

Hierarchical Heuristic Search Techniques for Empire-
Based Games

Kenrick Mock

University of Alaska Anchorage
Dept. of Mathematical Sciences, Computer Science

3211 Providence Dr. Anchorage, AK 99508
kenrick@uaa.alaska.edu

Abstract

Computer games have long been a fruitful and
challenging area for the application of AI
technologies. The empire-based strategy game is one
genre that presents unique challenges to the
implementation of an AI-based player due to the
extremely large search space. Consequently, a
majority of AI systems utilize ad hoc strategies such
as hand-built finite state automata. While practical,
this approach limits the computer player to the
strategies designed by the programmer. A more
flexible approach allows the computer to adaptively
search for promising moves. This paper proposes a
hierarchical architecture that breaks the problem
space into manageable units. Through aggressive
pruning strategies heuristic search may be employed
across the hierarchical levels. The new search space
examines approximately (nmd+1) states for m moves, n
pieces, and a search depth of d. In comparison, full
search requires the examination of approximately
(mn)d states. This technique was implemented on a
simple empire-style game that generated expected
results

1. Introduction

The public has often viewed the ability of a
computer to play strategy games as a measuring
stick for the progress of artificial intelligence.
For example, great attention has been placed on
the ability of computer programs to beat the top
humans in chess, checkers, or go. While this
view is not representative of AI as a field,
computer games do offer an excellent venue to
test and apply various AI techniques. These
techniques range from machine learning to
navigation, natural language processing, or

character behavior modeling [1]. Recently, with
competitions such as RoboCup and extensible
software interfaces for commercial programs,
there has been more interest from the academic
community to pursue computer games as an
application area for research [2].
 One genre of computer games is the
empire-based strategy game. The empire
strategy game typically involves conquest of the
world through the control of combat units and
economic resources. The world is often a
hexagonal or grid-based map filled with combat
units, resources, land, water, etc. Players take
turns moving their pieces or may play in near
real-time. Examples of such games include Age
of Empires, Command and Conquer, Warcraft,
or Civilization. I denote these as empire-based
games named after the freely available UNIX
game “empire,” which was one of the first such
games in this genre.

While the format and rules will vary
from game to game, all empire-based games
allow a player to move more than one combat
unit per turn, or move no unit at all. This is
notably different from a “classical” board game
like chess or checkers, where a player may only
move a single unit per turn. The ability to move
multiple units per turn creates an extremely
large problem space that makes traditional
search techniques like minimax difficult to
apply.

For example, consider a 2-player
scenario where each player has n units and each
unit always has m moves available. Since each
player may move any or all of his units during
their move, we must consider the combination

of moving all n pieces as a single move for
minimax. This results in a total of mn
combinations or mn different moves. The
branching factor b for a minimax game tree is
the number of available moves from each state
in the game tree. If b= mn and we wish to
search ahead to a depth of d (starting at d=0)
then we must evaluate a total of (mn)d states.
Clearly this is a prohibitively large search space
even for small values of n and m.

Given this large search space, most
commercial games use hard-coded finite state
machines (FSM) to implement the artificial
intelligence of a computer opponent [5, 8]. For
example, the FSM may model the internal state
of its units, and if a unit has low strength that
unit might be instructed to retreat. While a
large FSM may be complex, this technique does
allow the computer opponent to play as
intelligently as the programmer can encode
directly. However, the obvious drawback is that
this technique is static. Once a human opponent
learns the strategies encoded in the FSM, the
human can easily devise a strategy to thwart the
computer and the computer will never be
capable of countering the human’s strategy due
to the programming limitations. To address this
problem, many game programs “cheat” to
compensate for their lack of adaptive strategic
skills [9].

Other AI techniques used in games
include genetic algorithms, neural networks and
autonomous agents [9]. As noted by Woodcock,
the neural network and genetic algorithm
approaches have been difficult to implement
successfully. Autonomous agents are typically
implemented via FSM and it becomes difficult
to centrally coordinate agents without additional
communication mechanisms.

2. Proposed Methodology -
Hierarchical, Heuristic Search

Using the FSM method, a computer program
will never be better than its creator. Obviously
this is not the case for many games, such as
chess, where computer programs can play at a
level far superior to that of their programmer.

 The solution is to rely upon the brute
force power of the computer to perform
heuristic search to find good moves. In this
project I propose a similar approach for empire-
based games. By using heuristic search
combined with lookahead, a computer player
will be able to make the appropriate move that
maximizes the heuristic instead of relying on
pre-encoded strategies.

The difficulty with heuristic search in
empire games lies in the complexity of the
search space. To address this problem,
techniques must be established that prune large
sections of the search tree [4]. These
techniques are likely to be domain-specific. In
this work we propose some fairly general
techniques that are likely to apply to most
empire-based games.

2.1 Hierarchical AI

The first technique is to split the problem space
up into manageable chunks via a hierarchical
organization much like the chain of command in
modern military forces [3]. As described by
Luppnow, in actual military forces a general
does not concern himself with the movements of
individual soldiers. It does not make sense for a
computer program to do the same. For example,
we might control the AI with a general at the top
of the hierarchy, several commanders in the
middle of the hierarchy, and a large number of
soldiers at the bottom of the hierarchy as shown
in figure 1.

Figure 1. Hierarchical Problem Space

The general operates at a very high
strategic level. For example, moves might be as

General

Commanders

Soldier
Units

High Level Strategy

Localized
Strategy

Unit Level Strategy

abstract as “defend cities”, “all-out offensive”,
“re-supply front line”, “control sector A”, or
“control bridges”. The actual set of strategic
moves will be specific to a particular game and
also challenging to determine and implement.
Equally challenging are heuristics that can be
applied at the strategic level. For example,
heuristics might favor the control of resources
or the control of enemy territory. The heuristic
might be adjusted during the course of the game
by rules encoded by the programmer.

By encoding heuristics and moves at a
high, generalized level, we can now perform
minimax search at the level of the generals.
That is, each general makes abstract strategic
moves to generate a search tree, and we select
the move that leads to a state that maximizes our
heuristic. This type of search is feasible since
the problem space of the generals is of much
lower complexity than the problem space of all
individual units combined. Note that a single
“move” at the level of the general likely
encompasses many moves for a single soldier,
so in effect we are performing a deep lookahead
for the individual soldiers.

After the general has performed its
minimax routine and selected a move, the
results of the move are passed down the
hierarchy to the commanders in the form of
orders. Each commander performs a similar job
to the general, but only within the scope of each
commander’s domain. For example, a
commander might be in charge of a small region
of the map and will only concern itself with
units within that region. The order passed down
from the general specifies what the heuristic
function should be for each commander.

For example, if the general has selected
“all-out-offensive” then the heuristic for the
commander will maximize those states that
attack enemy units. If the general has selected
“defend cities” then the heuristic will maximize
those states that place units inside or near to
cities. Using minimax, the commander will then
search through its available moves to find the
move that maximizes the heuristic. Moves at
the level of the commander might be as specific
as “Move unit A to coordinate 1,3” or “Attack
enemy unit Z with unit A.”

Finally, the orders from the
commanders propagate down to the individual
soldier units. These units may either execute
the order directly or perform a unit-level
minimax search. For example, if a unit is
instructed to engage another unit in combat and
has multiple options available, the soldier may
perform a shallow search through the available
options to find the most effective one.

2.2 Minimax Pruning Strategies

While the strategy outlined above will help
break the problem space up into smaller and
more manageable chunks, we still must deal
with the combinatorial explosion of searching
through multiple units that may be moved
simultaneously. For example, consider a
commander with a modest three units under its
control where each unit has 9 moves available.
If the enemy also has three units in the
commander’s region, then by the analysis from
section one we will require (93)d or 729d states
to examine, where d is the search depth. With a
branching factor as large as 729 we will need to
create and examine 2.8 * 1011 states for a
modest lookahead of four moves!

On one hand, a deep search depth may
not be necessary at the level of the commanders
or below since a deep search is performed
implicitly at higher levels in the command
hierarchy. Nevertheless, an extremely shallow
search of 2 to 4 moves may be insufficient
lookahead to generate good moves. To address
this issue we must implement further pruning of
the problem space. One technique is to:

• Select a unit controlled by the commander
• Apply minimax to determine a move for that
piece and apply the move
• Repeat for the next unit controlled by the
commander

After all pieces have moved then we
switch turns to the opponent. For real-time
games, we will need to either complete the
entire turn within a time limit or have the
capability of applying the search across
multiple, short turns.

To apply minimax we must now reduce
the complexity of the problem space. The
technique proposed here is to perform a full
search of all possible moves only for selected
units on the map (e.g., the selected piece and
selected critical opponent(s)). We must not
ignore all other pieces, however, as the moves
they make can certainly influence the moves our
selected piece should make.

However, instead of performing a full
search for the other pieces, we instead perform a
search to a depth of 1 moving that piece only
(i.e. pick the single move for the piece that best
maximizes the heuristic for us, or best
minimizes the heuristic for the opponent). An
alternate technique is to remember the prior
move selected when this piece searched ahead,
and apply it during this phase.

Figure 2 shows a sample problem of 3
units with 2 moves each. Each move is either
“X” or “Y” and unit 3 is the selected piece to
expand the tree for both min and max:

Unit 1

Heur=H1

Heur=H2Y

X

Unit 1

Heur=H1

Heur=H2Y

X

Selects move to
maximize heuristic

Unit 2

Heur=H1

Heur=H2Y

X

Unit 2

Heur=H1

Heur=H2Y

X

Unit 3

U1 move,
U2 move, Y

U1 move,
U2 move, X

Unit 3

U1 move,
U2 move, Y

U1 move,
U2 move, X

Combine move with
above selections

Max
Player

Selects move to
minimize heuristic Min

PlayerUnit 1

Heur=H1

Heur=H2Y

X

Unit 1

Heur=H1

Heur=H2Y

X

Unit 2

Heur=H1

Heur=H2Y

X

Unit 2

Heur=H1

Heur=H2Y

X

Unit 3

U1 move,
U2 move, Y

U1 move,
U2 move, X

Unit 3

U1 move,
U2 move, Y

U1 move,
U2 move, X

Combine move with
above selections

…

…
Unit 1

Heur=H1

Heur=H2Y

X

Unit 1

Heur=H1

Heur=H2Y

X

Unit 2

Heur=H1

Heur=H2Y

X

Unit 2

Heur=H1

Heur=H2Y

X

Unit 3

U1 move,
U2 move, Y

U1 move,
U2 move, X

Unit 3

U1 move,
U2 move, Y

U1 move,
U2 move, X

…

…

Min

Figure 2: Pruning minimax states

 In the general case, given n pieces and
m moves per piece, if we limit ourselves to
selecting a single piece for which we generate
all moves for both the maximizing and
minimizing player, then at each node in the tree
we examine mn states as we apply the heuristic
to each individual piece. The branching factor,
however, has been reduced to m instead of mn.
If we now search to a depth of d, we will
examine a total of ())1(−dmmn internal states
plus dm leaf states or approximately ()1+dnm
states. While still compute intensive, this is
much smaller than the space of (mn)d states
required for the full search. Given our
hypothetical example where n=3, m=9, and d=4
we originally needed to examine 2.8 * 1011
states. Using the pruning algorithm we instead
examine approximately 2.4 * 105 states.

Unfortunately, we are not quite finished
yet – the above analysis only applies to the
evaluation to select a move for a single piece.
Based on the algorithm we must apply this
routine for all pieces, resulting in an additional
factor of n for an overall complexity of
O(n2md+1).

While certainly compute-intensive, this
complexity is feasible for small values of n and
m. Additionally, up to half of the states may be
pruned using alpha-beta pruning [6].

3. Experiment – Empire Lite

To gauge the effectiveness of the pruning
algorithm, a simple empire-style game, Empire
Lite, was created. Empire Lite simulates the
work that may be done at the level of an
individual commander using the pruning
algorithm. Implementation of the hierarchical
architecture is left for future work.

Empire Lite is played by two players on
a 10x10 rectangular grid. Units may move one
square left, right, up, down, diagonally, or
nowhere for a total of 9 possible moves.
Diagonal moves allow movement over a farther
distance by 2 , so in the future a hexagonal
board is preferable. If two units engage in
combat with equal strength, both lose one point
value. If one unit has a higher strength than the

other, the unit with higher strength loses one
point value and the lower strength unit loses two
point values. Units are removed when their
strength drops to zero or below.

The only economic resource in Empire
Lite is cities. Initially unoccupied, once a unit
moves into a city it becomes owned by that
player. All of the unit’s pieces then increase in
strength by a value of one. If an occupied city is
captured, the original owner loses a strength
point for all units and the captor gains a point
for all units.

The heuristic employed in this
experiment was a weighted polynomial that
favored occupying cities, having stronger
pieces, being close to empty cities, and then
being close to enemy units:

H = 20(Num_A_Cities – Num_B_Cities) +
 10(Total_A_Strength – Total_B_Strength) +
 5(∑all_units(10-Closest_Dist_To_City))+
 1(∑all_units(10-Closest_Dist_To_Enemy_Unit))

3.1 Experimental Results

Using a 1.6 GHz Pentium IV processor on a
game with three pieces per player, the computer
was able to search 6 moves ahead in about 4
seconds for all three pieces. The end result was
a computer player capable of reasonable play,
sometimes achieving a stalemate. A few
examples of play that benefited from the
minimax search are shown in figure 3.

Figure 3 : Example Game Playing Scenarios

0 1 2
0
1 ** .. a6
2
3 a4 .. **
4

0 1 2
0
1 .. a4 B7
2 a6
3

0 1 2
0
1 .. a2 B6
2 .. a6 ..
3

(a)

(b)

0 1 2
0
1 **
2 a4 .. a6
3 **
4

In figure 3a, the **’s indicate empty
cities. The two pieces belonging to player A
have strength of 4 and 6 respectively. If these
pieces were operating independently, they
would both head toward the city at (0,1) to
occupy it. However, using minimax search,
piece a6 recognizes that a4 will occupy the city
and instead heads toward the city at (2,3).

In figure 3b, the bold B7 indicates a city
currently occupied by enemy piece B with
strength of 7. If pieces a4 and a6 were operating
independently, they would not attack B7 since it
is stronger than each individually. However,
through minimax lookahead, piece a4 attacks B7
recognizing that it may sacrifice itself allowing
a6 to later overwhelm the city.

4. Future Work

Although the examples shown above are not
particularly brilliant moves, they do illustrate
intelligent play without the use of hard-coded
rules. Hopefully this work illustrates the
potential for heuristic search in empire-based
games that may one day lead to computer
opponents that can rival the best human players.

Much additional work needs to be done
to accomplish this feat. As described
previously, it is difficult to describe and
implement the search space at the level of the
general. For example, what is available to
move? What is a unit at this level? A
combination of heuristic search and rule-based
methods may be most practical. Another
problem is the issue of how to break the
problem space up into meaningful chunks
dynamically. For example, a commander should
have control of applicable units, not necessarily
all units within a fixed radius. Techniques such
as influence mapping may be helpful in
determining strategic dispositions [7]. Finally,
the runtime of the pruning algorithm may still
be too large for mainstream programs, and
require further pruning mechanisms.

5. References

[1] Funge, John. (1999). AI for Computer

Games and Animation: A Cognitive
Modeling Approach. A K Peters Ltd.

[2] Laird, J. and Van Lent, M. (2001). Human-
Level AI’s Killer Application: Interactive
Computer Games. Communications of the
ACM, 22(2), 2001.

[3] Luppnow, Andrew. (December, 1994).
Hierarchical AI. Retrieved 2/20/2002 from
http://www.gamedev.net/reference/articles/a
rticle199.asp

[4] Nahr, Christoph. (1999). Computer Players
in the Star Chess Game. Technical Report,
17th August 1999.

[5] Patel, Amit (Ed.). (July, 1993). AI In
Empire-Based Games . Retrieved 2/20/2002
from
http://www.gamedev.net/reference/articles/a
rticle196.asp

[6] Pearl, Judea. (September, 1980).
Asymptotic properties of minimax trees and
game-searching procedures, AI Journal
14(2), pp.113-138.

[7] Woodcock, Steven (Ed.). (July, 1995).
Recognizing Strategic Dispositions thread.
Retrieved 2/20/2002 from
http://www.gamedev.net/reference/articles/a
rticle1085.asp

[8] Woodcock, Steven. Game AI: The State of
the Industry. Game Developer Magazine,
August 2001.

[9] Woodcock, Steven. (n.d.) Games Making
Interesting Use of Artificial Intelligence
Techniques. Retrieved 2/20/2002 from
http://www.gameai.com/games.html

