
An Experimental Framework for Email Categorization and
Management

 Kenrick Mock
University of Alaska, Anchorage

3211 Providence Dr.
Anchorage, AK 99508

(907) 786-1956

afkjm@uaa.alaska.edu

ABSTRACT
Many problems are difficult to adequately explore until a
prototype exists in order to elicit user feedback. One such
problem is a system that automatically categorizes and manages
email. Due to a myriad of user interface issues, a prototype is
necessary to determine what techniques and technologies are
effective in the email domain. This paper describes the
implementation of an add-in for Microsoft Outlook 2000 TM that
intends to address two problems with email: 1) help manage the
inbox by automatically classifying email based on user folders, and
2) to aid in search and retrieval by providing a list of email relevant
to the selected item. This add-in represents a first step in an
experimental system for the study of other issues related to
information management. The system has been set up to allow
experimentation with other classification algorithms and the source
code is available online in an effort to promote further
experimentation.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Information Filtering, Retrieval Models. H.4.3
[Applications]: Communications Applications - Electronic
mail

General Terms
Experimentation, Human Factors

Keywords
Email management, filtering, classification

1. INTRODUCTION
Email overload has become a growing problem as more users

embrace online technologies. Time Magazine estimated that 776
billion email messages were sent in 1994, 2.6 trillion sent in 1997,
and 6.6 trillion sent in 2000 [2]. In one study, recipients averaged
around 30 email messages per day [1]. To address this problem,
researchers initially designed systems to automatically classify
incoming email into categories or folders using various machine
learning techniques.

This early work focused on the classification accuracy of the
algorithms on sets of test data. While classification metrics on test
sets can provide valuable information as to the effectiveness of a
classifier, an email classifier must deal with a multitude of user
design issues. As one example, many users leave email in the
inbox as a reminder regarding some task [5]. This mode of
operation is disrupted by a system that automatically files email.

As another example, many classification algorithms are accurate
but require minutes or even hours to train. However, users will
typically only be willing to wait a number of seconds, not minutes
[4]. Furthermore, what kind of errors are users willing to tolerate?
Error rates lower than 1% may be enough to warrant discarding
the entire system if the error is made on crucial email.

To address these issues, recent work has focused on experimental
systems. For example, SwiftFile used shortcut buttons to file
messages into folders, but only when initiated by the user. The
system also incorporated an incremental learning algorithm [5].
Other projects such as Relevance Categories, Enfish Onespace, or
Metastorm’s infowise product use information retrieval
techniques to provide relevance to folders or individual messages
[4]. Other companies such as Abridge, Plumtree, and Tacit use
rules or user-supplied categories to group email.

2. PROPOSED APPROACH
This project is a first step toward building an experimental system
that may be used to test different ideas for categorization and
management within a real email environment. The project includes
utility-like routines such as extracting features from email,
assigning numeric values to features, stop listing, putting email
into categories, or detecting when email arrives. These routines are
used as the basis for the system described in the rest of the paper.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
SIGIR ’01, September 9-12, 2001, New Orleans, Louisiana, USA.

Additional classification algorithms or email access paradigms may
be built on the existing framework.

The initial prototype is based on expected user behavior.
Whittaker and Sidner identify three types of email users: 1) those
that use no folders and rely on search tools to find mail in their
inbox, 2) those that file frequently into folders, and 3) those that
file intermittently into folders every few months [6]. This work
describes two tools that are expected to help users in these
categories. The first is a tool that automatically groups inbox
email within categories, and the second is a tool to aid searching
for relevant email.

2.1 Automatic Grouping of the Inbox
On one hand, we would like to preserve email in the inbox so that
users can keep them available as reminders for action items. On
the other hand we would like to file the email to keep the volume
manageable. A middle ground is to classify email into groups, but
leave them in the inbox until filed or deleted by the user.

The email add-in prototype addresses this middle ground by
building classifiers based on user-created folders. Each classifier is
constructed by scanning through all email the user has placed into
the folder. The features from the emails are extracted and added to
the classifier. The system is currently capable of extracting as
features terms from the subject, author, recipient, and body of the
text. Stop-list terms are removed and weights are assigned to each
term based on their frequency in the email.

Currently, the classifier is a simple nearest-neighbor (NN)
classifier. Given a target message to classify, its features are
extracted and compared to all messages in the classifier using the
cosine coefficient. The top three matches are averaged as the
similarity measure for the classifier. The message is then put into
the classifier with the largest similarity measure. While ad-hoc,
the initial focus is to create the infrastructure and then experiment
with new classifiers in the future. However, this classifier does
satisfy the necessary criteria of speed and supports incremental
updates. NN classifiers may even be more effective than
classifiers based on global information since some users create
generic folders (e.g. “Projects”) encompassing multiple sub-
categories [4]. Once a message is classified, it is grouped within
the inbox by category. This allows the user to view messages by
category, by date received, by author, or any other field.

2.2 Finding Relevant Email
To aid users that wish to search for email, the add-in provides the
capability to quickly display a list of messages ranked by
relevance (using the similarity metric) to the selected message. In
this manner, other messages in the same thread or in the same
topic will be displayed at the top of the list.

This feature is currently implemented by simply scanning through
all messages in the classifiers, comparing the selected message to
each and saving the top matches. While brute-force, the
prototype scans about 300 messages per second using a 400Mhz
Pentium II.

3. IMPLEMENTATION
This project was implemented as an add-in for Microsoft Outlook
using Visual Basic and Visual C++. Outlook’s “Categories” field
is used to store the classification and the object model exposes the
necessary interface to access email messages and events such as
the arrival of a new message. Outlook’s interface already
supports a view that groups email by category. This is illustrated
in Figure 1, where the highlighted message has just been classified

and grouped into the category “Conferences.”

Finding relevant messages was implemented by adding a “Similar
Messages” button to the toolbar. The ranked results are shown in
a new window, depicted in Figure 2.

While optimization was not an early emphasis of the project, one
step was taken to increase performance. All string-based terms
are hashed into 32 bit values [3]. This greatly increases the speed
required to compare terms and cuts memory use in half. The
current code for the project is available on the web at:
http://www.math.uaa.alaska.edu/~afkjm/emailaddin/

4. FUTURE WORK
The next phase is to perform user testing and to gather feedback
on the effectiveness of the methods described here. Another area
of work involves integrating thread information within the
relevance view. Additional work also needs to be done to select an
effective classifier – e.g. one that is incremental and can handle
multiple sub-categories. Much work remains to be completed in
code enhancements such as latching into additional Outlook
events, database integration for classifiers, or .NET upgrades.
Finally, new experiments that integrate classification and
information retrieval techniques across email and into calendaring,
notes, or other types of data may also be explored.

5. REFERENCES
[1] Balter, O. and Sidner, C. Bifrost Inbox Organizer: Giving

users control over the inbox. Lotus TR 00-08, 2000.

[2] Gwynne, S. and Dickerson, J. Lost In The E-Mail. Time
Magazine, April 21, 1997.

Figure 2. Finding Relevant Email.

[3] Jenkins, B. Algorithm Alley: Hash Functions. Dr. Dobbs
22, 9, September 1997.

[4] Mock, K. Dynamic Email Organization via Relevance
Categories. In Proceedings of the International Conference on
Tools with Artificial Intelligence ’99 (Chicago IL, Nov 1999).

[5] Segal, R. and Kephart, J. Incremental Learning in SwiftFile.
In Proceedings of the Seventh International Conference on
Machine Learning (June, 2000).

[6] Whittaker, S. and Sidner, C. Email Overload: Exploring
Personal Information Management of Email. In Proceedings
of CHI 96: Human Factors in Computing Systems. New
York, NY, 1996. ACM, p 27

