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Abstract 
 
Computer games have long been a fruitful and 
challenging area for the application of AI 
technologies.  The empire-based strategy game is one 
genre that presents unique challenges to the 
implementation of an AI-based player due to the 
extremely large search space.  Consequently, a 
majority of AI systems utilize ad hoc strategies such 
as hand-built finite state automata.   While practical, 
this approach limits the computer player to the 
strategies designed by the programmer.  A more 
flexible approach allows the computer to adaptively 
search for promising moves. This paper proposes a 
hierarchical architecture that breaks the problem 
space into manageable units.  Through aggressive 
pruning strategies heuristic search may be employed 
across the hierarchical levels.  The new search space 
examines approximately (nmd+1) states for m moves, n 
pieces, and a search depth of d.  In comparison, full 
search requires the examination of approximately 
(mn)d states.  This technique was implemented on a 
simple empire-style game that generated expected 
results 
 
1. Introduction 
 
The public has often viewed the ability of a 
computer to play strategy games as a measuring 
stick for the progress of artificial intelligence.  
For example, great attention has been placed on 
the ability of computer programs to beat the top 
humans in chess, checkers, or go.   While this 
view is not representative of AI as a field, 
computer games do offer an excellent venue to 
test and apply various AI techniques.    These 
techniques range from machine learning to 
navigation, natural language processing, or 

character behavior modeling [1].  Recently, with 
competitions such as RoboCup and extensible 
software interfaces for commercial programs, 
there has been more interest from the academic 
community to pursue computer games as an 
application area for research [2].  
  One genre of computer games is the 
empire-based strategy game.  The empire 
strategy game typically involves conquest of the 
world through the control of combat units and 
economic resources.  The world is often a 
hexagonal or grid-based map filled with combat 
units, resources, land, water, etc.  Players take 
turns moving their pieces or may play in near 
real-time.  Examples of such games include Age 
of Empires, Command and Conquer, Warcraft, 
or Civilization.  I denote these as empire-based 
games named after the freely available UNIX 
game “empire,” which was one of the first such 
games in this genre. 

While the format and rules will vary 
from game to game, all empire-based games 
allow a player to move more than one combat 
unit per turn, or move no unit at all.  This is 
notably different from a “classical” board game 
like chess or checkers, where a player may only 
move a single unit per turn.  The ability to move 
multiple units per turn creates an extremely 
large problem space that makes traditional 
search techniques like minimax difficult to 
apply.   

For example, consider a 2-player 
scenario where each player has n units and each 
unit always has m moves available.  Since each 
player may move any or all of his units during 
their move, we must consider the combination 



of moving all n pieces as a single move for 
minimax.  This results in a total of mn 
combinations or mn different moves.  The 
branching factor b for a minimax game tree is 
the number of available moves from each state 
in the game tree.  If b= mn and we wish to 
search ahead to a depth of d (starting at d=0) 
then we must evaluate a total of (mn)d states.  
Clearly this is a prohibitively large search space 
even for small values of n and m. 

Given this large search space, most 
commercial games use hard-coded finite state 
machines (FSM) to implement the artificial 
intelligence of a computer opponent [5, 8].  For 
example, the FSM may model the internal state 
of its units, and if a unit has low strength that 
unit might be instructed to retreat.  While a 
large FSM may be complex, this technique does 
allow the computer opponent to play as 
intelligently as the programmer can encode 
directly.  However, the obvious drawback is that 
this technique is static.  Once a human opponent 
learns the strategies encoded in the FSM, the 
human can easily devise a strategy to thwart the 
computer and the computer will never be 
capable of countering the human’s strategy due 
to the programming limitations.  To address this 
problem, many game programs “cheat” to 
compensate for their lack of adaptive strategic 
skills [9]. 

Other AI techniques used in games 
include genetic algorithms, neural networks and 
autonomous agents [9].  As noted by Woodcock, 
the neural network and genetic algorithm 
approaches have been difficult to implement 
successfully.  Autonomous agents are typically 
implemented via FSM and it becomes difficult 
to centrally coordinate agents without additional 
communication mechanisms. 
 
2. Proposed Methodology - 
Hierarchical, Heuristic Search 
 
Using the FSM method, a computer program 
will never be better than its creator.  Obviously 
this is not the case for many games, such as 
chess, where computer programs can play at a 
level far superior to that of their programmer.   

 The solution is to rely upon the brute 
force power of the computer to perform 
heuristic search to find good moves.  In this 
project I propose a similar approach for empire-
based games.  By using heuristic search 
combined with lookahead, a computer player 
will be able to make the appropriate move that 
maximizes the heuristic instead of relying on 
pre-encoded strategies.   

The difficulty with heuristic search in 
empire games lies in the complexity of the 
search space.  To address this problem, 
techniques must be established that prune large 
sections of the search tree [4].    These 
techniques are likely to be domain-specific.  In 
this work we propose some fairly general 
techniques that are likely to apply to most 
empire-based games. 
 
2.1 Hierarchical AI 
 
The first technique is to split the problem space 
up into manageable chunks via a hierarchical 
organization much like the chain of command in 
modern military forces [3].  As described by 
Luppnow, in actual military forces a general 
does not concern himself with the movements of 
individual soldiers.  It does not make sense for a 
computer program to do the same.  For example, 
we might control the AI with a general at the top 
of the hierarchy, several commanders in the 
middle of the hierarchy, and a large number of 
soldiers at the bottom of the hierarchy as shown 
in figure 1. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Hierarchical Problem Space 
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abstract as “defend cities”, “all-out offensive”, 
“re-supply front line”, “control sector A”,  or 
“control bridges”.  The actual set of strategic 
moves will be specific to a particular game and 
also challenging to determine and implement.  
Equally challenging are heuristics that can be 
applied at the strategic level.  For example, 
heuristics might favor the control of resources 
or the control of enemy territory.  The heuristic 
might be adjusted during the course of the game 
by rules encoded by the programmer.   

By encoding heuristics and moves at a 
high, generalized level, we can now perform 
minimax search at the level of the generals.  
That is, each general makes abstract strategic 
moves to generate a search tree, and we select 
the move that leads to a state that maximizes our 
heuristic.  This type of search is feasible since 
the problem space of the generals is of much 
lower complexity than the problem space of all 
individual units combined.    Note that a single 
“move” at the level of the general likely 
encompasses many moves for a single soldier, 
so in effect we are performing a deep lookahead 
for the individual soldiers. 

After the general has performed its 
minimax routine and selected a move, the 
results of the move are passed down the 
hierarchy to the commanders in the form of 
orders.  Each commander performs a similar job 
to the general, but only within the scope of each 
commander’s domain.  For example, a 
commander might be in charge of a small region 
of the map and will only concern itself with 
units within that region.  The order passed down 
from the general specifies what the heuristic 
function should be for each commander.   

For example, if the general has selected 
“all-out-offensive” then the heuristic for the 
commander will maximize those states that 
attack enemy units.  If the general has selected 
“defend cities” then the heuristic will maximize 
those states that place units inside or near to 
cities.  Using minimax, the commander will then 
search through its available moves to find the 
move that maximizes the heuristic.  Moves at 
the level of the commander might be as specific 
as “Move unit A to coordinate 1,3” or “Attack 
enemy unit Z with unit A.”   

Finally, the orders from the 
commanders propagate down to the individual 
soldier units.  These units may either execute 
the order directly or perform a unit-level 
minimax search.  For example, if a unit is 
instructed to engage another unit in combat and 
has multiple options available, the soldier may 
perform a shallow search through the available 
options to find the most effective one.   
 
2.2 Minimax Pruning Strategies 
 
While the strategy outlined above will help 
break the problem space up into smaller and 
more manageable chunks, we still must deal 
with the combinatorial explosion of searching 
through multiple units that may be moved 
simultaneously.  For example, consider a 
commander with a modest three units under its 
control where each unit has 9 moves available.  
If the enemy also has three units in the 
commander’s region, then by the analysis from 
section one we will require (93)d or 729d states 
to examine, where d is the search depth.  With a 
branching factor as large as 729 we will need to 
create and examine 2.8 * 1011 states for a 
modest lookahead of four moves!   

On one hand, a deep search depth may 
not be necessary at the level of the commanders 
or below since a deep search is performed 
implicitly at higher levels in the command 
hierarchy.  Nevertheless, an extremely shallow 
search of 2 to 4 moves may be insufficient 
lookahead to generate good moves.  To address 
this issue we must implement further pruning of 
the problem space.  One technique is to: 
 
•  Select a unit controlled by the commander 
• Apply minimax to determine a move for that 
piece and apply the move 
• Repeat for the next unit controlled by the 
commander 
 

After all pieces have moved then we 
switch turns to the opponent.  For real-time 
games, we will need to either complete the 
entire turn within a time limit or have the 
capability of applying the search across 
multiple, short turns. 



To apply minimax we must now reduce 
the complexity of the problem space.  The 
technique proposed here is to perform a full 
search of all possible moves only for selected 
units on the map (e.g., the selected piece and 
selected critical opponent(s)).  We must not 
ignore all other pieces, however, as the moves 
they make can certainly influence the moves our 
selected piece should make.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

However, instead of performing a full 
search for the other pieces, we instead perform a 
search to a depth of 1 moving that piece only 
(i.e. pick the single move for the piece that best 
maximizes the heuristic for us, or best 
minimizes the heuristic for the opponent).   An 
alternate technique is to remember the prior 
move selected when this piece searched ahead, 
and apply it during this phase. 

Figure 2 shows a sample problem of 3 
units with 2 moves each.  Each move is either 
“X” or “Y” and unit 3 is the selected piece to 
expand the tree for both min and max: 
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Figure 2: Pruning minimax states 



  In the general case, given n pieces and 
m moves per piece, if we limit ourselves to 
selecting a single piece for which we generate 
all moves for both the maximizing and 
minimizing player, then at each node in the tree 
we examine mn states as we apply the heuristic 
to each individual piece.  The branching factor, 
however, has been reduced to m instead of mn.   
If we now search to a depth of d, we will 
examine a total of ( ))1( −dmmn  internal states 
plus dm leaf states or approximately ( )1+dnm  
states.   While still compute intensive, this is 
much smaller than the space of (mn)d states 
required for the full search.    Given our 
hypothetical example where n=3, m=9, and d=4 
we originally needed to examine 2.8 * 1011 
states.  Using the pruning algorithm we instead 
examine approximately 2.4 * 105 states. 

Unfortunately, we are not quite finished 
yet – the above analysis only applies to the 
evaluation to select a move for a single piece.  
Based on the algorithm we must apply this 
routine for all pieces, resulting in an additional 
factor of n for an overall complexity of 
O(n2md+1). 

While certainly compute-intensive, this 
complexity is feasible for small values of n and 
m.  Additionally, up to half of the states may be 
pruned using alpha-beta pruning [6]. 
 
3. Experiment – Empire Lite 
 
To gauge the effectiveness of the pruning 
algorithm, a simple empire-style game, Empire 
Lite, was created.  Empire Lite simulates the 
work that may be done at the level of an 
individual commander using the pruning 
algorithm. Implementation of the hierarchical 
architecture is left for future work. 

Empire Lite is played by two players on 
a 10x10 rectangular grid.  Units may move one 
square left, right, up, down, diagonally, or 
nowhere for a total of 9 possible moves.  
Diagonal moves allow movement over a farther 
distance by 2 , so in the future a hexagonal 
board is preferable.  If two units engage in 
combat with equal strength, both lose one point 
value.  If one unit has a higher strength than the 

other, the unit with higher strength loses one 
point value and the lower strength unit loses two 
point values.  Units are removed when their 
strength drops to zero or below. 

The only economic resource in Empire 
Lite is cities.  Initially unoccupied, once a unit 
moves into a city it becomes owned by that 
player.  All of the unit’s pieces then increase in 
strength by a value of one.  If an occupied city is 
captured, the original owner loses a strength 
point for all units and the captor gains a point 
for all units. 

The heuristic employed in this 
experiment was a weighted polynomial that 
favored occupying cities, having stronger 
pieces, being close to empty cities, and then 
being close to enemy units: 
 
H = 20(Num_A_Cities – Num_B_Cities) + 
 10(Total_A_Strength – Total_B_Strength) +  
 5(∑all_units(10-Closest_Dist_To_City))+  
 1(∑all_units(10-Closest_Dist_To_Enemy_Unit)) 
 
3.1 Experimental Results 
 
Using a 1.6 GHz Pentium IV processor on a 
game with three pieces per player, the computer 
was able to search 6 moves ahead in about 4 
seconds for all three pieces.  The end result was 
a computer player capable of reasonable play, 
sometimes achieving a stalemate. A few 
examples of play that benefited from the 
minimax search are shown in figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 : Example Game Playing Scenarios 
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In figure 3a, the **’s indicate empty 
cities.  The two pieces belonging to player A 
have strength of 4 and 6 respectively.  If these 
pieces were operating independently, they 
would both head toward the city at (0,1) to 
occupy it.  However, using minimax search, 
piece a6 recognizes that a4 will occupy the city 
and instead heads toward the city at (2,3).   

In figure 3b, the bold B7 indicates a city 
currently occupied by enemy piece B with 
strength of 7.  If pieces a4 and a6 were operating 
independently, they would not attack B7 since it 
is stronger than each individually.   However, 
through minimax lookahead, piece a4 attacks B7 
recognizing that it may sacrifice itself allowing 
a6 to later overwhelm the city.  
 
4. Future Work 
 
Although the examples shown above are not 
particularly brilliant moves, they do illustrate 
intelligent play without the use of hard-coded 
rules.  Hopefully this work illustrates the 
potential for heuristic search in empire-based 
games that may one day lead to computer 
opponents that can rival the best human players. 

Much additional work needs to be done 
to accomplish this feat.  As described 
previously, it is difficult to describe and 
implement the search space at the level of the 
general.   For example, what is available to 
move?  What is a unit at this level?   A 
combination of heuristic search and rule-based 
methods may be most practical.  Another 
problem is the issue of how to break the 
problem space up into meaningful chunks 
dynamically.  For example, a commander should 
have control of applicable units, not necessarily 
all units within a fixed radius.  Techniques such 
as influence mapping may be helpful in 
determining strategic dispositions [7].   Finally, 
the runtime of the pruning algorithm may still 
be too large for mainstream programs, and 
require further pruning mechanisms. 
 
 
 
 
 

5. References 
 
[1] Funge, John.  (1999).  AI for Computer 

Games and Animation: A Cognitive 
Modeling Approach.   A K Peters Ltd.   

[2] Laird, J. and Van Lent, M.  (2001).  Human-
Level AI’s Killer Application:  Interactive 
Computer Games.  Communications of the 
ACM, 22(2), 2001. 

[3] Luppnow, Andrew.  (December, 1994).  
Hierarchical AI.  Retrieved 2/20/2002 from 
http://www.gamedev.net/reference/articles/a
rticle199.asp 

[4] Nahr, Christoph. (1999).  Computer Players 
in the Star Chess Game.   Technical Report, 
17th August 1999. 

[5] Patel, Amit (Ed.).  (July, 1993).  AI In 
Empire-Based Games .  Retrieved 2/20/2002 
from 
http://www.gamedev.net/reference/articles/a
rticle196.asp 

[6] Pearl, Judea.  (September, 1980). 
Asymptotic properties of minimax trees and 
game-searching procedures, AI Journal 
14(2), pp.113-138. 

[7] Woodcock, Steven (Ed.).  (July, 1995).  
Recognizing Strategic Dispositions thread.  
Retrieved 2/20/2002 from 
http://www.gamedev.net/reference/articles/a
rticle1085.asp 

[8] Woodcock, Steven.  Game AI: The State of 
the Industry.  Game Developer Magazine, 
August 2001. 

[9] Woodcock, Steven.  (n.d.)  Games Making 
Interesting Use of Artificial Intelligence 
Techniques. Retrieved 2/20/2002 from 
http://www.gameai.com/games.html 


