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Abstract 

Many researchers have proposed classification systems 
that automatically classify email in order to reduce 
information overload. However, none of these systems 
are in use today. This paper examines some of the 
problems with classification technologies and proposes 
Relevance Categories as a method to avoid some of 
these problems. In particular, the dynamic nature of 
email categories, the cognitive overhead required to 
train categories, and the high costs of classification 
errors are hurdles for many classification algorithms.  
Relevance Categories avoid some of these problems 
through their simplicity; they are merely relevance-
ranked lists of email messages that are similar to a set 
of query messages.  By displaying messages as dynamic 
query results in lieu of fixed categories, we hypothesize 
that users will be less sensitive to errors in the 
Relevance Categories scheme than to errors in a fixed 
categorization scheme.  To study the effectiveness of 
the Relevance Categories concept, we devised a 
performance metric for relevance ranking and used it 
to test an inverted index implementation on the 
Reuters-21578 test collection.  The promising test 
results indicate the need for further work. 

1. Introduction 
Electronic mail and information overload has become a 
significant problem over the last several years.  Time 
Magazine estimated that 776 billion email messages 
were sent in 1994, 2.6 trillion sent in 1997, and 6.6 
trillion email messages will be sent in 2000 [1].   
Today, it is not uncommon for users to receive hundreds 
of messages per day.  To address this problem, many 
researchers have designed systems to automatically 
classify incoming email.  Typically, the email is 
classified into folders.  The folder hierarchy is usually 
flat and distinct; i.e. a message cannot belong to two 

folders, and the content of a folder is independent from 
the content of another folder. 

2. Previous Work 

Existing research has focused on a variety of learning 
algorithms to classify email into folders.  First, the user 
is required to designate a set of messages that belongs 
in the folder.  These messages are used as positive 
training examples for the classifier’s learning 
algorithm. The user may also be required to specify 
messages that do not belong in the folder, i.e. negative 
training examples.  Depending on the algorithms that 
are employed, the training process may be compute 
intensive.  After the classifier is trained, new or existing 
email may then be evaluated through the classifier and 
placed into the folder if appropriate. 

A commonly deployed email classification learning 
algorithm is based on vectors of term-frequency / 
inverse-document-frequency (tf-idf) values.  These 
values are used to create a vector that represents both 
email messages and the contents of a folder [2,8].  
Email vectors and folder vectors can then be compared 
to one another through the cosine metric or a dot 
product.   An email message is classified into the folder 
whose vector most closely matches the vector for the 
message.   Note that this system only allows for 
classification into a single folder.  To support 
classification into multiple folders, which we will refer 
to as categories, a threshold value must be computed 
for each category.  If the vector comparison exceeds the 
threshold, then the message is placed into the category.  
Unfortunately the computation of the threshold values is 
non-trivial and an open research issue. 

In addition to tf-idf vector-based systems, many other 
learning algorithms have been investigated, ranging 
from the induction of decision rules [3,6] to Bayesian 
classifiers [4], support vector machines [5], and neural-
network, case-based, or knowledge-based approaches 
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[9].  Some of these approaches are more expressive than 
others; for example, multi-layer neural networks are 
capable of non-linear classifications, unlike a naïve 
Bayesian classifier.  Typically, the tradeoff for this 
flexibility is a dramatic increase in the computation 
required to train the classifier.  All of these approaches 
have been shown to work reasonably well for fixed 
categories of email, such as finding mail belonging to a 
mail list, or mail that may be considered junk mail. 

 

3. Difficulties with Email Classification 

With the vast amount of interest and research that has 
been accomplished with automatic email categorization, 
why hasn’t the concept been incorporated into existing 
mail readers?   Does the concept fail to work in 
practice? To investigate the issue, we developed 
prototype email plug-in’s based on tf-idf and rule 
induction classifiers for two popular email clients.  The 
plug-in’s are capable of classifying email into multiple 
categories as opposed to single folders.   

Some of the ad-hoc usability obstacles that we 
encountered with respect to the classification 
technology are: 

1. The need for constant re-training to keep up with 
dynamically changing categories. 

2. Classification errors are puzzling and instill 
distrust on behalf of the users.  

3. Insufficient data may be available as training 
examples. 

4. It is difficult for a user to examine or manually edit 
a classifier.  

Dynamic Nature of Categories 

The first issue addresses the dynamic nature of email.  
It is not uncommon for a category to change over time 
as new messages are received.  As with newsgroups, 
there may be “topic drift” as new threads are 
incorporated and added to a folder.   

Topic drift poses a significant problem for many 
learning algorithms, which typically perform better on 
for static data.  First, training time is often an issue.  
For example, inducting new rules or a decision tree may 
take many minutes, an unacceptable delay if this is 
required every time a category is changed.  Second, 
most of these algorithms do not learn incrementally, 
and updates require a complete re-train based upon the 
original training messages. Vector-based learning 
algorithms are relatively quick to update, but thresholds 
may take more time to re-compute.  Finally, fixed-

length vectors have a vocabulary problem if the vector 
doesn’t include new keywords that are necessary to 
properly learn the new meaning of the category.  

Classification Errors and Trust 

The second issue addresses common user expectations 
with regard to classification accuracy. Users tolerate 
relatively few errors and expect immediate results.  
Unfortunately, no classifier will be completely accurate 
and the re-training issues may prevent immediate 
results.  

For example, consider a classifier that over-generalizes 
a category.  If the user applies this classifier to all mail, 
the result may be a large number of messages put into 
the category that do not belong there.  The user effort 
required to fix the error and re-train the category might 
outweigh the utility of the classifier to the point where a 
regular folder is less work.  Additionally, user trust in 
the system will be severely impaired by these types of 
mistakes.  A similar problem occurs with classifiers that 
are too specific and miss messages that should be 
included. 

As another example, consider a vector-based classifier 
that fails to classify a new message because it is an 
outlier.  Traditional vector-based classifiers are linear 
classifiers that classify messages close to its centroid.   
The user now uses the new message to train the 
classifier.   As a result, the centroid for the category 
vector shifts slightly towards the vector of the new 
article.  However, a single article is probably not 
enough to dramatically alter the behavior of the 
classifier1.  Now, if the user receives another email 
almost identical to the previous email, it will probably 
not be classified into the category despite the user’s 
efforts.  The result is frustration on behalf of the user 
and a lack of trust in how the classifier works.  
Although the system will likely perform the correct 
behavior after a few more emails are received, our 
observation has been that users are extremely intolerant 
of these errors and expect an immediate correction after 
re-training with the new message.  The more common 
response is “Why is the machine broken?” 

Insufficient Data Available 

The third issue addresses the need for large amounts of 
data in order to generate meaningful classifiers.  Most 
of the learning algorithms are based on statistics, and 

                                                        
1 Other classifiers, e.g. nearest-neighbor, will perform the 
desired behavior in this case, but may not generalize as well 
as the vector-based classifier or other classifiers. 
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for the algorithms to perform well, a large amount of 
data must be available. 

Unfortunately, in many cases a large amount of email 
may not be available.  For example, a common 
expectation is the capability to build a classifier using 
about a dozen training examples.  This may be 
insufficient to generate meaningful and accurate 
classifiers, further exacerbating the classification 
inaccuracy of many statistical-based algorithms.  
Nevertheless, users expect the system to work even with 
a limited amount of email. 

Classifier Viewing and Editing 

Ideally, a classifier would be good enough so that a user 
will never have to manually fix or edit it.  In practice, 
users may want to understand why the classifier is 
behaving in a particular manner and to perhaps alter its 
behavior. For example, with the rule-based classifier, 
the first question that many users ask after training is, 
“Can I see the rules?”  Rule-based classification 
algorithms may be understood and modified by users 
relatively easily, but Vector or Bayesian classifiers may 
be extremely difficult for a user to comprehend, let 
alone edit.  At a minimum, if users have a way to 
understand the underlying model and behavior of a 
classifier, then additional trust may be earned by the 
system. 

4. Solutions to Classification Difficulties 

Many of the difficulties described with classification 
may be alleviated through better classifiers, new 
classifier technology, and additional user-interface 
constructs to keep the user informed as to the state of 
the classifiers.  We are currently investigating these 
techniques as to their feasibility and effectiveness. 

Another way to resolve these difficulties is to sidestep 
the entire problem with an alternate technology.  The 
remainder of this paper discusses one alternate 
technology, Relevance Categories, that addresses some 
of the same information management issues as 
automatic classification while avoiding many of the 
problems discussed in the previous section. 

5. Relevance Categories 

The difficulties explored in section 3 bring up several 
requirements for any proposed solution.  First, the 
technology must be fast and capable of almost 
instantaneous re-training. Second, the system must 
either make few errors or operate in such a way that 
errors do not significantly impair usage.   Third, the 
method must operate satisfactorily even when there is 
not much data available. 

Relevance Categories are a simple way to address these 
three issues.  The basic concept is to provide the same 
functionality as regular folders or categories.  Users can 
assign mail to categories, or remove them from 
categories just like they are normally used to. The new 
addition to Relevance Categories is a query that is 
performed across all mail messages based upon the 
items the user has placed into the category. The results 
of the query are shown as a relevance-ranked list in a 
separate window or frame.  

This method results in an approximation of categories 
and gives the user a way to store persistent queries into 
the database of mail.  If the relevance algorithm is 
perfect, then all relevant items that belong to the 
category will be listed first, and less relevant items 
listed last.  Thread, date, sender, or other fields could be 
used to sort the relevant items to increase their 
accessibility. The advantages of this approach to 
traditional classification are: 

1. Relevance ranking can be performed quickly, with 
no training.  This bypasses the problems that 
classifiers have with regard to training time and  
the necessary user overhead to fix classification 
errors.  Since there is no classifier, there are no 
centroids to move or over-generalizations to worry 
about. 

2. Errors are more likely to be tolerated by the user.   
As long as items relevant to the category are ranked 
near the top, the user will be able to find them.  A 
few false hits will increase the amount of noise, but 
not significantly as long as the false hits are mostly 
ranked below the relevant items.  This is similar to 
the behavior of search engines.  They may produce 
some false hits, but the results are still immensely 
useful as long as relevant items are near the front of 
the list.   

3. Relevance Categories are guaranteed to preserve 
the contents of existing categories and folders.  
Since the Relevance Categories are an add-on to 
existing categories, they could be ignored and used 
exactly like a normal category without impacting 
performance.  In contrast, a poorly performing 
classifier can potentially make a folder more 
difficult to use than if no classification was done at 
all. 

4. Relevance rankings are still possible even in the 
presence of sparse data.  As more data becomes 
available, the relevance should improve. 
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Implementation of Relevance Categories 

Relevance Categories could be implemented through 
any means as long as the constraints of section 5 are 
met.  We constructed a very simple implementation 
based upon an inverted index with integrated tf-idf 
values.  The inverted index provides quick access to 
potentially relevant messages while the tf-idf values 
provide the relevance metric. 

The first step in the implementation of the inverted 
index is to parse, stop-list, and stem each email 
message.  Each message is then treated as a bag of 

words, and the frequencies are counted for all 
remaining words.  The top N words, or terms, are saved 
as a representation of the message.  In these 
experiments, N was set to 50.  The process is depicted 
in figure 1. 

Figure 1.  Stop-listing, Stemming, Frequency Counting 

The next step is to index each message into the inverted 
index.  The architecture of the inverted index is shown 

in figure 2. 

Figure 2.  Inverted Index Architecture. 

The frequency for each term in a message is collected in 
a global keyword map.  This map is accessible by 
keyword.   A pointer for each entry leads to a list of all 
messages that contain that term.  This provides quick 
access to all messages that contain a particular term.   
In addition to the keyword map, there is also a message 
ID table.  This table stores all extracted terms for each 
message along with their document frequencies.  These 
values can be combined with the global frequencies to 
obtain tf-idf coefficients.  Updating the data structures 
to maintain the inverted index requires only O(n) time, 
where n is the number of extracted terms. 

Messages are retrieved from the inverted index based 
upon a query.  A query consists of a set of terms and 
their associated frequencies.  This query could be from 
an individual message or aggregated from a set of 
messages.  From the inverted index keyword map, the 
set of documents that contains any terms in the query is 
determined. This has the potential to substantially cull 
the list of relevant messages so that all messages do not 
need to be examined.  Then, each message document is 
compared to the query using a similarity metric.  In this 
experiment we used the Dice coefficient, which is given 
by: 
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The Dice coefficient returns a normalized value 
between 0 and 1, where 1 indicates exact similarity, and 
0 indicates no similarity.  

Inverted Index Usage 

After all messages have been indexed, the next step is to 
create queries.  Queries are created for each category 
and are based upon messages that the user places into 
the category.  The messages are concatenated and 
treated like a single document.  Then, the N most 
frequent terms and term frequencies are extracted.  In 
these experiments, N was set to 50.   The resulting 
terms comprise a query for the category that it 
represents.  Note that as the set of messages changes, 
the queries are simple to update.  All that is required is 
to re-compute the term frequencies. 

Once the query terms and frequencies are determined, 
messages are evaluated using the inverted index and the 
Dice coefficient.  The messages are sorted by relevance 
value and displayed to the user in a list. The user can 
then browse through the list and open messages of 

Email message

ID=1
The blue dogs are big dogs

Stop
List

ID=1
blue dogs big dogs

Stemmer
ID=1
blue dog big dog

Count Frequencies

ID=1
blue 1
big 1
dog 2

ID=1
blue 1
big 1
dog 2

Email message

Keyword Map
Term    Global Frequency

cat 5
pet 8
…
big 3
blue 1
dog 6

Message ID’s
Containing Term

3, 4
3, 4, 5
…
3, 1
1
3, 4, 5, 1

Message ID Table
ID        Term Table

1
2
…
5

Term    Document Frequency

big 1
blue 1
dog 2

Term    Document Frequency

pet 2
dog 1
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interest.  If the algorithm works properly, the mail most 
similar to the items placed in the folder will appear at 
the top of the list.  The entire process is very quick; our 
implementation for a thousand messages required only 
a few seconds to compute on an Intel® Pentium® II 
processor-based system. 

6. Evaluation of the Algorithm 

To examine the effectiveness of the Relevance 
Categories concept, we conducted a test using the 
Reuters∗-21578 corpus. 

The Reuters-21578 collection is a corpus of Reuters 
news articles originally published in 1987.  The content 
of the 21,578 articles ranges from economic to 
agricultural news.  A majority of the articles are 
classified into one or more of 135 categories.  However, 
the classifications are not perfect; there are some well-
known ambiguities and inconsistencies.  The entire 
corpus was cleaned up and annotated by David Lewis in 
1997 as a standard test collection so that machine 
learning algorithms could be fairly compared to each 
other on this corpus [7].  This corpus is particularly 
challenging for classification since there are multiple 
non-overlapping and non-exhaustive categories. 

A number of researchers have used different splits of 
the data for the training and test sets.  For our 
experiments we used the “ModApte” split. The split 
consists of 7,775 training articles and 3,299 test 
articles.  The number of training articles is slightly 
lower than Lewis’ numbers since we threw out those 
training articles that had no assigned category topic.  
Some of the test articles also have no category topics, 
but these were not thrown out. 

Experimental Methodology 

Since the Reuters-21578 collection was designed for 
classification tasks and Relevance Categories are 
designed to provide ranked lists of documents, the 
standard evaluation metrics of precision and recall do 
not apply to this task.  To evaluate the effectiveness of 
Relevance Categories, we used a new metric, the 
Goodwin Relevancy Metric (GRM), named after its 
inventor.   

In the GRM, we start with a ranked list of relevant 
messages for a particular category.  From the tags in the 
test data, we know which of these messages belong to 
the category.  These messages are sometimes referred to 
as “classified test messages.”  The ideal organization of 
                                                        
∗ Third party marks and brands are the property of their 
respective owner. 

the relevancy list is defined as the case when all 
categorized test messages are located sequentially at the 
top of the list, as shown in figure 3 for the sample 
category “Cocoa”.  In this example, K=3 indicates the 
number of classified test messages in the category, 
while N=5 indicates the total number of messages 
returned in the Relevance Category. 

 

Figure 3.  Ideal Ranking for Cocoa. 

In contrast, the worst possible ordering for the rankings 
is if all of the messages that belong to the category are 
ranked at the bottom of the list.  This case is illustrated 
in figure 4. 

Figure 4.  Undesirable Ranking for Cocoa. 

In practice, we are more likely to have a case in 
between the best and worst possibilities.  Such a case is 
depicted in figure 5. 

Rank   Actually in Cocoa   Doc ID

Ideal Ranking For
Category Cocoa

1                   Yes                   54
2                   Yes                   43
3                   Yes                   33
4                   No                    21
5                   No                    12

K=3, N=5

Rank   Actually in Cocoa   Doc ID

Worst Ranking For
Category Cocoa

1                   No                    21
2                   No                    12
3                   Yes                   54
4                   Yes                   43
5                   Yes                   33

K=3, N=5
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Figure 5.  Typical Category Ranking 

We can measure how close the actual ranking is to the 
desired ranking by scaling sums of the rankings in the 
best and the worst cases.  The resulting expression is 
the GRM value.  In this expression, N is the total 
number of messages in the list, K is the number of 
classified test messages that are actually in the category, 
and R(i) is a function that returns 0 if message i is not 
in the category, and i if message i is in the category. 

(Eq. 1)        
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The denominator subtracts the best possible rank from 
the worst possible rank, while the numerator subtracts 
the actual rank of the messages in the category from the 
worst possible rank.  A perfect ranking results in a 
value of 1, while the worst possible ranking results in a 
value of 0. The metric scales linearly for cases in 
between; for example, if all messages are in the middle, 
GRM=0.5.  In the example of figure 5, GRM = (12-
7)/(12-6) = 0.83. 

While the GRM is effective, it may lead to misleading 
results depending on the data.  With the Reuters data, 
many categories have only a handful of classified test 
messages for a category but thousands of messages that 
do not belong to the category.  For example, if N=3299 
and K=1, the single classified test message could be 
ranked as low as 300 and still result in a high GRM of 
0.9.  The large number of non-classified messages 
results in a skewed evaluation. 

To address this problem, we truncated the list of top 
relevant messages to a truncation threshold, T.  In the 
experiment, we set T to 100.  This threshold was 
determined based upon the number of messages in the 
list that a user might be willing to scroll through.  We 
estimated that a user may feasibly browse the first 100 
messages, but is unlikely to expend the effort to look 

further.  In practice, the number may be lower.  In any 
event, a user will certainly not scan through thousands 
of messages. 

The act of truncating the relevance list complicates the 
GRM computation.  The following cases must now be 
addressed: 

1. K, the number of messages that are in the category, 
is greater than the truncation threshold, T.  

2. K is less than the truncation threshold, but the 
number of messages ranked by the relevance 
algorithm within the first T messages may be less 
than K. 

The first case is handled by setting the optimal ranking 
to include all classified messages for the first T 
messages.  The modified GRM value is calculated via: 
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The modified metric penalizes the algorithm for 
missing any rankings in the top T with a higher penalty 
for top rankings vs. bottom rankings.  

The second case may cause normalization problems if it 
is not accounted for.  To scale the metric appropriately, 
the following equation is used. In this expression, f is 
the number of classified messages found by the 
relevance algorithm within the first T messages and K 
is still the total number of classified messages in the 
category: 
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If f=K then this expression is identical to equation 1. 
Otherwise, the GRM value is scaled down 
proportionally by the number of messages that were 
actually found vs. the number of messages that would 
ideally have been found.  The resulting value ranges 
between 0 and 1. 

Experimental Procedure and Results 

To test the system, the 7775 Reuters training articles 
were used to generate term frequencies for each 
category and the 3299 test articles indexed.  The 
relevancy rankings for each category were generated 
and the GRM metric computed.  Categories that 

Rank   Actually in Cocoa   Doc ID

Actual Ranking
for Category Cocoa

1                   Yes                   54
2                   Yes                   43
3                    No                   21
4                   Yes                   33
5                    No                   12

K=3, N=5
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contained no classified test messages were ignored; this 
left 90 total categories. 

A summary of the GRM results averaged across all 
categories is shown in Table 1.   

Mean 0.78 

Median 0.80 

Standard deviation 0.18 

Table 1.  Summary of GRM results averaged over 90 
categories. 

The results indicate good, although not stellar, 
performance.   On average, the classified test messages 
definitely appeared toward the top of the relevance list. 

To interpret the results, consider a relevance ranking 
that returns 100 messages, K=1, and has a GRM=0.8.  
The message that belongs to the category will be ranked 
20th in the list.  For K=2 and GRM=0.8, the two 
messages that belong to the category will be spaced 
around the 20th rank in the list.  For example, either 
both messages are 19th and then 20th, or one may be 1st 
and the other 40th.   While this is less than ideal, it may 
be adequate to provide sufficient utility in finding 
related articles and is far superior to scanning all mail 
messages. 

7. Conclusion and Future Work 

While this paper has focused on email, the problems 
and solutions discussed are equally applicable to other 
dynamic domains such as news stories or web pages.  
The goal of the work has been to examine hurdles in the 
space of automatic classification algorithms with 
respect to common applications, and discover ways that 
these hurdles may be overcome.   

The concept of Relevance Categories is really a step 
back from pure categorization.  Unfortunately, existing 
algorithms for classification may require too much 
training time for dynamically changing categories and 
produce too many errors that break user trust.  Until 
these issues can be resolved, an alternate approach is to 
use a different technology that avoids some of these 
issues.  Relevance ranked lists appears to be one such 
candidate. The ranked lists are quick to compute and 
errors, while a hindrance to productivity, do not 
produce the same consequences with respect to folder 
pollution and re-training that is necessary with 
traditional categorization.  Moreover, ranked lists may 
be easily generated for multiple or overlapping 
categories. 

To further validate the approach, the next step is to 
build and integrate Relevance Categories into an email 

application and to conduct user studies.  Additionally, 
more work can be done to produce better rankings.  For 
example, better term selection, noun phrase extraction, 
the use of more terms, variation of test parameters and 
assumptions, and different similarity metrics might 
significantly improve relevancy performance.  
Visualizations can also be constructed that are superior 
to the simple list view.  For example, a 3-D 
visualization might take advantage of threads combined 
with relevance values to quickly depict the contents of a 
category.  Finally, additional work is required to 
quantify the performance of current classification 
algorithms in the email domain with both test data and 
user studies.  When user expectations are closely 
aligned with the capabilities of the underlying 
technology, information agents that organize and 
classify streams of data will become more effective and 
widespread. 

This work has been possible thanks to the contributions 
from the following people:  David Goodwin, Dhan 
Keskar, Brian Bird, Alan McConkie, Robert Adams, 
Dave Atkinson, and Mic Bowman. 
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