIN reports it to the user and provides an execution trace resulting in the detected violation. So, the parallel algorithm being examined is computationally correct if it produces the same set of expressions as the sequential one given the same matrix dimensions the two algorithms arrive at identical symbolic expressions.
The case of verifying correctness of computation of the parallel version of the Gauss-Jordan elimination algorithm is more difficult. The property in this case is harder to define since there is no closed form of the answer. For example, Figure 5 illustrates that for a 2X2 matrix there are five correct solutions and each one is correct only under certain assumptions about the values of the entries of the original matrix.

[image: image7.png]
Figure 5. Symbolic representation of the result of the Gauss-Jordan elimination on a 2X2 matrix.

In this case it is necessary to know whether a given expression is equal to zero or not. To take this into account we must introduce branching where conditions are functions of data. Since we are interested in evaluating the correctness of this algorithm for all possible values of the input data, the sequential version of this algorithm is modeled such that every time it is forced to compare a given expression to zero, it explores both branches and keeps track of its choice in a path conditions table. In PROMELA this is possible to implement as a non-deterministic choice between a zero expression or a non-zero expression. Here is an outline of the code that allows the implementation of this technique:
if

:: 1 -> /* Assume (a11 == 0) */

/* Add expression (a11 == 0) to the path conditions table */

 …

:: 1 -> /* Assume (a11 != 0) */
/* Add expression (a11 != 0) to the path conditions table */

 …

fi

In order to evaluate correctness of output of the parallel version of the Gauss-Jordan elimination algorithm we must make sure that the parallel algorithm follows the same assumptions about the input data as the sequential version. To achieve this, the model of the sequential version of the algorithm, contrary to the matrix multiplication example, is run first so that the path conditions it follows can be recorded and referenced by the parallel version. The set of branch conditions is stored in a global table which is accessible by all processes. This, of course, is infeasible in many parallel environments; however, having this capability when constructing a PROMELA model is a great advantage because it eliminates the need for extra communication for synchronization. Matching of the symbolically represented results in this case is also implemented via a set of SPIN assertion statements. So, in summary, if the sequential version explores all possible values of the input data and the model checker verifies that the symbolic computations match exactly for each possible set of input values, we conclude that the parallel version of the Gauss-Jordan elimination algorithm is computationally identical to the sequential version and, hence, produces correct results for all possible executions and for all possible input values based on the assumption that the sequential version is correct.
7. CASE STUDIES
The two examples of non-trivial mathematical computation we are considering are multiplication of two square matrices and Gauss-Jordan elimination. For the case of multiplication of matrices we construct two models: one specific to verifying freedom from deadlock and the second for checking the correctness of computed expressions. For the second example of Gauss-Jordan elimination, we restrict our attention to only the property of computational correctness. The following two sections describe these case studies in detail.
7.1 MULTIPLICATION OF MATRICES

This example was the first one considered during the course of the project and the original C code was adopted from an assignment written for an undergraduate course in programming languages at the University of Alaska Anchorage. This code performs multiplication of two square matrices in parallel. The algorithm is described in more detail in the section the Message Passing Interface.

For this example we constructed two models, one for checking freedom from deadlock and the other one for verifying correctness of computation. We will now discuss the specificities of abstractions and verification procedures for each model.
For verification of freedom from deadlock the most relevant component of the original code that we model is the MPI functions so we could abstract away much of the detail about the input data and computation. The verification step in this case is performed by simply running the model checker on the constructed model in verification mode. SPIN is set to automatically check for deadlock by default.
Of course, given an exponential problem the number of experiments that run in reasonable time is limited. The two methods for evaluation in this case are the dimension of the matrices being multiplied and the number of processes participating in the computation. For the first set of experimental runs we set the dimension of matrix and gradually increase the number of processes until the execution exhausts the memory capabilities of the physical computer it is being run on. For this case the largest number of processes that we were able to do the verification on is 10, with the dimension of the original matrices of 4 x 4. The second evaluation is when we increase the dimensions of the original matrices. We adjust the number of processes so that the model still runs to completion. Clearly, the verification will take the least time when only one process is executing the parallel algorithm; the largest matrix dimension we were able to run our experiments on was 7.
For verification of computational correctness the key modeling decision is the use of symbolic expressions that we construct in order to represent numerical data and mathematical expressions involved in the process of computation. We extend the model checker to create these symbolic representations of the executions and carry out any necessary manipulations symbolically.

Verifying the computational correctness property in this model is slightly more complicated. The following list outlines the sequence of steps we perform in order to carry out the formal verification:
1. Symbolic Computation is performed in parallel, generating a matrix of expressions on the root process
2. The root process does the symbolic computations sequentially

3. The root process loops through the two resultant structures checking that they are exactly the same via a set of assertions description.

The assertion statements in SPIN are also checked automatically when this model checker is run in the verification mode, and hence that is how we carry out the verification step here.
For this model, since we omit the unnecessary non-deterministic synchronization checks, we observe that if the parallel algorithm is executed by only one process the maximum dimension of the input matrices is 15. For the case when we maximize the number of processes, the algorithm takes unreasonable time to execute when there are 8 or more processes used on two 3 x 3 matrices.
Even though the scalability is not comparable to industry-level programs, these models are still capable of handling non-trivial sizes of matrices and number of processes.

7.2 GAUSS-JORDAN ELIMINATION

The Gauss-Jordan Elimination algorithm defines a sequence of elementary row operations to reduce any matrix to its reduced row echelon form. Gauss-Jordan Elimination is a very standard computational routine and for this example we are only verifying the property of computational correctness.
Let us describe the algorithm we adopted for our example in more detail. The main goal of this algorithm is to reduce a matrix into a reduced row-echelon form. We present the formal definition of the reduced row-echelon form of a matrix.

A matrix is in a reduced row-echelon form if:
1. Each row contains only zeros until the first non-zero element, which must be a 1

2. As the rows are followed from top to bottom, the first nonzero number occurs further to the right than in the previous row

3. The entries above and below the first 1 in each row must be all 0.
In our implementation the input is an n x m matrix A of double precision floating point numbers. At termination, A has been placed in reduced row-echelon form. The original algorithm is
described in many places; see for example [3]. In this implementation a modification to this algorithm has been made to perform backward substitution together with the process of reduction to row-echelon form. Here is a step-by step description of the routine, taken from [3]:

Step 1. Locate the leftmost column of B that does not consist
entirely of zeros, if one exists. The top nonzero entry of this column is the pivot.

Step 2. Interchange the top row with the pivot row, if necessary, so that the entry at the top of the column found in Step 1 is nonzero.

Step 3. Divide the top row by pivot in order to introduce a leading 1.

Step 4. Add suitable multiples of the top row to all other rows so that all entries above and below the leading 1 become zero.
The parallel version of the code in C was implemented based on the advice in [6], where every processor performs computations only on one row. So, the number of processors needed to execute this algorithm is always equal to the number of rows in the original matrix.
As it turns out, this is a much harder problem compared to the previous example of multiplication of matrices. There are two main differences. First, to accurately model the program to take into account all possible values of the input data, we must model branching, where conditions are functions of the input data. Second, the property of computational correctness in this case is harder to express since there is no closed formula of the answer, which is, again, a consequence of conditional data dependencies.
To handle the above problems we modify the verification procedure defined earlier for the matrix multiplication example in the following manner:
1. Symbolic computation is performed sequentially, generating a matrix of expressions on the root process as well as maintaining a set of path conditions that has been followed during the execution
2. The computation is performed in parallel following the set of path conditions generated at the preceding step
3. The set of processes which participated in the parallel computation assert that their symbolic representation of the result matches the corresponding part of the sequential computation of Step 1.

This procedure ensures that under the assumption that the sequential implementation is correct the parallel version of the same algorithm will also produce correct results for every possible execution.
When this model was first written, the highest dimension of the original matrix we were able to execute was 2 x 2. Of course, this is very poor scalability and the model had to be revised and several more optimizations were implemented. The optimization that played the greatest role in reducing the verification time for this model was taking advantage of the exclusive send and exclusive receive operators on all of the defined channels. These options in SPIN allow specification of the processes that have exclusive right to send and the processes that have exclusive right to receive messages on that channel. This rids SPIN of having to check the possibilities when any process can receive and send on any channel at all, which is the default. Under these optimizations the largest matrix for which we were able to verify correctness of computations is a 3 x 4. Cases with larger matrix dimensions take unreasonable time and memory to run to completion.
Unreasonable execution time, even though unfortunate, is not surprising given an exponential problem; however, the distinguishing feature of verification of computational correctness is that the more common state-explosion problem is overshadowed by issues associated with the size of the State Vector.

8. conclusions
The work on this project is still in progress and more experimental data are still being collected. The initial results are promising, however. For verification of freedom from deadlock on the considered algorithm we have demonstrated applicability of abstractions and reasonable scalability. The constructed models were capable of performing verification on some examples of non-trivial cases of matrices.

For verification of computational correctness we have also observed reasonable scalability of the models to handle non-trivial dimensions of matrices. We have also demonstrated the ability to employ the SPIN Model Checker to create and manipulate symbolic expressions and compare these expressions for the parallel and sequential versions of the algorithm.

9. future work

The future work for this project has three main directions: improving the existing SPIN models, using a different model checker, and exploring other non-trivial computational examples. The first direction can also be subdivided into three categories: optimization of existing data structures, incorporating fragments of C code into the actual models, and possibly employing theorem proving packages to assist with manipulation of the symbolic expressions.
10. references

[1] Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., Snir, M.: MPI - The Complete Reference: Volume 2, The MPI Extensions. MIT Press, Cambridge, MA (1998)
[2] Holzmann G.: The SPIN Model Checker. Primer and Reference Manual. Addison Wesley, 2003
[3] Howard Anton: Elementary Linear Algebra. Wiley, 1977, Section 1.2
[4] Stephen F. Siegel, George S. Avrunin, Modeling MPI Programs for Verification, Department of Computer Science, University of Massachusetts, Amherst, MA 01003, September 2004. (UM-CS-2004-075)
[5] Snir, M. Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI- The Complete Reference: Volume 1, The MPI Core. 2 ed. MIT Press, Cambridge, Massachusetts (2003)
[6] Wilkinson B., Allen M.: Parallel Programming. Techniques and Applications Using Networked Workstations and Parallel Co mputers. Prentice Hall, 2nd edition 11.3.

7

