
 1

Dynamic Email Organization via Relevance Categories

May 6, 1999

Kenrick Mock

Kenrick.J.Mock@intel.com

Intel Architecture Labs

Abstract

Many researchers have proposed classification systems
that automatically classify email in order to reduce
information overload. However, none of these systems
are in use today. This paper examines some of the
problems with classification technologies and proposes
Relevance Categories as a method to avoid some of
these problems. In particular, the dynamic nature of
email categories, the cognitive overhead required to
train categories, and the high costs of classification
errors are hurdles for many classification algorithms.
Relevance Categories avoid some of these problems
through their simplicity; they are merely relevance-
ranked lists of email messages that are similar to a set
of query messages. By displaying messages as dynamic
query results in lieu of fixed categories, we hypothesize
that users will be less sensitive to errors in the
Relevance Categories scheme than to errors in a fixed
categorization scheme. To study the effectiveness of
the Relevance Categories concept, we devised a
performance metric for relevance ranking and used it
to test an inverted index implementation on the
Reuters-21578 test collection. The promising test
results indicate the need for further work.

1. Introduction
Electronic mail and information overload has become a
significant problem over the last several years. Time
Magazine estimated that 776 billion email messages
were sent in 1994, 2.6 trillion sent in 1997, and 6.6
trillion email messages will be sent in 2000 [1].
Today, it is not uncommon for users to receive hundreds
of messages per day. To address this problem, many
researchers have designed systems to automatically
classify incoming email. Typically, the email is
classified into folders. The folder hierarchy is usually
flat and distinct; i.e. a message cannot belong to two

folders, and the content of a folder is independent from
the content of another folder.

2. Previous Work

Existing research has focused on a variety of learning
algorithms to classify email into folders. First, the user
is required to designate a set of messages that belongs
in the folder. These messages are used as positive
training examples for the classifier’s learning
algorithm. The user may also be required to specify
messages that do not belong in the folder, i.e. negative
training examples. Depending on the algorithms that
are employed, the training process may be compute
intensive. After the classifier is trained, new or existing
email may then be evaluated through the classifier and
placed into the folder if appropriate.

A commonly deployed email classification learning
algorithm is based on vectors of term-frequency /
inverse-document-frequency (tf-idf) values. These
values are used to create a vector that represents both
email messages and the contents of a folder [2,8].
Email vectors and folder vectors can then be compared
to one another through the cosine metric or a dot
product. An email message is classified into the folder
whose vector most closely matches the vector for the
message. Note that this system only allows for
classification into a single folder. To support
classification into multiple folders, which we will refer
to as categories, a threshold value must be computed
for each category. If the vector comparison exceeds the
threshold, then the message is placed into the category.
Unfortunately the computation of the threshold values is
non-trivial and an open research issue.

In addition to tf-idf vector-based systems, many other
learning algorithms have been investigated, ranging
from the induction of decision rules [3,6] to Bayesian
classifiers [4], support vector machines [5], and neural-
network, case-based, or knowledge-based approaches

 2

[9]. Some of these approaches are more expressive than
others; for example, multi-layer neural networks are
capable of non-linear classifications, unlike a naïve
Bayesian classifier. Typically, the tradeoff for this
flexibility is a dramatic increase in the computation
required to train the classifier. All of these approaches
have been shown to work reasonably well for fixed
categories of email, such as finding mail belonging to a
mail list, or mail that may be considered junk mail.

3. Difficulties with Email Classification

With the vast amount of interest and research that has
been accomplished with automatic email categorization,
why hasn’t the concept been incorporated into existing
mail readers? Does the concept fail to work in
practice? To investigate the issue, we developed
prototype email plug-in’s based on tf-idf and rule
induction classifiers for two popular email clients. The
plug-in’s are capable of classifying email into multiple
categories as opposed to single folders.

Some of the ad-hoc usability obstacles that we
encountered with respect to the classification
technology are:

1. The need for constant re-training to keep up with
dynamically changing categories.

2. Classification errors are puzzling and instill
distrust on behalf of the users.

3. Insufficient data may be available as training
examples.

4. It is difficult for a user to examine or manually edit
a classifier.

Dynamic Nature of Categories

The first issue addresses the dynamic nature of email.
It is not uncommon for a category to change over time
as new messages are received. As with newsgroups,
there may be “topic drift” as new threads are
incorporated and added to a folder.

Topic drift poses a significant problem for many
learning algorithms, which typically perform better on
for static data. First, training time is often an issue.
For example, inducting new rules or a decision tree may
take many minutes, an unacceptable delay if this is
required every time a category is changed. Second,
most of these algorithms do not learn incrementally,
and updates require a complete re-train based upon the
original training messages. Vector-based learning
algorithms are relatively quick to update, but thresholds
may take more time to re-compute. Finally, fixed-

length vectors have a vocabulary problem if the vector
doesn’t include new keywords that are necessary to
properly learn the new meaning of the category.

Classification Errors and Trust

The second issue addresses common user expectations
with regard to classification accuracy. Users tolerate
relatively few errors and expect immediate results.
Unfortunately, no classifier will be completely accurate
and the re-training issues may prevent immediate
results.

For example, consider a classifier that over-generalizes
a category. If the user applies this classifier to all mail,
the result may be a large number of messages put into
the category that do not belong there. The user effort
required to fix the error and re-train the category might
outweigh the utility of the classifier to the point where a
regular folder is less work. Additionally, user trust in
the system will be severely impaired by these types of
mistakes. A similar problem occurs with classifiers that
are too specific and miss messages that should be
included.

As another example, consider a vector-based classifier
that fails to classify a new message because it is an
outlier. Traditional vector-based classifiers are linear
classifiers that classify messages close to its centroid.
The user now uses the new message to train the
classifier. As a result, the centroid for the category
vector shifts slightly towards the vector of the new
article. However, a single article is probably not
enough to dramatically alter the behavior of the
classifier1. Now, if the user receives another email
almost identical to the previous email, it will probably
not be classified into the category despite the user’s
efforts. The result is frustration on behalf of the user
and a lack of trust in how the classifier works.
Although the system will likely perform the correct
behavior after a few more emails are received, our
observation has been that users are extremely intolerant
of these errors and expect an immediate correction after
re-training with the new message. The more common
response is “Why is the machine broken?”

Insufficient Data Available

The third issue addresses the need for large amounts of
data in order to generate meaningful classifiers. Most
of the learning algorithms are based on statistics, and

1 Other classifiers, e.g. nearest-neighbor, will perform the
desired behavior in this case, but may not generalize as well
as the vector-based classifier or other classifiers.

Information Organization and Personalization, Intel Architecture Lab

 3

for the algorithms to perform well, a large amount of
data must be available.

Unfortunately, in many cases a large amount of email
may not be available. For example, a common
expectation is the capability to build a classifier using
about a dozen training examples. This may be
insufficient to generate meaningful and accurate
classifiers, further exacerbating the classification
inaccuracy of many statistical-based algorithms.
Nevertheless, users expect the system to work even with
a limited amount of email.

Classifier Viewing and Editing

Ideally, a classifier would be good enough so that a user
will never have to manually fix or edit it. In practice,
users may want to understand why the classifier is
behaving in a particular manner and to perhaps alter its
behavior. For example, with the rule-based classifier,
the first question that many users ask after training is,
“Can I see the rules?” Rule-based classification
algorithms may be understood and modified by users
relatively easily, but Vector or Bayesian classifiers may
be extremely difficult for a user to comprehend, let
alone edit. At a minimum, if users have a way to
understand the underlying model and behavior of a
classifier, then additional trust may be earned by the
system.

4. Solutions to Classification Difficulties

Many of the difficulties described with classification
may be alleviated through better classifiers, new
classifier technology, and additional user-interface
constructs to keep the user informed as to the state of
the classifiers. We are currently investigating these
techniques as to their feasibility and effectiveness.

Another way to resolve these difficulties is to sidestep
the entire problem with an alternate technology. The
remainder of this paper discusses one alternate
technology, Relevance Categories, that addresses some
of the same information management issues as
automatic classification while avoiding many of the
problems discussed in the previous section.

5. Relevance Categories

The difficulties explored in section 3 bring up several
requirements for any proposed solution. First, the
technology must be fast and capable of almost
instantaneous re-training. Second, the system must
either make few errors or operate in such a way that
errors do not significantly impair usage. Third, the
method must operate satisfactorily even when there is
not much data available.

Relevance Categories are a simple way to address these
three issues. The basic concept is to provide the same
functionality as regular folders or categories. Users can
assign mail to categories, or remove them from
categories just like they are normally used to. The new
addition to Relevance Categories is a query that is
performed across all mail messages based upon the
items the user has placed into the category. The results
of the query are shown as a relevance-ranked list in a
separate window or frame.

This method results in an approximation of categories
and gives the user a way to store persistent queries into
the database of mail. If the relevance algorithm is
perfect, then all relevant items that belong to the
category will be listed first, and less relevant items
listed last. Thread, date, sender, or other fields could be
used to sort the relevant items to increase their
accessibility. The advantages of this approach to
traditional classification are:

1. Relevance ranking can be performed quickly, with
no training. This bypasses the problems that
classifiers have with regard to training time and
the necessary user overhead to fix classification
errors. Since there is no classifier, there are no
centroids to move or over-generalizations to worry
about.

2. Errors are more likely to be tolerated by the user.
As long as items relevant to the category are ranked
near the top, the user will be able to find them. A
few false hits will increase the amount of noise, but
not significantly as long as the false hits are mostly
ranked below the relevant items. This is similar to
the behavior of search engines. They may produce
some false hits, but the results are still immensely
useful as long as relevant items are near the front of
the list.

3. Relevance Categories are guaranteed to preserve
the contents of existing categories and folders.
Since the Relevance Categories are an add-on to
existing categories, they could be ignored and used
exactly like a normal category without impacting
performance. In contrast, a poorly performing
classifier can potentially make a folder more
difficult to use than if no classification was done at
all.

4. Relevance rankings are still possible even in the
presence of sparse data. As more data becomes
available, the relevance should improve.

 4

Implementation of Relevance Categories

Relevance Categories could be implemented through
any means as long as the constraints of section 5 are
met. We constructed a very simple implementation
based upon an inverted index with integrated tf-idf
values. The inverted index provides quick access to
potentially relevant messages while the tf-idf values
provide the relevance metric.

The first step in the implementation of the inverted
index is to parse, stop-list, and stem each email
message. Each message is then treated as a bag of

words, and the frequencies are counted for all
remaining words. The top N words, or terms, are saved
as a representation of the message. In these
experiments, N was set to 50. The process is depicted
in figure 1.

Figure 1. Stop-listing, Stemming, Frequency Counting

The next step is to index each message into the inverted
index. The architecture of the inverted index is shown

in figure 2.

Figure 2. Inverted Index Architecture.

The frequency for each term in a message is collected in
a global keyword map. This map is accessible by
keyword. A pointer for each entry leads to a list of all
messages that contain that term. This provides quick
access to all messages that contain a particular term.
In addition to the keyword map, there is also a message
ID table. This table stores all extracted terms for each
message along with their document frequencies. These
values can be combined with the global frequencies to
obtain tf-idf coefficients. Updating the data structures
to maintain the inverted index requires only O(n) time,
where n is the number of extracted terms.

Messages are retrieved from the inverted index based
upon a query. A query consists of a set of terms and
their associated frequencies. This query could be from
an individual message or aggregated from a set of
messages. From the inverted index keyword map, the
set of documents that contains any terms in the query is
determined. This has the potential to substantially cull
the list of relevant messages so that all messages do not
need to be examined. Then, each message document is
compared to the query using a similarity metric. In this
experiment we used the Dice coefficient, which is given
by:

∑∑

∑

==

=

+

•
=

DocTerms

i

QueryTerms

i

Terms

i

iDocTfIdfiQueryTfIdf

iDocTfIdfiQueryTfIdf
DocQuerySim

#

1

2
#

1

2

#

1

))(())((

))(())((2
),(

The Dice coefficient returns a normalized value
between 0 and 1, where 1 indicates exact similarity, and
0 indicates no similarity.

Inverted Index Usage

After all messages have been indexed, the next step is to
create queries. Queries are created for each category
and are based upon messages that the user places into
the category. The messages are concatenated and
treated like a single document. Then, the N most
frequent terms and term frequencies are extracted. In
these experiments, N was set to 50. The resulting
terms comprise a query for the category that it
represents. Note that as the set of messages changes,
the queries are simple to update. All that is required is
to re-compute the term frequencies.

Once the query terms and frequencies are determined,
messages are evaluated using the inverted index and the
Dice coefficient. The messages are sorted by relevance
value and displayed to the user in a list. The user can
then browse through the list and open messages of

Email message

ID=1
The blue dogs are big dogs

Stop
List

ID=1
blue dogs big dogs

Stemmer
ID=1
blue dog big dog

Count Frequencies

ID=1
blue 1
big 1
dog 2

ID=1
blue 1
big 1
dog 2

Email message

Keyword Map
Term Global Frequency

cat 5
pet 8
…
big 3
blue 1
dog 6

Message ID’s
Containing Term

3, 4
3, 4, 5
…
3, 1
1
3, 4, 5, 1

Message ID Table
ID Term Table

1
2
…
5

Term Document Frequency

big 1
blue 1
dog 2

Term Document Frequency

pet 2
dog 1

Information Organization and Personalization, Intel Architecture Lab

 5

interest. If the algorithm works properly, the mail most
similar to the items placed in the folder will appear at
the top of the list. The entire process is very quick; our
implementation for a thousand messages required only
a few seconds to compute on an Intel® Pentium® II
processor-based system.

6. Evaluation of the Algorithm

To examine the effectiveness of the Relevance
Categories concept, we conducted a test using the
Reuters∗-21578 corpus.

The Reuters-21578 collection is a corpus of Reuters
news articles originally published in 1987. The content
of the 21,578 articles ranges from economic to
agricultural news. A majority of the articles are
classified into one or more of 135 categories. However,
the classifications are not perfect; there are some well-
known ambiguities and inconsistencies. The entire
corpus was cleaned up and annotated by David Lewis in
1997 as a standard test collection so that machine
learning algorithms could be fairly compared to each
other on this corpus [7]. This corpus is particularly
challenging for classification since there are multiple
non-overlapping and non-exhaustive categories.

A number of researchers have used different splits of
the data for the training and test sets. For our
experiments we used the “ModApte” split. The split
consists of 7,775 training articles and 3,299 test
articles. The number of training articles is slightly
lower than Lewis’ numbers since we threw out those
training articles that had no assigned category topic.
Some of the test articles also have no category topics,
but these were not thrown out.

Experimental Methodology

Since the Reuters-21578 collection was designed for
classification tasks and Relevance Categories are
designed to provide ranked lists of documents, the
standard evaluation metrics of precision and recall do
not apply to this task. To evaluate the effectiveness of
Relevance Categories, we used a new metric, the
Goodwin Relevancy Metric (GRM), named after its
inventor.

In the GRM, we start with a ranked list of relevant
messages for a particular category. From the tags in the
test data, we know which of these messages belong to
the category. These messages are sometimes referred to
as “classified test messages.” The ideal organization of

∗ Third party marks and brands are the property of their
respective owner.

the relevancy list is defined as the case when all
categorized test messages are located sequentially at the
top of the list, as shown in figure 3 for the sample
category “Cocoa”. In this example, K=3 indicates the
number of classified test messages in the category,
while N=5 indicates the total number of messages
returned in the Relevance Category.

Figure 3. Ideal Ranking for Cocoa.

In contrast, the worst possible ordering for the rankings
is if all of the messages that belong to the category are
ranked at the bottom of the list. This case is illustrated
in figure 4.

Figure 4. Undesirable Ranking for Cocoa.

In practice, we are more likely to have a case in
between the best and worst possibilities. Such a case is
depicted in figure 5.

Rank Actually in Cocoa Doc ID

Ideal Ranking For
Category Cocoa

1 Yes 54
2 Yes 43
3 Yes 33
4 No 21
5 No 12

K=3, N=5

Rank Actually in Cocoa Doc ID

Worst Ranking For
Category Cocoa

1 No 21
2 No 12
3 Yes 54
4 Yes 43
5 Yes 33

K=3, N=5

 6

Figure 5. Typical Category Ranking

We can measure how close the actual ranking is to the
desired ranking by scaling sums of the rankings in the
best and the worst cases. The resulting expression is
the GRM value. In this expression, N is the total
number of messages in the list, K is the number of
classified test messages that are actually in the category,
and R(i) is a function that returns 0 if message i is not
in the category, and i if message i is in the category.

(Eq. 1)

∑∑

∑∑

=+−=

=+−=

−

−
= k

i

n

kni

n

i

n

kni

ii

iRi
GRM

11

11

)(

The denominator subtracts the best possible rank from
the worst possible rank, while the numerator subtracts
the actual rank of the messages in the category from the
worst possible rank. A perfect ranking results in a
value of 1, while the worst possible ranking results in a
value of 0. The metric scales linearly for cases in
between; for example, if all messages are in the middle,
GRM=0.5. In the example of figure 5, GRM = (12-
7)/(12-6) = 0.83.

While the GRM is effective, it may lead to misleading
results depending on the data. With the Reuters data,
many categories have only a handful of classified test
messages for a category but thousands of messages that
do not belong to the category. For example, if N=3299
and K=1, the single classified test message could be
ranked as low as 300 and still result in a high GRM of
0.9. The large number of non-classified messages
results in a skewed evaluation.

To address this problem, we truncated the list of top
relevant messages to a truncation threshold, T. In the
experiment, we set T to 100. This threshold was
determined based upon the number of messages in the
list that a user might be willing to scroll through. We
estimated that a user may feasibly browse the first 100
messages, but is unlikely to expend the effort to look

further. In practice, the number may be lower. In any
event, a user will certainly not scan through thousands
of messages.

The act of truncating the relevance list complicates the
GRM computation. The following cases must now be
addressed:

1. K, the number of messages that are in the category,
is greater than the truncation threshold, T.

2. K is less than the truncation threshold, but the
number of messages ranked by the relevance
algorithm within the first T messages may be less
than K.

The first case is handled by setting the optimal ranking
to include all classified messages for the first T
messages. The modified GRM value is calculated via:

∑

∑

=

=
+−

=
T

i

T

i

i

iRT
GRM

1

1
1

)1)((

The modified metric penalizes the algorithm for
missing any rankings in the top T with a higher penalty
for top rankings vs. bottom rankings.

The second case may cause normalization problems if it
is not accounted for. To scale the metric appropriately,
the following equation is used. In this expression, f is
the number of classified messages found by the
relevance algorithm within the first T messages and K
is still the total number of classified messages in the
category:

K

f

ii

iRi

GRM
f

i

T

fTi

T

i

T

fTi •
−

−
=

∑∑

∑∑

=+−=

=+−=

11

11
2

)(

If f=K then this expression is identical to equation 1.
Otherwise, the GRM value is scaled down
proportionally by the number of messages that were
actually found vs. the number of messages that would
ideally have been found. The resulting value ranges
between 0 and 1.

Experimental Procedure and Results

To test the system, the 7775 Reuters training articles
were used to generate term frequencies for each
category and the 3299 test articles indexed. The
relevancy rankings for each category were generated
and the GRM metric computed. Categories that

Rank Actually in Cocoa Doc ID

Actual Ranking
for Category Cocoa

1 Yes 54
2 Yes 43
3 No 21
4 Yes 33
5 No 12

K=3, N=5

Information Organization and Personalization, Intel Architecture Lab

 7

contained no classified test messages were ignored; this
left 90 total categories.

A summary of the GRM results averaged across all
categories is shown in Table 1.

Mean 0.78

Median 0.80

Standard deviation 0.18

Table 1. Summary of GRM results averaged over 90
categories.

The results indicate good, although not stellar,
performance. On average, the classified test messages
definitely appeared toward the top of the relevance list.

To interpret the results, consider a relevance ranking
that returns 100 messages, K=1, and has a GRM=0.8.
The message that belongs to the category will be ranked
20th in the list. For K=2 and GRM=0.8, the two
messages that belong to the category will be spaced
around the 20th rank in the list. For example, either
both messages are 19th and then 20th, or one may be 1st
and the other 40th. While this is less than ideal, it may
be adequate to provide sufficient utility in finding
related articles and is far superior to scanning all mail
messages.

7. Conclusion and Future Work

While this paper has focused on email, the problems
and solutions discussed are equally applicable to other
dynamic domains such as news stories or web pages.
The goal of the work has been to examine hurdles in the
space of automatic classification algorithms with
respect to common applications, and discover ways that
these hurdles may be overcome.

The concept of Relevance Categories is really a step
back from pure categorization. Unfortunately, existing
algorithms for classification may require too much
training time for dynamically changing categories and
produce too many errors that break user trust. Until
these issues can be resolved, an alternate approach is to
use a different technology that avoids some of these
issues. Relevance ranked lists appears to be one such
candidate. The ranked lists are quick to compute and
errors, while a hindrance to productivity, do not
produce the same consequences with respect to folder
pollution and re-training that is necessary with
traditional categorization. Moreover, ranked lists may
be easily generated for multiple or overlapping
categories.

To further validate the approach, the next step is to
build and integrate Relevance Categories into an email

application and to conduct user studies. Additionally,
more work can be done to produce better rankings. For
example, better term selection, noun phrase extraction,
the use of more terms, variation of test parameters and
assumptions, and different similarity metrics might
significantly improve relevancy performance.
Visualizations can also be constructed that are superior
to the simple list view. For example, a 3-D
visualization might take advantage of threads combined
with relevance values to quickly depict the contents of a
category. Finally, additional work is required to
quantify the performance of current classification
algorithms in the email domain with both test data and
user studies. When user expectations are closely
aligned with the capabilities of the underlying
technology, information agents that organize and
classify streams of data will become more effective and
widespread.

This work has been possible thanks to the contributions
from the following people: David Goodwin, Dhan
Keskar, Brian Bird, Alan McConkie, Robert Adams,
Dave Atkinson, and Mic Bowman.

8. References
[1] Gwynne, S. and Dickerson, J. Lost In The E-Mail. Time

Magazine, April 21, 1997.

[2] Boone, G. Concept Features in Re: Agent, an Intelligent
Email Agent. Proceedings of the Second International
Conference on Autonomous Agents. Minneapolis/St.
Paul, May 10-13, 1998.

[3] Cohen, W. Learning rules that classify e-mail.
Proceedings of the 1996 AAAI Spring Symposium on
Machine Learning in Information Access. 1996.

[4] Sahami, M., Dumais, S., Heckerman, D., Horvitz, E. A
Bayesian approach to filtering junk e-mail. AAAI’98
Workshop on Learning for Text Categorization, Madison,
WI, July 1998.

[5] Dumais, S., Platt, J., Heckerman, D., Sahami, M.
Inductive learning algorithms and representations for text
categorization. Proceedings of ACM-CIKM98,
November, 1998.

[6] Apte, C., Damerau, F., & Weiss, S. Automated learning
of decision rules for text categorization. ACM
Transactions on Information Systems, 12, 233-251. 1994.

[7] Lewis, D. The Reuters-21578 Test Collection,
Distribution 1.0.
http://www.research.att.com/~lewis/reuters21578.html
1997.

[8] Mock, K., Adams, R., Spangler, L. Venice: Content-Based
Information Management for Electronic Mail. 1997 Intel
Software Developers Conference, Portland, Oregon. 1997.

 8

[9] Mock, K & Vemuri, V. Information Filtering via Hybrid
Techniques. Journal of Information Processing and
Management, Permagon Press, v33, n5, pp 633-644.
1997.

