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Abstract 
 
Intel has created an Evaluator Toolkit (ET) as a way to easily integrate information 
management technologies into a myriad of applications.  In the initial report (Mock, 
1998) a vector-based classifier and a rule induction algorithm were described.  While the 
rule induction algorithm was effective, it suffers from a slow induction process that 
requires tens of minutes to generate rules. This report describes a modification to the rule 
induction algorithm that is intended to support the incremental learning of rules and the 
generation of more meaningful relevance rankings for matching rules.  The modified 
system is called the Hybrid Rule Induction classifier because it incorporates a shortened 
vector of words into an inducted profile of rules.  To support incremental learning, all 
negative training examples are remembered by each profile.  Performance results on the 
Reuters-21578 data set indicate that the incremental training is almost as effective as 
block training, and more effective than if no incremental training is done at all.  However, 
induction time is often too slow for real-time usage on current processors but may be 
acceptable for background usage. 
 
1. Rule Induction Background 
 
One technique that is used to classify documents is through a list of decision rules. 
Decision rules take up very little memory, usually a few kilobytes, and are in a format 
easier for people to understand and modify than TF-IDF frequencies used in vector-based 
classifiers.  We will pose the rules to be unordered (we could apply the rule in any order, 
not an if-then-else order as is generated by decision trees) in disjunctive normal form 
(DNF).  For example, the rules could look like the following: 
 

1. if AGENT then Class=Agents 
2. if INTELLIGENT and MOBILE then Class=Agents 
3. if NOT AGENT and ADMIN then Class=Administrative 
4. if PARTY then Class=Personal 

 
In DNF, we have only AND’s within each rule, but an OR of all rules. 
 
Developing a learning system for this representation is somewhat difficult. In ET, if 
multiple rules fire, then we will category the document into all categories matching a 
rule.  However, in general we may have problems if we just OR together all of the rules. 
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The problem with OR’ing together rules is that, surprisingly, we might end up lowering 
our performance.  Consider if you have two rules and 1000 cases.  Rule 1 is activated 
(covers) 100 cases, and is correct on 90 of them.  Rule 2 also covers 100 cases, and it is 
correct on 90 of them.  What happens when we OR these rules together?  In the best case, 
the 90 correct cases are different, but the incorrect cases are identical.  The accuracy is 
now (90+90) / (90 + 90 + 10) = 0.95.    However, in the worst case the two rules are 
correct on the same cases but wrong on different cases.  The combined classifier is now 
90 / (90+10+10) = 0.82.    
 
The end result is that we need to be careful inducing the rules, and that the vector 
classifier may be better in some cases than the rule induction algorithm. 
 
CN2 Induction Algorithm 
 
ET implements a modified version of the CN2 rule induction algorithm. CN2 is one 
unordered rule induction algorithm designed by Peter Clark.  
 
The idea of CN2 and other rule induction algorithms is to search the space of decision 
rules from the general to the specific.  It employs a beam search to determine what rules 
to generate within the search space. This search space is exponentially large.  If we only 
have 3 features, X, Y, and Z (in our text classification domain, these features would 
probably be specific words), then we could generate the following possible rules: 
 
 If X then… 
 If X and Y then… 
 If X and Y and Z then… 
 If X and Z then … 
 If Y then … 
 If Y and Z then … 
 If Z then… 
 
The number of rules grows exponentially, 2n-1.   There are even more rules (22n-1) if we 
consider NOT X, NOT Y, etc. as features. With features that are typically in the tens or 
hundreds, search through this space can be extremely difficult.  Essentially we will be 
searching through this space of possible rules for the best rule for the training data. 
 
There are three procedures in the algorithm, which is described in general terms below 
from Clark and Boswell (1991): 
 
CN2Unordered(allexamples, allclasses) 
 Ruleset ! {} 
 For each class in allclasses 
  Generate rules by CN2ForOneClass(allexamples, class) 
  Add rules to ruleset 
 Return ruleset 
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CN2ForOneClass(examples, class) 
 Rules ! {} 
 Repeat 
  Bestcond ! FindBestCondition(examples, class) 
  If bestcond <> null then 
   Add the rule “IF bestcond THEN PREDICT class” 
   Remove from examples all cases in class covered by bestcond 
 Until bestcond = null 
 Return rules 
 
The first procedure simply loops through all possible classes (categories) and generates a 
set of rules for each class. 
 
The second procedure repeatedly calls “FindBestCondition” which will find the best rule, 
according to a heuristic, that covers the current set of examples.  This rule is added to the 
set of rules.  Then, all example cases that are positively matched by the rule are removed 
from the example set and the process repeats. 
 
In the rule induction algorithm, it is important that we keep negative examples of the rule 
around so that future rules stand out from the negatives.  We must remove the positive 
examples to prevent us from finding the same rule again.  The task remains to implement 
the FindBestCond routine: 
 
FindBestCondition(examples, class) 
 MGC ! true  ‘ most general condition 
 Star ! MGC 
 Newstar ! {} 
 Bestcond ! null 
 While Star is not empty  (or loopcount < MAXCONJUNCTS) 
  For each rule R in Star 
   For each possible feature F  
    R’ ! specialization of Rule formed by adding F as an 
     Extra conjunct to Rule (i.e. Rule’ = Rule AND F) 
     Removing null conditions (i.e. A AND NOT A) 
     Removing redundancies (i.e. A AND A) 
     And previously generated rules. 
    If LaPlaceHeuristic(R’,class) better than  

LaPlaceHeuristic (Bestcond, class) 
     Bestcond ! R’ 
    Add R’ to Newstar 
    If size(NewStar) > MAXRULESIZE then 
     Remove worst in Newstar  

until Size=MAXRULESIZE 
   Star ! Newstar 
 Return Bestcond 
 
The LaPlace heuristic is simply: 
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ET considers each class individually (e.g., Class or NOT Class) so the # of classes in the 
domain is set to 2. 
 
A larger heuristic value is better and indicates how many examples are correctly 
predicted by a given rule.  To compute the heuristic, we must apply the rule to all training 
examples and count the number of cases in the numerator and denominator.  This is an 
expensive process, since the computation is buried with the loop that generates the 
features to test. 
 
Initially, FindBestCondition will start with Star containing only the default “true” rule. 
To this we add specializations by testing the rules with one feature.  For example if our 
features were X, Y and Z, then on the first pass we would generate “IF X then Class”, “IF 
Y then Class” and “IF Z then Class”.  All of these rules would be tested to see which has 
the best LaPlace heuristic.   
 
Next, we keep track of the best rule so far and only remember the MAXRULESIZE best 
rules.  If MAXRULESIZE = 2, then we might only keep the rules “IF X then Class” and 
“IF Y then Class”.  By limiting the rule size, we enforce a narrow “beam” in which we 
are searching through the rule space.  To the top rules, we specialize them further, 
AND’ing each rule with all features.  We would now have the rules: 
 
 IF X and Y then class 
 IF X and Z then class 
 IF Y and Z then class 
 
The process repeats.  The next loop we would generate rules with three conjuncts, until 
we run out of features or reach the MAXCONJUNCTS limit.   
 
Finally, when iterated over all classes, we will have a set of rules that predict each class.  
ET also stores the LaPlace heuristic value along with each rule as an indicator of the 
confidence of the rule.  While this confidence value may be used as a relevance metric 
for visualization, the distribution of values tends to clump around 1 or less than 0.5.  
Consequently, the values will not result in a smooth or normal distribution curve like the 
vector evaluator’s relevance values. We have observed that LaPlace heuristic values > 0.5 
are associated with fairly relevant rules, while rules with a heuristic confidence < 0.5 are 
often poor enough to be thrown out.  The entire rule induction routine is quite compute 
intensive, especially for a large number of features and sample cases.  In practice, we 
place limits on the MAXCONJUNCTS, MAXRULES, and MAXRULESIZE so that 
computation can be done within a reasonable time. 
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2. Rule Induction Weaknesses 
 
A variant of the CN2 rule induction algorithm was originally implemented in the Intel 
Evaluator Toolkit (ET).  The advantages of the induction algorithm include a small 
profile, excellent classification performance, and rules that can be easily understood by 
humans.  The disadvantages include poor relevance ranking and difficulties in 
incrementally training the profile.   
 
The only relevance values that the original rule profile returned are rule confidence 
values.  These values are zero if the document does not match a rule, or a semi-discrete 
number (typically 2/3 or 3/4) if the rule does match.   This discrete distribution does not 
give a clear indication of how relevant a document is with respect to the profile.   In 
contrast, vector comparisons typically result in fine resolution relevance values in a 
normal distribution between 0 and 1. 
 
In terms of incremental training, the rule induction algorithm requires a large batch of 
negative and positive examples to be provided before rules can be inducted.  After rules 
are generated, then the examples are discarded.  Any additional training requires the 
complete regeneration of rules from new examples.  No facility was provided for new 
rules to be generated in addition to the old rules. 
 
3. Rule Induction Modifications 
 
To address the weaknesses of the algorithm, a number of modifications were performed.  
To provide better relevance values, a vector comparison is made with a small word vector 
that is created from the most frequently occurring words in the positive examples.  The 
resulting value is then combined with the largest heuristic value from matching rules.  To 
incrementally train the profile, negative examples are retained along with some number 
of positive examples.  New examples are combined with a subset of existing positive 
examples before new rules are inducted and then added to the rule set. 
 
Hybrid Vector Relevance Values 
 
In the original algorithm, rules are associated with their corresponding matching LaPlace 
heuristic.  The LaPlace heuristic is simply: 
 
 
 
ET considers each class individually (e.g., Class or NOT Class) so the # of classes in the 
domain is set to 2.   
 
A larger heuristic value is better and indicates how many examples are correctly 
predicted by a given rule.  To compute the heuristic, we must apply the rule to all training 
examples and count the number of cases in the numerator and denominator.  Note that 
this heuristic favors a rule that covers more examples than fewer examples.  For example, 
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if the rule correctly covers one example, the value is 2/3 = 0.667.  However, if the rule 
correctly covers two examples, the value is 3/4 = 0.75.  After the majority of cases have 
been covered by general rules, rules that cover 1 or 2 examples (and with heuristic values 
of 0.667 and 0.75 respectively) are commonly generated to cover outlying cases.  
Although these rules will generally have poor predictive power, they may be necessary to 
cover certain types of examples. 
 
The resulting LaPlace heuristic values do provide some indication of relevance for a new 
document.  If a document matches a rule with a heuristic value > 0.8, then that document 
is probably quite relevant.  Conversely, a document that only matches a rule with a 0.667 
value is probably not as relevant.  However, the LaPlace heuristic values typically occupy 
only a limited number of discrete values between 0.667 and 1 (but may be 0-1).  This 
range is not suitable for a variety of visualization techniques that require a finer mesh of 
discrimination between relevance values. 
 
To flesh out the relevance values, a vector comparison is made with the most frequent 
words collected from the positive examples.  Currently limited to the 50 most frequent 
words from all of the positive training examples, these words are normally generated by 
the rule induction algorithm and used as features for the rules.  Since these words are 
only taken from positive examples, they do not provide much help in determining if 
something is not a member of the profile.  However, they can help determine how 
strongly a new article matches the profile.  If all of the words (i.e. features) in a new 
article match a profile rule and also match all words in the profile, then that article is 
likely to be highly relevant.  However, if a new article matches a rule but only match one 
word in the profile, it is probably not as relevant as the previous example. 
 
The vector comparison is a simple binary comparison.  For a new article containing 
features F1 … Fi and a profile containing words P1 … Pj the relevance value is computed 
as: 
 
 NumMatches ! 0 
 For I ! 1 to NumFeaturesInArticle 
  For J ! 1 to NumFeaturesInProfile 
   If F(I) = P(J) then NumMatches++ 
 VectorRelevance ! NumMatches / I 
 
The resulting relevance value reflects the number of terms that match with respect to the 
size of the input document.  This is only a rough estimate of relevance; a better value 
could be determined if frequencies were retained and tf-idf values calculated, as is done 
in the normal vector profile.  Further work is necessary to determine if the extra statistics 
significantly improve the relevance values.  However, this rough relevance computation 
may be sufficient since the vector value is ultimately combined and averaged out with the 
LaPlace heuristic value.  Consequently, the impact of the relevance value alone is not as 
great since it is modified by the LaPlace value.  
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Two experiments were performed with different methods for combining the heuristic 
values.  The “split-value” method separates cases where a rule matches at 0.5: 
 

If BestLaPlaceMatch > MatchThreshold Then 
          Classify = 0.5 + ((BestLaPlaceMatch +VectorRelevance) / 2) * 0.5 

Else 
          Classify = VectorRelevance * 0.5 
     End If 
 
The MatchThreshold variable is a parameter that is used to control precision vs. recall.  A 
low threshold such as 0.66 will allow most rules to fire.  As a result, recall will be 
maximized but precision may be lower.  A higher threshold such as 0.8 will restrict the 
system to only more general rules.  For ultra-precision, a value above 0.9 can be used.  
As a result, precision will be maximized but recall may be lower.  This parameter can be 
mapped to a user-controlled knob so that the appropriate data may be retrieved based 
upon the desired application context. 
 
The split-value classification combination algorithm selects 0.5 as the cutoff point.  Any 
value less than 0.5 means that no rule was found that matched the input text, and the 
return value is the vector relevance scaled between 0 and 0.5.  If a rule does match, the 
algorithm returns 0.5 + the vector relevance added to the LaPlace heuristic, divided by 
their maximum combined value of 2 and then further scaled to a maximum of 0.5.  The 
end result in the case of a match is a value between 0.5 and 1. 
 
The second experiment simply averaged together the two heuristic values, using a value 
of 0 for BestLaPlaceMatch if the rule heuristic is not greater than the threshold: 
 

If BestLaPlaceMatch > MatchThreshold Then 
          Classify = (BestLaPlaceMatch +VectorRelevance) / 2)  

Else 
          Classify = VectorRelevance  / 2 
     End If 
 
This version of the heuristic should result in a smoother distribution of relevance values 
than the split method, but will not as clearly delineate cases where a rule does or does not 
match. 
 
Incremental Learning 
 
The simplest and likely the most accurate form of incremental learning is to retain all 
positive and negative examples.  As new training examples are provided they are simply 
added to the existing set and an entire new batch of rules is generated.  While this method 
will probably generate the best rules, it is computationally expensive to generate an entire 
set of new rules each time that a new training example is presented.  One solution is to 
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wait until “enough” new cases have been collected, and then do a new generation of rules 
all at once. 
 
For some applications, it is sufficient to induct rules once and then repeatedly use the 
generated rules.  However, other applications require incremental modifications to the 
profile.  As user interests change or additional training data becomes available after the 
initial training period, there should be a method to automatically update the profile to 
reflect the additional data.  Furthermore, the update process should complete in a 
reasonable amount of time. 
 
Instead of training an entire new set of rules, which is typically a time-consuming 
process, the profile was modified so that a single rule or set of rules could be generated 
and added to the existing rules.  This requires that all of the negative examples and some 
of the positive examples be retained in the profile.  At a minimum, the negative examples 
must be kept so that newly generated rules will cover as few negative cases as possible.  
To speed up the rule generation process, only a subset of the positive examples is used.  
At least one of the positive examples should be a new training case. 
 
By generating new rule(s) based upon the negative examples and only a subset of positive 
examples, the hope is that the rule induction process will run much faster than if all rules 
were generated from all examples.  Furthermore, if only a subset of positive examples is 
required, then the profile can discard many of the positive examples instead of 
remembering all examples.  This can potentially save considerable amounts of memory. 
 
Consider the case where positive and negative examples have been provided and rules 
have just been generated.  Now, the user has a single new positive example and would 
like to update the rule set to include this new example.  A number of possibilities exist: 
 

1) The new example is already covered by an existing rule.  If this is the case, 
then no new rules need to be inducted. 

2) A new rule can be inducted that covers the new example using existing 
features. 

3) A new rule cannot be inducted that covers the new example using existing 
features, and new features must be added and a new rule generated. 

 
The hybrid rule profile addresses all of these possibilities in order.  If the example is 
already covered, then no action is taken.   Otherwise, the system attempts to generate a 
new rule using the single positive example and all of the negative examples.  If a rule 
cannot be found, then the most frequently occurring feature in the new example that is 
not already in the profile’s feature set is selected.  This new feature is added to the 
profile’s feature set.  The process is repeated to induct a new rule and the next most 
frequently occurring feature added if necessary. 
 
By retaining all of the negative examples, the new rule that is inducted should have little 
impact on existing rules.  That is, it should not cause a large contribution to false 
positives since all known negative examples were considered in generating the rule.  
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However, the new rule is likely to be highly specific and may only cover the new positive 
example and not any other examples.  Under this scenario, the largest LaPlace heuristic 
that will be generated for new rules is 0.667 since each time we induct rules, we will only 
have one positive example. 
 
To induct more general rules requires the addition of more positive examples.    
However, instead of using all positive examples, a small set of the last N positive 
examples can be used, where N is a number such as 3 or 10. This is a type of “sliding 
window” technique where a set of old positive examples may be reused with new positive 
examples to generate new rules. In this manner, N new examples may be added at once 
and then all N examples used to induct rules, or 1 new example can be added but the last 
N positive examples used to induct rules.  In the last case, we are looking for just one 
additional rule that covers the single new example.  However, if this rule also covers 
other positive examples (that already happen to be covered by other rules) then the new 
rule will likely be more general than a rule that covers only the new example.   
 
The implementation of this process requires a few modifications to the induction 
algorithm: 
 
CN2Unordered2(allExamples, numPositive, Ruleset, knownClass) 
 tempRuleset ! {} 
 tempExamples ! {} 
 For each negative example in allExamples 
  Add negative example to tempExamples 
 For most recent numPositive positive examples in allExamples 
  Add positive example to tempExamples 
 If Ruleset covers all positive examples in tempExamples then 

Return Ruleset 
 else 

 Do 
   Rule R ! CN2ForOneClass(tempexamples, knownClass)  ‘ Induct rule 
   If R is not in Ruleset then Add R to Ruleset 

 While R <> empty 
 Return Ruleset 
 
The modified procedure takes all known examples, the existing ruleset, and the number 
of positive examples to use, and the class that we want to induct rules for.  All negative 
examples and the most recent positive examples, up to the desired threshold, are used for 
generating rules.  If the existing ruleset already covers all known positive examples then 
no work needs to be done.  Otherwise, rules are inducted using the normal procedure and 
any duplicates are discarded.  
 
4.  Reuters-21578 Test Runs 
 
The Reuters-21578 test collection that was used in the original experiments was also used 
to test the performance of the modified hybrid rule profile.   To simulate how a user may 
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train their profiles in practice, experiments were conducted in two phases: an initial 
training phase, and then an incremental training phase.  In the initial training phase, a 
large set of positive and negative examples was selected for rule induction.  In the 
incremental training phase, additional rules were inducted as small batches of new 
positive examples were supplied.  After both phases were complete, the resulting rules 
were run on the test set using various cutoff thresholds for the rule heuristic value.   This 
process intends to model the way a user will initially generate rules, use the results, and 
then train the profile further in real-time using the results of the generated rules. 
 
In the initial training phase, rules were inducted using a set of positive and negative 
examples.  400 negative examples were randomly selected for training.  If the total 
number of positive examples available was less than 40, then all positive examples were 
used for training.  Otherwise, the first 33% of the positive examples were used.  The 
positive examples were selected in order, i.e., if there were 300 positive examples total, 
then the first 100 positive examples were used.   
 
In the incremental training phase, up to100 positive examples were selected in order for 
training using the remaining positive examples.  As iteration proceeded through these 
remaining positive examples, they were added to the profile in order and rules were 
inducted in batches of N in different experimental runs.  These rules were added to the 
existing rules that were generated in the initial training phase. 
 
Two parameters were varied during these runs.  First, the batch size for incremental 
induction was varied.  This parameter was set to 0, 1, 4, and 10.  At a value of 0, no 
incremental induction was used and testing proceeded only on the rules inducted in the 
initial training phase.  At a setting of 1, only the current new message was used as a 
positive training example.  At a setting of 4, the current new message plus the 3 most 
recent positive messages were used as positive training examples, etc.  Note that the 
batch size refers to the number of positive messages used for inducing rules, not the 
number of messages that are added for training before rules are inducted (although 
certainly a viable procedure).  Instead, rules were inducted on every single incremental 
message using the specified batch size.  An additional run was conducted using all 
incremental messages in one batch induction.  This was expected to give the best results, 
while the run that ignores the incremental messages should be the worst. 
 
The second parameter varied was the rule confidence threshold.  This parameter was set 
to 0.65, 0.69, and 0.79.  Any rules that have a LaPlace heuristic smaller than the threshold 
are discarded.   A value of 0.65 will retain rules that cover only a single positive example.  
A value of 0.69 will discard rules that cover only a single value, but retain rules that 
cover two examples.  Similarly, a value of 0.79 will discard rules that cover less than 
three positive examples.  A larger threshold results in increased precision, but lower 
recall.  Since there are discrete threshold for performance, this parameter is an excellent 
candidate for a “knob” that the user can adjust for desired performance. 
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Hybrid Profile Results 
 
After profiles were generated, statistics were gathered for the “acq” category while the 
profile classified test data.  The heuristic values were collected and a histogram plotted 
for test data that belonged to the category and test data that did not belong to the 
category.  The results using the “split-value” combination scheme are shown in the figure 
below: 

 
The histogram plots the number of documents that were classified with a particular 
relevance value.  The green line depicts the relevance values for test set documents that 
belong to the category, while the red line depicts the relevance values for test set 
documents that did not belong to the category. 
 
Due to the nature of the heuristic, which splits the heuristics around 0.5, the result is a 
double distribution centered on positives and negatives.  The green hump centered at 0.8 
represents the rules the true positives, while the green hump centered at 0.15 represents 
the positives that were missed.  Similarly, the red hump centered on 0.75 represents the 
false positives, while the red hump centered at 0.1 represents the true negatives. 
 
Overall, the split heuristic appears effective at separating the positives from the negatives, 
but does result in a fairly narrow range (0.7-0.9 in this case) of values for positive cases.   
 
The results using the average heuristic scheme, which simply averages together the 
LaPlace and Vector values, is shown below: 
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While the average heuristic scheme still results in two distinct humps for true positives 
and missed positives, the false negatives have been smoothed out compared to the split 
scheme.  Similarly, the standard deviation for the positives is greater, resulting in slightly 
more discriminating relevance values. 
 
While both schemes have a limited distribution range, the humps are typical of a normal 
distribution.  This facilitates visualization systems that would otherwise fail if only 
discrete, binary rule thresholds were available. 
 
Incremental Rule Induction Results 
 
If the incremental rule induction strategy is successful, then the precision/recall 
performance should be superior in the incremental induction trials than in the trials where 
no incremental induction is performed.  However, the strategy may be unsuccessful if the 
rules inducted during incremental induction are poor and trigger a large number of false 
hits.  This is a possibility since the incremental rules are generated with a small set of 
positive examples. 
 
Five different test runs were performed.  For each run, the rule confidence threshold 
parameter was set to 0.65, 0.69, and 0.79 to explore the tradeoff between precision and 
recall.  The plots shown are the average between two separate trials.  To smooth the 
curves, additional trials should be run, but have been postponed due to time constraints.  
The precision/recall curves for the runs are shown in the figure below.  Note that these 
results are not directly comparable to the results from the previous report since fewer 
training examples are being used and in a different distribution. 
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The first run in green depicts the performance without any incremental training.  As 
expected, it performs the worst out of all runs with a precision and recall curve 
underneath all others and a breakeven point of about 0.66.  This is expected since the trial 
does not use any of the data that the incremental training algorithms use. The results do 
show that the rules generated by incremental training actually help improve classification 
performance than if the rules are not generated at all.  However, care must be taken: rules 
with low heuristic values tend towards high recall but low precision.  For better precision, 
larger rule thresholds should be selected. 
 
The second run in red shows the performance when the batch size is 1; that is, only the 
one single positive example is used when inducing new rules during the incremental 
training phase.   The rules generated using only a single positive example are not very 
general, and the graph reflects this problem through improved recall but lower precision 
at low thresholds (bottom right end of the graph).  Since the rules generated during the 
incremental phase will all be 2/3 or lower due to the single positive example, 
performance mirrors the training examples when no incremental training is done as the 
rule activation threshold increases. 
 
The blue and purple lines indicate the performance when the batch size is set to 4 or 10.  
While the precision is still low at small threshold settings, the precision moves up as the 
threshold is increased.  This indicates that useful rules are being generated during the 
incremental training process, and that the most useful rules cover more than one positive  
example (and therefore continue to fire as the threshold setting is increased).  Using a 
batch size of 10, the breakeven point is approximately 0.68. 
 
Finally, the curve in yellow depicts the performance when the same messages used in the 
incremental training are added to the profile without inducting rules, and one single batch 
of rules is inducted at the end.  The performance of this run appears best for high 
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precision and has a projected breakeven point of approximately 0.70.  As expected, this is 
the best breakeven point of all the runs and is intended to show an upper bound on 
performance if incremental training is not necessary. 
 
5. Conclusions 
 
These experiments focused on two issues: providing a smooth distribution of relevance 
values and providing a mechanism for incremental learning.  The hybrid relevance profile 
that consists of vector evaluations and rule heuristics do result in normal relevance 
distributions lumped around positive and negative classifications.  This should be useful 
for visualization and ranking documents in finer detail than the previous system that only 
provided discrete relevance values. 
 
Although not dramatic, the incremental learning modifications also showed 
improvements over the lack of incremental learning.  However, performance was still 
slow to induct the incremental rules, 5-10 minutes per 500 document profile on a 
computer system with a single 200 MHz Pentium Pro processor.  While this is too slow 
to be performed in real time, it is an operation that could be performed as a background 
task or may be suitable for real time as processor performance increases.  The results also 
show that the rule threshold is a simple knob that can be turned to adjust precision vs. 
recall.  Finally, at some point a completely new set of inducted rules appears to perform 
better for higher precision than the incremental rules, and this could also be factored in if 
the processor time is available. 
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